Adaptive Data Replication in Real-Time Reliable Edge Computing for Internet of Things

+Chao Wang, *Christopher Gill, *Chenyang Lu

+ Department of Computer Science and Information Engineering, National Taiwan Normal University
* Department of Computer Science and Engineering, Washington University in St. Louis, USA
Industrial Applications: Deadlines

• Reliable and timely computing at a resource-constraint network (an IoT gateway)

 • Single point of failure
 • Traffic congestion and delay
 • Limited network bandwidth

Example: structural health inference and control
Models

• Application (Data subscriber)
 • Sensors generate data every T_i
 • Data received by IoT Gateway/Edge and a task computes result at some point
 • Result sent to application which has a deadline and loss tolerance

• System
 • Sensors generate data periodically and can buffer limited data N_i => do not fail
 • IoT Gateway/Edge node receive data and compute a task => infinite buffer
 • IoT Gateway/Edge node: primary and backup => primary can fail

• Coverage
 • Data is buffered at the sensor
 • Backup has a copy
 • Result has already been completed and delivered
Specific IoT gateway requirements

• Quantitative requirements
 • Data subscriber imposes an end-to-end soft deadline for data result D_i
 • Data subscriber cannot accept more than L_i consecutive losses for data topic i

• Qualitative requirements
 • The gateway should not consume too much local network bandwidth
Tradeoff

Replication can reduce data loss

Increases amount of bandwidth consumption; primary sends data to backup gateway
System model

• Publish-subscribe data model
 • with a minimum inter-publishing time for each topic T_i

• Each embedded sensing device can only keep N_i latest data elements

• Primary-backup fault tolerance
 • crash failures (fail-stop)
 • data replication to backup
 • fail over
Example Data Topic Parameters

<table>
<thead>
<tr>
<th>Category</th>
<th>(L_i)</th>
<th>(N_i)</th>
<th>(D_{i}^P) (ms)</th>
<th>(T_i) (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(\infty)</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE I
EXAMPLE DATA TOPIC SPECIFICATION.

- e.g. logging – no loss, no time constraint
- Interesting: no latency requirement under EDF means greater data loss!
Key idea for adaptive data replication

• In the IoT gateway, once data is processed/delivered, it is irrelevant

• Therefore, for each data, we may postpone replication activities to reduce the need of actually performing the replication

• Must replicate in batch window to meet loss and timing requirements
• Once started, perform a batch of pending replications for efficiency
• Once batch window is filled, any new replications occur in next batch window
Adaptive data replication architecture

- Edge computing engine schedules both computing tasks and replication tasks using the EDF policy.

- Replication handler decides the intended rate of replication M_i (parameter) from M_i to compute replication deadline.

Lower intended rate -> tighter replication deadline

(see the paper for the analysis)
Empirical performance: efficiency in network bandwidth usage

A higher intended replication rate is preferred, because it permits a longer replication deadline, which in turn would allow the system to skip many more replication activities.

88% saving in bandwidth.
(Payload size = 512 bytes)
Summary

• Positives
 • reliability, timeliness, and resource constraints
 • key idea: adaptive data replication
 • failure rate agnostic?

• Negatives
 • weak failure model
 • is host-host bandwidth (gateway-gateway) really an issue?