Adaptive Data Replication in Real-Time Reliable Edge Computing for Internet of Things

Chao Wang, Christopher Gill, Chenyang Lu
What is being solved?

• For fault tolerance we need to replicate data.
• Replicating at the speed of arrival is inefficient.
• To come up with an adaptive data replication architecture for IoT edge computing that can meet applications’ latency and data-loss requirements with efficiency.
Challenges

• Sensing devices have limited storage capacity
• Limited network bandwidth of IoT gateways. Need to consider while deciding data replication.
• Applications have restrictions such as
 • Can tolerate only a certain number of data loses
 • End to end timing requirements
System Model and Analysis

![Diagram of edge computing for Internet of Things]

Fig. 1. Edge computing for Internet of Things.

Publish subscribe model
System Model and Analysis

Key terms and Notations
• Data topics
• T_i - Minimum inter-publishing time for data topic i
• N_i – Data elements that a publisher can keep for a data topic i
• L_i – Maximum number of consecutive losses that a subscriber can accept for a data topic i.
• D_i^P – latency requirement – soft end-to-end deadline.
• D_i^R – relative replication deadline

Fig. 1. Edge computing for Internet of Things.

Publish subscribe model
System Model and Analysis

Observations that were used to come up with the categories:
- Data publishers have limited data storage for retransmission
- Data topics may have moderate or no loss-tolerance requirements – inference tasks where data loss can be compensated by estimation.
- Data topics may require zero loss but have no latency requirement - logging

<table>
<thead>
<tr>
<th>Category</th>
<th>(L_i)</th>
<th>(N_i)</th>
<th>(D_i^P) (ms)</th>
<th>(T_i) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE I
Example Data Topic Specification.
When do we actually need to replicate data?

• Let $x_i(t)$ be the largest number of consecutive uncovered data elements, the system meets fault tolerance if $x_i(t) \leq L_i$ at all times.

• For small N_i: $x_i(t)$ depends on:
 • T_i
 • Edge computing task time
 • Scheduling

• No replication needed if elements are processed before new elements are sent if $L_i \geq 1$.

• Regular data replication can be used based on some predetermined conditions.
When to do the replication?

• A deadline is decided
• 2 lemmas help us understand the constraints better and come up with an architecture:
 • For data topic i, to prevent more than L_i consecutive data losses, L_i and N_i cannot be both zero.
 • For data topic i, set parameter $M_i \geq 1$ and let $y = L_i - M_i$. To prevent more than L_i consecutive data losses, the replication deadline must satisfy the following bound:
 • $D_i \leq (N_i + y + 1)T_i - T_{\text{FO}} - \delta_{\text{PP}} - \delta_{\text{PrB}}$
 • T_{FO}: Fail over time
 • δ_{PP}: Latency from publisher to Primary
 • δ_{PrB}: Latency from Primary to Backup
 • Lemma 2 implies that a shorter interval between replications (a smaller M_i) can permit a longer replication deadline.
ARREC Architecture

Mark → Wait → Clear → Batch

arrivals of different data topics

global earliest deadline to start a replication

batch window

d_i: deadline to start replicating data arrived at t_i

Data publishers

The Primary
Edge computing engine
Replication handler
Recovery handler
Edge computing engine

Data subscribers

The Backup
Empirical Analysis

- Two M_i configurations for AAREC – 1 and L_i: Two extremes
- Baseline:
 - Retransmission-only: No replication. Used to understand overhead of replication.
 - Periodic: 50ms (shortest in topic categories) and 25ms
Empirical Analysis