CurrentSense A novel approach for fault and drift detection in environmental IoT sensors

Sumukh Marathe, Akshay Nambi, Nishant Shrivastava, Manohar Swaminathan, Ronak Sutaria

6

https://www.statista.com/statistics/1017863/worldwide-iot-connected-devices-data-size/

?

Produced by IoT Devices in 2019

Image: Constraint of the second se

Determining Sensor Data Quality is an Imperative

Determining Sensor Data Quality is an Imperative

Faulty

The Challenge

Typically, A Sensor Keeps Sending Data After It Fails

Every electrical sensor draws current from the IoT device

Damage to a sensor affects its current consumption.

We can derive an electrical fingerprint that differs between Working, Faulty and **Drifted** sensors.

Distinct for a working, drifted, and faulty sensor

3.

Independent of the measured phenomena

2.

Quantifies the amount of drift

4.

Non-intrusive with no or minimal hardware modification

- 2. Background and PM_{2.5} Sensor Faults
- 3. CurrentSense and its Working
- 4. Experimental Setup
- 5. Fault Detection and Isolation
- 6. Detecting and Measuring Drift
- 7. Applicability of CurrentSense to other Sensor Types

2. Background and PM_{2.5} Sensor Faults

3. CurrentSense and its Working

4. Experimental Setup

- 5. Fault Detection and Isolation
- 6. Detecting and Measuring Drift

7. Applicability of CurrentSense to other Sensor Types

2. Background and PM_{2.5} Sensor Faults

- 3. CurrentSense and its Working
- 4. Experimental Setup
- 5. Fault Detection and Isolation
- 6. Detecting and Measuring Drift
- 7. Applicability of CurrentSense to other Sensor Types

What is PM_{2.5}?

Particulate Matter two and one half microns or less in width

\$30 - \$100

Frequent Data Faults

Low-cost PM_{2.5} Sensor and its working

- 1. Fan Creates Controlled Airflow
- 2. Particles travel from inlet to outlet, passing through light source
- 3. Light scatters as it hits the particles
- 4. Scattered light is detected by photo diode and converted to a mass concentration output

What is a Data Fault?

Catastrophic Faults ie: Fan stops spinning

Case 1: Mimicking Data

The **faulty** sensor mimics **working** sensor data.

Case 2: Anomalous Data

The **faulty** sensor reports anomalous data.

Sensor Drift ie: LED Light intensity changes

Low cost PM_{2.5} require calibration to estimate correctly After deployment, this calibration may not remain valid as sensors wear. This loss of calibration is very difficult to detect.

Related Work

System-centric efforts

Current Signature Analysis

Related Work: Data-centric efforts

Data of the sensor is analyzed and a fault is identified if the data is out of bounds of the expected behavior.

Fault Detection in Air Pollution Sensors

- Use the sensor's placement in time/space to detect anomalies
- Use redundant sensors
- Compare sensor readings to some predicted value

Related Work: System-centric efforts

Use the sensor's voltage response when being turned off to characterize sensor fault.

Fall-curve is designed to only detect faults, and cannot be used to detect and measure sensor drift

Works only for analog sensors where a sensor's output voltage can be measured directly

Related Work: Current Signature Analysis

There are other domains in which current signature analysis has been used to detect faults.

Examples

- Motor Current Signature Analysis (MCSA)
- HVAC.
- SocketWatch.

CurrentSense performs current monitoring For fault detection and isolation in low-cost IoT sensors

2. Background and PM_{2.5} Sensor Faults

- 3. CurrentSense and its Working
- 4. Experimental Setup
- 5. Fault Detection and Isolation
- 6. Detecting and Measuring Drift
- 7. Applicability of CurrentSense to other Sensor Types

2. Background and PM_{2.5} Sensor Faults

3. CurrentSense and its Working

4. Experimental Setup

5. Fault Detection and Isolation

6. Detecting and Measuring Drift

7. Applicability of CurrentSense to other Sensor Types

Deployment details

Months

Devices

Days between Inspections

Deployment details

Devices

Drifted

2. Background and PM_{2.5} Sensor Faults

3. CurrentSense and its Working

4. Experimental Setup

5. Fault Detection and Isolation

6. Detecting and Measuring Drift

7. Applicability of CurrentSense to other Sensor Types

- 2. Background and PM_{2.5} Sensor Faults
- 3. CurrentSense and its Working
- 4. Experimental Setup
- 5. Fault Detection and Isolation
- 6. Detecting and Measuring Drift
- 7. Applicability of CurrentSense to other Sensor Types

Controlled Experiments

Fan fault injected at T = 50

5kHz

PM data

CurrentSense Features change Dramatically at

CurrentSense Features do not change at 30Hz

FFT @ 5kHz

Controlled Experiments

Fan fault injected at T = 50

5kHz

Conclusion: We can accurately detect and isolate faults by analyzing CurrentSense fingerprints.

CurrentSense Features change Dramatically at

CurrentSense Features do not change at 30Hz

Real-world deployment results

1 Measurement Per Minute

10 Fingerprints Per Week Subsampled

since ground truth was taken weekly

$10 \times 34 \times 51 = 17340$ **Total Fingerprints** Devices

Real-world deployment results

	Working	Fan Fault	LED Fault	Complete Fault
Working	1.00	0.00	0.00	0.00
Fan Fault	0.04	0.96	0.00	0.00
LED Fault	0.05	0.00	0.95	0.00
Complete Fault	0.03	0.00	0.00	0.97

Real-world deployment results

	Working	Fan Fault	LED Fault	Complete Fault
Working	1.00	0.00	0.00	0.00
Fan Fault	0.04	0.96	0.00	0.00
LED Fault	0.05	0.00	0.95	0.00
Complete Fault	0.03	0.00	0.00	0.97

Conclusion: A model trained with data collected in the lab can still accurately detect and isolate faults in real-world with an overall F₁ score of 98% across all classes

Comparison with data-centric algorithms

CurrentSense

An Anomaly Detection Framework for Large-Scale PM_{2.5} Sensing Systems

Comparison with data-centric algorithms

Spacial Anomaly

Hyper-local variations in the **pollution levels**

Distribution of

generally nonstationary

 $F_1 = 77.8\%$

- **Temporal Anomaly**
- particle matters is

 $F_1 = 67.2\%$

Spatio-temporal Anomaly

CurrentSense

Discussion

- Flexible. Applies to a wide variety of sensors.
- **Rigorously Tested.** Example of thorough experimentation.
- **Relevant.** This could feasibly be rolled out in the near future.

- Limited. Cannot detect faults due to environmental factors
- Costly. Current amplifiers are expensive relative to the cost of pollution sensors

Any Questions?

What benefits/challenges would there be if a device manufacturer wanted to ship devices with CurrentSense already loaded?

What other applications are there for this "electrical fingerprint"?

In what contexts is drift correction appropriate? Are there any it is not appropriate in?

Are there any digital sensors this approach would not work well for?

