Lux: Enabling Ephemeral Authorization for Display-Limited IoT Devices

Logan Blue
University of Florida

Patrick Traynor
University of Florida

Samuel Marchal
F-Secure Corporation and Alto University

N Asokan
University of Waterloo and Alto University
Introduction

• Smart Speakers and Smart hubs – Google Home and Amazon Echo

• Uses are increasing by the day – online service access

• Widespread adoption – Hotels, conference rooms
Key Differences

Permanent Space

Temporary Space
Key Differences

Permanent Space

- Long term ownership
- Fully Private Space
- One time authorization

Temporary Space
Key Differences

Permanent Space
- Long term ownership
- Fully Private Space
- One time authorization

Temporary Space
- Short Term Ownership
- Semi Private Space
- Temporary Authorization
Key Differences

Permanent Space

Long term ownership
Fully Private Space
One time authorization

Issues:
1. No display – Is an issue when we want to authenticate regularly
2. Built keeping long term authorization in mind
3. Not user aware – Hotel staff misusing the authorized hub

Temporary Space

Short Term Ownership
Semi Private Space
Temporary Authorization
Lux : Ephemeral Authorization

• System was designed to improve security in temporary environments like hotels and conference rooms.
• Requirements of such a system:
Lux : Ephemeral Authorization

• System was designed to improve security in temporary environments like hotels and conference rooms.

• Requirements of such a system:
 • Easy first time Authorization
 • Temporarily and Spatially bound on device Authorization
 • Enforce principle of least privilege
 • Deployable
Lux Mechanisms

- Authorization Protocols
 - First Authorization
 - Second Authorization
 - Authorization state machine
Lux Mechanisms

• Authorization Protocols
 • First Authorization
 • Second Authorization
 • Authorization state machine

• Automated Co presence detection
 • Creation of Initial Signature
 • Verification of test signatures
Participants

User

Root Service

Google Home

Smartphone

Online service
Participants

Usually provided by the same company => Easy deployment
Protocol

First Authorization Step

Requirements fulfilled
1. Easy setup
2. Enforce principle of least privilege – only access to user’s root service account
3. Deployable – Only using software by one of the companies
Protocol

Second Authorization
Protocol

Permission States and State Machine
Implementation

• Speaker and phone
 • A nexus 6 with android 7
 • Video is offloaded for signal detection and extraction
 • Custom speaker with 18 RGB lights transmitting data over 3 channels.
 • Used a diffuser to deal with white balance
Implementation

• Co Presence detection
 • Use of WiFi access points list to detect co presence
 • A signature is used to for this purpose
 • List of mac and pi
 • Pi is RSS normalized and made positive
 • Has the property of summing up to one
 • Two types of signatures calc by personal device
 • Sigloc and Sigt
 • Pi is a probability distribution and hence we use Hellinger’s distance as a measure to determine similarity
 • Threshold is used to classify it as co present.

\[p_i = \frac{RSS_i - dB_{lim} + 10}{\sum_{j=1}^{n} RSS_j - dB_{lim} + 10} \]

Consequently, \(\text{Sig} \) can be seen as a probability distribution:

\[\text{Sig} = \{(mac_1, p_1), \ldots, (mac_n, p_n)\}, \text{ where } \sum_{i=1}^{n} p_i = 1 \]
Evaluation Summary

• Various Timings
 • First authorization – 4036 (del 320ms) – encoding and decoding of messages
 • Second authorization – 155ms (del 6.2)

• ProVerif – No leakage in TLS connection – K_{ab} doesn’t leak and hence HMAC can’t be forged
Evaluation Summary

• Deauthorization

Experimental Setup

Hyperparameter:
1. dB lim (constant added to normalization eq)
2. Scan rate
3. Threshold for classifier

Accuracy vs Delay Tradeoff

1 and 2 are found out by minimizing \(H(\text{Sig}_{lo c}, \text{Sig}_T) \)
3 is calculated by taking accuracy and delay into account
Can we have an adversary attack?

• It is possible if the adversary simulates 6 AP. A lot of work.
• Need to setup the AP beforehand and then try to simulate signature when the user goes out of scope – basically follow him around with wifi
• Not feasible