CSci 427\W
Development of Secure Software Systems
Day 17: Web part 3 and cryptography part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Confidentiality and privacy, contd

Adjusting client behavior

©) HTTPS and password fields are basic hints

£) Consider disabling autocomplete
® Usability tradeoff, save users from themselves
® Finally standardized in HTML5S

) Consider disabling caching

® Performance tradeoff
® Better not to have this on user's disk
® Or proxy? You need SSL

User vs. site perspective

£) User privacy goals can be opposed to site goals
£) Such as in tracking for advertisements

£) Browser makers can find themselves in the middle
® Of course, differ in institutional pressures

Third party content / web bugs

£) Much tracking involves sites other than the one in

the URL bar
® For fun, check where your cookies are coming from

) Various levels of cooperation
£) Web bugs are typically 1x1 images used only for
tracking

Flke <0

Cookies arms race

£) Privacy-sensitive users like to block and/or delete
cookies
) Sites have various reasons to retain identification

£) Various workarounds:
® Similar features in Flash and HTML5
® Various channels related to the cache
® Evercookie: store in n places, regenerate if subset are
deleted

Browser fingerprinting

) Combine various server or JS-visible attributes

passively
® User agent string (10 bits)
® Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

©) History of what sites you've visited is not supposed

to be JS-visible
©) But, many side-channel attacks have been possible
® Query link color
® CSS style with external image for visited links
® Slow-rendering timing channel
® Harvesting bitmaps
m User perception (e.g. fake CAPTCHA)

Browser and extension choices

£) More aggressive privacy behavior lives in extensions
® Disabling most JavaScript (NoScript)
® HTTPS Everywhere (centralized list)
® Tor Browser Bundle

) Default behavior is much more controversial

® Concern not to kill advertising support as an economic
model

Outline

Even more web risks

Misconfiguration problems

©) Default accounts
©) Unneeded features

©) Framework behaviors
® Don't automatically create variables from query fields

Openness tradeoffs

€ Error reporting

® Few benign users want to see a stack backtrace
£) Directory listings

® Hallmark of the old days
£) Readable source code of scripts

® Doesn't have your DB password in it, does it?

Using vulnerable components

©) Large web apps can use a lot of third-party code

©) Convenient for attackers too

= OWASP: two popular vulnerable components downloaded
22m times

©) Hiding doesn't work if it's popular
£) Stay up to date on security announcements

Clickjacking

) Fool users about what they're clicking on
® Circumvent security confirmations
® Fabricate ad interest
£) Example techniques:
® Frame embedding
® Transparency
® Spoof cursor
® Temporal “bait and switch”

Crawling and scraping

©) A lot of web content is free-of-charge, but

proprietary
® Yours in a certain context, if you view ads, etc.

) Sites don't want it downloaded automatically (web
crawling)

©) Or parsed and user for another purpose (screen
scraping)

©) High-rate or honest access detectable

Outline

Crypto basics

-ography, -ology, -analysis

©) Cryptography (narrow sense): designing encryption
) Cryptanalysis: breaking encryption

©) Cryptology: both of the above

£) Code (narrow sense). word-for-concept substitution
) Cipher: the “"codes” we actually care about

Caesar cipher

£) Advance three letters in alphabet:
A —-D,B—E,...

©) Decrypt by going back three letters
€ Internet-era variant: rot-13
£) Easy to break if you know the principle

Keys and Kerckhoffs's principle

©) The only secret part of the cipher is a key

©) Security does not depend on anything else being
secret

£) Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

£) Symmetric key (today’s lecture): one key used by all
participants
£) Public key: one key kept secret, another published

® Techniques invented in 1970s
® Makes key distribution easier
® Depends on fancier math

Goal: secure channel

©) Leaks no content information
® Not protected: size, timing
©) Messages delivered intact and in order
® Or not at all
©) Even if an adversary can read, insert, and delete
traffic

One-time pad

£) Secret key is truly random data as long as message

£ Encrypt by XOR (more generally addition mod
alphabet size)

©) Provides perfect, “information-theoretic” secrecy

£) No way to get around key size requirement

Computational security

£) More realistic: assume adversary has a limit on
computing power
©) Secure if breaking encryption is computationally
infeasible
® E.g, exponential-time brute-force search

©) Ties cryptography to complexity theory

Key sizes and security levels

) Difficulty measured in powers of two, ignore small
constant factors

£) Power of attack measured by number of steps, aim
for better than brute force

£ 232 definitely too easy, probably 2¢* too
£ Modern symmetric key size: at least 2'28

Crypto primitives

£) Base complicated systems on a minimal number of
simple operations

) Designed to be fast, secure in wide variety of uses

©) Study those primitives very intensely

Attacks on encryption

£) Known ciphertext
® Weakest attack

£) Known plaintext (and corresponding ciphertext)
£) Chosen plaintext

£) Chosen ciphertext (and plaintext)
® Strongest version: adaptive

Certificational attacks

£) Good primitive claims no attack more effective than
brute force
©) Any break is news, even if it's not yet practical
® Canary in the coal mine
o Eg, 221 attack against AES-128

©) Also watched: attacks against simplified variants

Fundamental ignorance

£) We don't really know that any computational
cryptosystem is secure

£) Security proof would be tantamount to proving
P #£ NP

£) Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

) Prove security under an unproved assumption
©) In symmetric crypto, prove a construction is secure
if the primitive is
® Often the proof looks like: if the construction is insecure,
so is the primitive
£) Can also prove immunity against a particular kind of
attack

Random oracle paradigm

£) Assume ideal model of primitives: functions selected
uniformly from a large space
® Anderson: elves in boxes

£) Not theoretically sound; assumption cannot be
satisfied
£) But seems to be safe in practice

Pseudorandomness and distinguishers

) Claim: primitive cannot be distinguished from a truly
random counterpart
® In polynomial time with non-negligible probability
£) We can build a distinguisher algorithm to exploit any
weakness
) Slightly too strong for most practical primitives, but a
good goal

Open standards

£) How can we get good primitives?

£) Open-world best practice: run competition, invite
experts to propose then attack

£) Run by neutral experts, eg. US NIST

£) Recent good examples: AES, SHA-3

A certain three-letter agency

©) National Security Agency (NSA): has primary
responsibility for “signals intelligence”
) Dual-mission tension:

® Break the encryption of everyone in the world
® Help US encryption not be broken by foreign powers

Outline

Stream ciphers

Stream ciphers

) Closest computational version of one-time pad

©) Key (or seed) used to generate a long
pseudorandom bitstream

) Closely related: cryptographic RNG

Shift register stream ciphers

©) Linear-feedback shift register (LFSR). easy way to
generate long pseudorandom sequence
® But linearity allows for attack

£) Several ways to add non-linearity

£) Common in constrained hardware, poor security
record

RC4

©) Fast, simple, widely used software stream cipher
® Previously a trade secret, also "ARCFOUR”
£) Many attacks, none yet fatal to careful users (e.q.
TLS)
® Famous non-careful user: WEP

©) Now deprecated, not recommended for new uses

Encryption # integrity

£) Encryption protects secrecy, not message integrity

©) For constant-size encryption, changing the
ciphertext just creates a different plaintext

) How will your system handle that?
©) Always need to take care of integrity separately

Stream cipher mutability

£) Strong example of encryption vs. integrity

©) In stream cipher, flipping a ciphertext bit flips the
corresponding plaintext bit, only

©) Very convenient for targeted changes

Salsa and ChaCha

£) Published by Daniel Bernstein 2007-2008

£) Stream cipher with random access to stream
® Related to counter mode discussed later
£) Fast on general-purpose CPUs without specialized
hardware
) Adopted as option for TLS and SSH
® Prominent early adopter: Chrome on Android

Stream cipher assessment

©) Currently less fashionable as a primitive in software

©) Not inherently insecure
® Other common pitfall: must not reuse key(stream)

Outline

Block ciphers and modes of operation

Basic idea

©) Encryption/decryption for a fixed sized block

©) Insecure if block size is too small
® Barely enough: 64 bits; current standard: 128

©) Reversible, so must be one-to-one and onto function

Pseudorandom permutation

£) Ideal model: key selects a random invertible function
©) le, permutation (PRP) on block space
® Note: not permutation on bits
£) "Strong” PRP: distinguisher can decrypt as well as
encrypt

Confusion and diffusion

£) Basic design principles articulated by Shannon

) Confusion: combine elements so none can be
analyzed individually

) Diffusion: spread the effect of one symbol around to
others

) Ilterate multiple rounds of transformation

Substitution/permutation network

©) Parallel structure combining reversible elements:
©) Substitution: invertible lookup table (“S-box")
£) Permutation: shuffle bits

AES

©) Advanced Encryption Standard: NIST contest 2001
® Developed under the name Rijndael

) 128-bit block, 128/192/256-bit key

£) Fast software implementation with lookup tables (or
dedicated insns)

©) Allowed by US government up to Top Secret

Feistel cipher

£) Split block in half, operate in turn:
(Lit1, Riy1) = (R, L @ F(Ry, Ki))
£) Key advantage: F need not be invertible
® Also saves space in hardware
©) Luby-Rackoff: if F is pseudo-random, 4 or more
rounds gives a strong PRP

DES

©) Data Encryption Standard: AES predecessor
1977-2005

£) 64-bit block, 56-bit key

©) Implementable in 70s hardware, not terribly fast in
software

©) Triple DES variant still used in places

Some DES history

) Developed primarily at IBM, based on an earlier
cipher named “Lucifer”
) Final spec helped and “helped” by the NSA

® Argued for smaller key size
® S-boxes tweaked to avoid a then-secret attack

£) Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware
1993 est. $Im cost custom hardware
1997 distributed software break

1998 $250k built ASIC hardware

2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

£) Combine two different block ciphers?
® Belt and suspenders

) Anderson: don't do it
£) FS&K: could do it, not a recommendation

£) Maurer and Massey (JCrypt'93). might only be as
strong as first cipher

Modes of operation

©) How to build a cipher for arbitrary-length data from a
block cipher
£) Many approaches considered
® For some reason, most have three-letter acronyms
) More recently: properties susceptible to relative
proof

ECB

) Electronic CodeBook

£ Split into blocks, apply cipher to each one individually
©) Leaks equalities between plaintext blocks

£) Aimost never suitable for general use

Do not use ECB

CBC

) Cipher Block Chaining
0 C =Ex(Pi® Ciq)
£) Long-time most popular approach, starting to decline

©) Plaintext changes propagate forever, ciphertext
changes only one block

CBC: getting an IV

£) C, is called the initialization vector (IV)
® Must be known for decryption
o) IV should be random-looking
® To prevent first-block equalities from leaking (lesser
version of ECB problem)
£) Common approaches

® Generate at random
® Encrypt a nonce

Stream modes: OFB, CTR

£) Output FeedBack: produce keystream by repeatedly
encrypting the IV
® Danger: collisions lead to repeated keystream
©) Counter: produce from encryptions of an
incrementing value

® Recently becoming more popular: allows parallelization
and random access

