Graph Laplacian

D L Boley
University of Minnesota

Graph Analysis: Random Walk Model

- Many properties of a graph can be obtained or estimated from properties of the so-called Fundamental Tensor derived using Random Walk model.
- average hitting times, commute times.
- distances or affinities between nodes.
- betweenness measures.
- importance/centrality measures.
- bottlenecks in computer communication networks, road networks.
- influence propagation.
- Much existing theory is for undirected graphs
- Some can be extended to directed graphs.
- Much of this material is from [Boley et al., 2010; Boley et al., 2018; Golnari et al., 2019].

Undirected vs Directed graphs

Undirected Graph

- social networks:
friends and contact lists
- passive electrical networks
- recommender systems:
e.g. bipartite graph: users \leftrightarrow movies.
- the internet, computer communication networks.

Directed Graph

- the WWW: random walk on relaxed graph yields pagerank.
- road network with one-way streets.
- wireless device network with mix of high and low-powered devices.
- propagation of influence or trust in social networks.

Basics: Graphs and Matrices

- Graph represented by
- Adjacency Matrix A s.t. $a_{i j} \neq 0$ when \exists an edge $i \rightarrow j$.
- Markov chain transition matrix P s.t. $p_{i j}=$ probability of transition from node i to node j.
- Undirected graph \Longleftrightarrow symmetric adjacency matrix \Longleftrightarrow reversible Markov chain.
- Assume no absorbing states \Longleftrightarrow strongly connected.
- Related Quantities
- $\mathbf{d}=A \cdot \mathbf{1}$ vector of node (out) degrees,
- $D=\operatorname{diag}(\mathbf{d})=$ diagonal matrix of degrees,
- $\boldsymbol{\pi}=$ vector of stationary probabilities, s.t. $\boldsymbol{\pi}^{\mathrm{T}} P=\boldsymbol{\pi}^{\mathrm{T}}$,
- $\Pi=$ diagonal matrix of stationary probabilities,
- $Z=\left(I-P+\mathbf{1} \boldsymbol{\pi}^{\mathrm{T}}\right)^{-1}=$ Fundamental Matrix
[Grinstead \& Snell, 2006].

Alternative Laplacians

Laplacians lead to many graph properties (many for undirected graphs)

- $L^{\mathrm{a}}=D-A=D(I-P) \quad$ "combinatorial," based on node degrees.
- Matrix Tree Theorem \rightarrow number of spanning 'trees' anchored at each node (DiGraphs too) [Brualdi \& Ryser, 1991; Chebotarev \& Shamis, 2006]
- smallest graph cut relative to number of nodes in each half [Shi \& Malik, 2000; Spielman \& Teng, 1996; von Luxburg, 2007].
- $L=\Pi(I-P) \quad$ "Random Walk" $=L^{\mathrm{a}} \cdot$ vol $^{*} 2$ if undirected.
- pseudo-inverse leads to average commute times/resistances [Doyle \& Snell, 1984; Chandra et al., 1989; Klein \& Randic, 1993; Boley et al., 2011].
- pseudo-inverse leads to metric embedding in \mathbb{R}^{n}
[Gower \& Legendre, 1986; Fouss et al., 2007].
- $L^{\mathrm{p}}=I-P=I-D^{-1} A=D^{-1} L^{\mathrm{a}} \quad$ "normalized"
- smallest graph cut relative to number of edges in each half [von Luxburg, 2007].
- Consensus dynamics over nodes of a graph: $\dot{\mathbf{x}}=-L \mathbf{x}$ (DiGraphs too). [Olfati-Saber et al., 2004, 2006], [Bamieh et al., 2008], [Young et al., 2010, 2011].
- $\mathcal{L}=D^{1 / 2} L^{\mathrm{p}} D^{-1 / 2}=D^{-1 / 2} L^{\mathrm{a}} D^{-1 / 2}=$ symmetrized normalized Laplacian.
- shares same eigenvalues as $L^{\mathrm{p}}=I-P$.

Example - Undirected Graph

$$
A=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \quad \mathbf{d}=\left(\begin{array}{l}
2 \\
3 \\
2 \\
2 \\
3 \\
2
\end{array}\right) \quad \boldsymbol{\pi}=\frac{1}{14} \cdot\left(\begin{array}{l}
2 \\
3 \\
2 \\
2 \\
3 \\
2
\end{array}\right)
$$

Laplacians

- $L^{a}=\left(\begin{array}{rrrrrr}2 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2\end{array}\right)=14 * L$
- Number of spanning 'trees': $\operatorname{det}\left(L_{[2: 6],[2 ; 6]}^{a}\right)=15$.
- Eigenvalues are 0, 1, 2, 3, 3, 5 .
- Eigenvector corresp. to 1 (Fiedler vector): $(1,0,-1,-1,0,1) / 2$. Used in Spectral Graph Partitioning.
- Volume $=$ number of edges $=1 / 2 \operatorname{trace}\left(L^{a}\right)=7$.

Fundamental Tensor: Number of Visits

- Partition $P=\left[\begin{array}{l|l}P_{11} & \mathbf{p}_{12} \\ \hline \mathbf{p}_{21}^{T} & p_{n n}\end{array}\right]$
- If last row replaced with $\left[0^{T}, 1\right]$, then $\left[P_{11}^{k}\right]_{i j}$ is the probability of being in node j starting in node i at the $k-t h$ step, before reaching n.
- $\left[I+P_{11}+P_{11}^{2}+\cdots\right]_{i j}=\left[\left(I-P_{11}\right)^{-1}\right]_{i j} \stackrel{\text { def }}{=} \mathbf{N}(i, j, n)$ $=\#$ visits to j starting from i before reaching n.
- $\left(I-P_{11}\right)^{-1}=[\Pi_{1, \ldots, n-1}^{-1} \underbrace{\Pi_{1, \ldots, n-1}\left(I-P_{11}\right)}_{L_{11}}]^{-1}=L_{11}^{-1} \Pi_{1, \ldots, n-1}$.
- Since $L \cdot \mathbf{1}=\mathbf{0}, \mathbf{1}^{T} L=\mathbf{0}^{T}$, can write $\left(I-P_{11}\right)^{-1}$ in terms of $M \stackrel{\text { def }}{=} L^{+}$ to yield $\boldsymbol{N}(i, j, n)=\left(m_{i j}+m_{n n}-m_{i n}-m_{n j}\right) \pi_{j}$.
- Choice of destination node n is arbitrary, so have Tensor:
$\mathbf{N}(i, j, k) \quad$ for all i, j, k.
$=$ average number of visits to j starting from i before reaching k.

Fundamental Tensor: Number of Visits

- Partition $P=\left[\begin{array}{l|l}P_{11} & \mathbf{p}_{12} \\ \hline \mathbf{p}_{21}^{T} & p_{n n}\end{array}\right]$.
- If last row replaced with $\left[0^{T}, 1\right]$, then $\left[P_{11}^{k}\right]_{i j}$ is the probability of being in node j starting in node i at the $k-t h$ step, before reaching n.
- $\left[I+P_{11}+P_{11}^{2}+\cdots\right]_{i j}=\left[\left(I-P_{11}\right)^{-1}\right]_{i j} \stackrel{\text { def }}{=} N(i, j, n)$ $=\#$ visits to j starting from i before reaching n.
- $\left(I-P_{11}\right)^{-1}=[\Pi_{1, \ldots, n-1}^{-1} \underbrace{\Pi_{1, \ldots, n-1}\left(I-P_{11}\right)}_{L_{11}}]^{-1}=L_{11}^{-1} \Pi_{1, \ldots, n-1}$.
- Since $L \cdot \mathbf{1}=\mathbf{0}, \mathbf{1}^{T} L=\mathbf{0}^{T}$, can write $\left(I-P_{11}\right)^{-1}$ in terms of $M \stackrel{\text { def }}{=} L^{+}$ to yield $\boldsymbol{N}(i, j, n)=\left(m_{i j}+m_{n n}-m_{i n}-m_{n j}\right) \pi_{j}$.
- Choice of destination node n is arbitrary, so have Tensor:
$\mathbf{N}(i, j, k) \quad$ for all i, j, k.
$=$ average number of visits to j starting from i before reaching k.

Fundamental Tensor: Number of Visits

- Partition $P=\left[\begin{array}{l|l}P_{11} & \mathbf{p}_{12} \\ \hline \mathbf{p}_{21}^{T} & p_{n n}\end{array}\right]$.
- If last row replaced with $\left[\mathbf{0}^{T}, 1\right]$, then $\left[P_{11}^{k}\right]_{i j}$ is the probability of being in node j starting in node i at the $k-t h$ step, before reaching n.
- $\left[I+P_{11}+P_{11}^{2}+\cdots\right]_{i j}=\left[\left(I-P_{11}\right)^{-1}\right]_{i j} \stackrel{\text { def }}{=} \mathbf{N}(i, j, n)$ $=\#$ visits to j starting from i before reaching n.
- $\left(I-P_{11}\right)^{-1}=[\Pi_{1, \ldots, n-1}^{-1} \underbrace{\Pi_{1, \ldots, n-1}\left(I-P_{11}\right)}_{L_{11}}]^{-1}=L_{11}^{-1} \Pi_{1, \ldots, n-1}$.
- Since $L \cdot \mathbf{1}=\mathbf{0}, \mathbf{1}^{T} L=\mathbf{0}^{T}$, can write $\left(I-P_{11}\right)^{-1}$ in terms of $M \stackrel{\text { def }}{=} L^{+}$ to yield $\boldsymbol{N}(i, j, n)=\left(m_{i j}+m_{n n}-m_{i n}-m_{n j}\right) \pi_{j}$.
- Choice of destination node n is arbitrary, so have Tensor:
$\mathbf{N}(i, j, k) \quad$ for all i, j, k.
$=$ average number of visits to j starting from i before reaching k.

Fundamental Tensor: Number of Visits

- Partition $P=\left[\begin{array}{l|l}P_{11} & \mathbf{p}_{12} \\ \hline \mathbf{p}_{21}^{T} & p_{n n}\end{array}\right]$.
- If last row replaced with $\left[\mathbf{0}^{T}, 1\right]$, then $\left[P_{11}^{k}\right]_{i j}$ is the probability of being in node j starting in node i at the $k-t h$ step, before reaching n.
- $\left[I+P_{11}+P_{11}^{2}+\cdots\right]_{i j}=\left[\left(I-P_{11}\right)^{-1}\right]_{i j} \stackrel{\text { def }}{=} \mathbf{N}(i, j, n)$ $=\#$ visits to j starting from i before reaching n.
- $\left(I-P_{11}\right)^{-1}=[\Pi_{1, \ldots, n-1}^{-1} \underbrace{\Pi_{1, \ldots, n-1}\left(I-P_{11}\right)}_{L_{11}}]^{-1}=L_{11}^{-1} \Pi_{1, \ldots, n-1}$.
- Since $L \cdot \mathbf{1}=\mathbf{0}, \mathbf{1}^{T} L=\mathbf{0}^{T}$, can write $\left(I-P_{11}\right)^{-1}$ in terms of $M \stackrel{\text { def }}{=} L^{+}$ to yield $\boldsymbol{N}(i, j, n)=\left(m_{i j}+m_{n n}-m_{i n}-m_{n j}\right) \pi_{j}$.
- Choice of destination node n is arbitrary, so have Tensor:
$\mathbf{N}(i, j, k) \quad$ for all i, j, k.
$=$ average number of visits to j starting from i before reaching k.

Fundamental Tensor: Number of Visits

- Partition $P=\left[\begin{array}{l|l}P_{11} & \mathbf{p}_{12} \\ \hline \mathbf{p}_{21}^{T} & p_{n n}\end{array}\right]$.
- If last row replaced with $\left[\mathbf{0}^{T}, 1\right]$, then $\left[P_{11}^{k}\right]_{i j}$ is the probability of being in node j starting in node i at the $k-t h$ step, before reaching n.
- $\left[I+P_{11}+P_{11}^{2}+\cdots\right]_{i j}=\left[\left(I-P_{11}\right)^{-1}\right]_{i j} \stackrel{\text { def }}{=} \mathbf{N}(i, j, n)$ $=\#$ visits to j starting from i before reaching n.
- $\left(I-P_{11}\right)^{-1}=[\Pi_{1, \ldots, n-1}^{-1} \underbrace{\Pi_{1, \ldots, n-1}\left(I-P_{11}\right)}_{L_{11}}]^{-1}=L_{11}^{-1} \Pi_{1, \ldots, n-1}$.
- Since $L \cdot \mathbb{1}=0,1^{T} L=0^{T}$, can write $\left(I-P_{11}\right)^{-1}$ in terms of $M \stackrel{\text { def }}{=} L^{+}$ to yield $\boldsymbol{N}(i, j, n)=\left(m_{i j}+m_{n n}-m_{i n}-m_{n j}\right) \pi_{j}$.
- Choice of destination node n is arbitrary, so have Tensor:
$\mathbf{N}(i, j, k) \quad$ for all i, j, k.
$=$ average number of visits to j starting from i before reaching k.

Fundamental Tensor: Number of Visits

- Partition $P=\left[\begin{array}{l|l}P_{11} & \mathbf{p}_{12} \\ \hline \mathbf{p}_{21}^{T} & p_{n n}\end{array}\right]$.
- If last row replaced with $\left[\mathbf{0}^{T}, 1\right]$, then $\left[P_{11}^{k}\right]_{i j}$ is the probability of being in node j starting in node i at the $k-t h$ step, before reaching n.
- $\left[I+P_{11}+P_{11}^{2}+\cdots\right]_{i j}=\left[\left(I-P_{11}\right)^{-1}\right]_{i j} \stackrel{\text { def }}{=} \mathbf{N}(i, j, n)$ $=\#$ visits to j starting from i before reaching n.
- $\left(I-P_{11}\right)^{-1}=[\Pi_{1, \ldots, n-1}^{-1} \underbrace{\Pi_{1, \ldots, n-1}\left(I-P_{11}\right)}_{L_{11}}]^{-1}=L_{11}^{-1} \Pi_{1, \ldots, n-1}$.
- Since $L \cdot \mathbf{1}=\mathbf{0}, \mathbf{1}^{T} L=\mathbf{0}^{T}$, can write $\left(I-P_{11}\right)^{-1}$ in terms of $M \stackrel{\text { def }}{=} L^{+}$ to yield $\mathbf{N}(i, j, n)=\left(m_{i j}+m_{n n}-m_{i n}-m_{n j}\right) \pi_{j}$.
- Choice of destination node n is arbitrary, so have Tensor:
$\mathbf{N}(i, j, k) \quad$ for all i, j, k.
$=$ average number of visits to j starting from i before reaching k.

Fundamental Tensor: Number of Visits

- Partition $P=\left[\begin{array}{l|l}P_{11} & \mathbf{p}_{12} \\ \hline \mathbf{p}_{21}^{T} & p_{n n}\end{array}\right]$.
- If last row replaced with $\left[\mathbf{0}^{T}, 1\right]$, then $\left[P_{11}^{k}\right]_{i j}$ is the probability of being in node j starting in node i at the $k-t h$ step, before reaching n.
- $\left[I+P_{11}+P_{11}^{2}+\cdots\right]_{i j}=\left[\left(I-P_{11}\right)^{-1}\right]_{i j} \stackrel{\text { def }}{=} \mathbf{N}(i, j, n)$ $=\#$ visits to j starting from i before reaching n.
- $\left(I-P_{11}\right)^{-1}=[\Pi_{1, \ldots, n-1}^{-1} \underbrace{\Pi_{1, \ldots, n-1}\left(I-P_{11}\right)}_{L_{11}}]^{-1}=L_{11}^{-1} \Pi_{1, \ldots, n-1}$.
- Since $L \cdot \mathbf{1}=\mathbf{0}, \mathbf{1}^{T} L=\mathbf{0}^{T}$, can write $\left(I-P_{11}\right)^{-1}$ in terms of $M \stackrel{\text { def }}{=} L^{+}$ to yield $\boldsymbol{N}(i, j, n)=\left(m_{i j}+m_{n n}-m_{i n}-m_{n j}\right) \pi_{j}$.
- Choice of destination node n is arbitrary, so have Tensor:
$\mathbf{N}(i, j, k) \quad$ for all i, j, k.
$=$ average number of visits to j starting from i before reaching k.

Lemma 1 - Inverse of Submatrix

Let $L=\left(\begin{array}{cc}L_{11} & \mathrm{l}_{12} \\ \mathrm{l}_{21}^{\mathrm{T}} & l_{n n}\end{array}\right)$ be an $n \times n$ irreducible matrix s.t. $\operatorname{nullity}(L)=1$.
Let $M=L^{+}$be the pseudo-inverse of L partitioned similarly and assume $\left(\mathbf{u}^{\mathrm{T}}, 1\right) L=0, L(\mathbf{v} ; 1)=0$, where \mathbf{u}, \mathbf{v} are $(n-1)$-vectors.
Then the inverse of the $(n-1) \times(n-1)$ matrix L_{11} exists and is given by

$$
\begin{aligned}
L_{11}^{-1} & =X \stackrel{\text { def }}{=}\left(I_{n-1}+\mathbf{v} \mathbf{v}^{\mathrm{T}}\right) M_{11}\left(I_{n-1}+\mathbf{u} \mathbf{u}^{\mathrm{T}}\right) \\
& =\left(I_{n-1},-\mathbf{v}\right)\left(\begin{array}{cc}
M_{11} & \mathbf{m}_{12} \\
\mathbf{m}_{21}^{\mathrm{T}} & m_{n n}
\end{array}\right)\binom{I_{n-1}}{-\mathbf{u}^{\mathrm{T}}} \\
& =M_{11}-\mathbf{m}_{12} \mathbf{u}^{\mathrm{T}}-\mathbf{v} \mathbf{m}_{21}^{\mathrm{T}}+m_{n n} \mathbf{v} \mathbf{u}^{\mathrm{T}}
\end{aligned}
$$

If $\mathbf{u}=\mathbf{v}=\mathbf{1}$ then $\left[L_{11}^{-1}\right]_{i j}=m_{i j}+m_{n n}-m_{i n}-m_{n j}$.

Proof

- Idea: Plug prospective inverse X in to verify $X L_{11}=I$:

$$
\left.\begin{array}{rl}
X L_{11} & =\left(I_{n-1},-\mathbf{v}\right)\left(\begin{array}{ll}
M_{11} & \mathbf{m}_{12} \\
\mathbf{m}_{21}^{\mathrm{T}} & m_{n n}
\end{array}\right)\binom{I_{n-1}}{-\mathbf{u}^{\mathrm{T}}} L_{11} \\
M_{11} & \mathbf{m}_{12} \\
\mathbf{m}_{21}^{\mathrm{T}} & m_{n n}
\end{array}\right)\binom{L_{11}}{\mathbf{l}_{21}^{\mathrm{T}}} \quad \text { A }
$$

(A From $\left(\mathbf{u}^{\mathrm{T}}, 1\right) L=\left(\mathbf{u}^{\mathrm{T}} L_{11}+\mathbf{l}_{21}^{\mathrm{T}}, \mathbf{u}^{\mathrm{T}} \mathbf{l}_{12}+l_{n n}\right)=0$.
B From $M L=I_{n}-\binom{\mathbf{v}}{1}\left(\mathbf{v}^{T}, 1\right) /\left(\mathbf{v}^{\mathrm{T}} \mathbf{v}+1\right)$ (ortho projector).

Get Pseudo-Inv of Laplacian

1. Compute normalized Laplacian $L=I-P$.
2. Compute inverse of the upper $(n-1) \times(n-1)$ part: $I-P_{11}$
3. Solve for the stationary probabilites: $\left(\pi_{1}, \ldots, \pi_{n-1}\right)=-\left(L_{11}^{\mathrm{p}}\right)^{-1} \ell_{12}^{\mathrm{p}} \pi_{n}$;
4. Form random walk Laplacian $\mathbf{L}=\operatorname{DiAG}(\boldsymbol{\pi}) \cdot L=\boldsymbol{\Pi}(I-P)$.
5. Compute the inverse of $\mathbf{L}_{11}^{-1}=\left(I-P_{11}\right)^{-1} \mathbf{\Pi}_{1}^{-1}$
6. Compute desired pseudoinverse \mathbf{M}

$$
\mathbf{M}=\binom{R_{\mathbf{1}}}{\frac{-1}{n} \mathbf{1}^{T}} \mathbf{L}_{11}^{-1}\left(R_{\mathbf{1}}, \frac{-1}{n} \mathbf{1}\right),
$$

where $R_{1}=\left(I_{n-1}-\frac{1}{n} \mathbf{1 1}{ }^{T}\right)$.
7. $\mathbf{N}(i, j, k)=\left(m_{i j}+m_{k k}-m_{i k}-m_{k j}\right) \pi_{j}$ for all i, j, k.

Get Pseudo-Inv of Laplacian

1. Compute normalized Laplacian $L=I-P$.
2. Compute inverse of the upper $(n-1) \times(n-1)$ part: $I-P_{11}$ Expensive
3. Solve for the stationary probabilites: $\left(\pi_{1}, \ldots, \pi_{n-1}\right)=-\left(L_{11}^{\mathrm{p}}\right)^{-1} \ell_{12}^{\mathrm{p}} \pi_{n}$;
4. Form random walk Laplacian $\mathbf{L}=\operatorname{Diag}(\boldsymbol{\pi}) \cdot L=\Pi(I-P)$.
5. Compute the inverse of $\mathbf{L}_{11}^{-1}=\left(I-P_{11}\right)^{-1} \boldsymbol{\Pi}_{1}^{-1}$
6. Compute desired pseudoinverse \mathbf{M}

$$
\mathbf{M}=\binom{R_{1}}{\frac{-1}{n} \mathbf{1}^{T}} \mathbf{L}_{11}^{-1}\left(R_{\mathbf{1}}, \frac{-1}{n} \mathbf{1}\right),
$$

where $R_{\mathbf{1}}=\left(I_{n-1}-\frac{1}{n} \mathbf{1 1}^{T}\right)$.
7. $\boldsymbol{N}(i, j, k)=\left(m_{i j}+m_{k k}-m_{i k}-m_{k j}\right) \pi_{j}$ for all i, j, k.

Re-order Laplacian for Small World Graphs

approx minimum degree ordering

Cost for Small World Graphs

number of			time in csec	
vertices	edges	LU fill	LU	backsolve
1,024	4,059	20,620	5	2
2,048	8,140	66,851	2	<1
4,096	16,314	205,826	4	<1
8,192	32,671	763,440	12	1
16,384	65,402	$2,804,208$	56	5
32,768	130,884	$10,740,194$	250	19
65,536	261,882	$43,504,911$	1,363	82
131,072	523,920	$168,455,437$	7,989	328

- Double the size \Longrightarrow

LU cost grows by about a factor of 5 instead of a factor of $2^{3}=8$.

Hitting and Commute Times

Adding up previous gives

- $\mathbf{H}(i, k)=\sum_{j} \mathbf{N}(i, j, k)=m_{k k}-m_{i k}+\sum_{j}\left(m_{i j}-m_{k j}\right) \pi_{j}$
- $\mathbf{C}(i, k)=\mathbf{H}(i, k)+\mathbf{H}(k, i)=m_{k k}+m_{i i}-m_{i k}-m_{k i}$.
- Above holds also for strongly connected directed graphs (arbitrary Markov chain with no transient states).
- Could add along other dimensions to get betweenness measures, etc.

Commute Times

- Pseudo inverse of $L=L^{\mathrm{a}} / 14$ is a Gram matrix:

$$
M=L^{+}=\frac{7}{90} \cdot\left(\begin{array}{rrrrrr}
83 & -1 & -37 & -43 & -19 & 17 \\
-1 & 47 & -1 & -19 & -7 & -19 \\
-37 & -1 & 83 & 17 & -19 & -43 \\
-43 & -19 & 17 & 83 & -1 & -37 \\
-19 & -7 & -19 & -1 & 47 & -1 \\
17 & -19 & -43 & -37 & -1 & 83
\end{array}\right)
$$

- \Longrightarrow expected commute times in random walk $\left[\left(\ell_{2} \text { metric }\right)^{2}\right]$

$$
\mathbf{C}=\left[\begin{array}{l}
\operatorname{diag}\left(L^{+}\right) \cdot \mathbf{1}^{\mathrm{T}} \\
+\mathbf{1} \cdot \operatorname{diag}\left(L^{+}\right) \\
-L^{+}-\left(L^{+}\right)^{\mathrm{T}}
\end{array}\right]=\frac{14}{15} \cdot\left(\begin{array}{rrrrrr}
0 & 11 & 20 & 21 & 14 & 11 \\
11 & 0 & 11 & 14 & 9 & 14 \\
20 & 11 & 0 & 11 & 14 & 21 \\
21 & 14 & 11 & 0 & 11 & 20 \\
14 & 9 & 14 & 11 & 0 & 11 \\
11 & 14 & 21 & 20 & 11 & 0
\end{array}\right) .
$$

- Red numbers: average extra cost of detour thru given node.

Embedding

- $L^{+}=\mathbf{S}^{T} \mathbf{S}$ with

$$
\mathbf{S}=\left(\begin{array}{rrrrrc}
\mathbf{s}_{1} & \mathbf{s}_{2} & \mathbf{s}_{3} & \mathbf{s}_{4} & \mathbf{S}_{5} & \mathbf{s}_{6} \\
2.5408 & -.0306 & -1.1326 & -1.3163 & -.5816 & .52040 \\
0 & 1.9117 & -.0588 & -.7941 & -.2941 & -.7647 \\
0 & 0 & 2.2736 & -.0947 & -.9473 & -1.2315 \\
0 & 0 & 0 & 2.02070 & -.5774 & -1.4434 \\
0 & 0 & 0 & 0 & 1.4142 & -1.4142 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- For all $i, j,\left\|\mathbf{s}_{i}-\mathbf{s}_{j}\right\|_{2}^{2}=C_{i j}$.
- Since $L^{+} \mathbf{1}=\mathbf{0}$, the columns of \mathbf{S} are already centered.
- Previous red numbers are distance ${ }^{2}$ from origin $=$ Centrality $[83,47,83,83,47,83] \times(7 / 90)$.

Example - Directed Graph

Laplacian from Probabilities

- Obtain Tensor \& commute times same way, but from $L=\Pi-\Pi Р$:

$$
\begin{aligned}
& L=\left(\begin{array}{cccccc}
0.2 & -0.2 & 0 & 0 & 0 & 0 \\
0 & 0.2 & -0.1 & 0 & -0.1 & 0 \\
0 & 0 & 0.1 & -0.1 & 0 & 0 \\
0 & 0 & 0 & 0.1 & -0.1 & 0 \\
0 & 0 & 0 & 0 & 0.2 & -0.2 \\
-0.2 & 0 & 0 & 0 & 0 & 0.2
\end{array}\right), \text { null }=\text { vec }=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right) \\
& M=L^{+}=\frac{5}{6}\left(\begin{array}{rrrrrr}
3 & 2 & 0 & -2 & -1 & -2 \\
-2 & 3 & 1 & -1 & 0 & -1 \\
-3 & -4 & 6 & 4 & -1 & -2 \\
-1 & -2 & -4 & 6 & 1 & 0 \\
1 & 0 & -2 & -4 & 3 & 2 \\
2 & 1 & -1 & -3 & -2 & 3
\end{array}\right)
\end{aligned}
$$

Laplacians: only $\Pi-\Pi P$ has null vector $(1, \ldots, 1)$ on both sides.

Hitting \& Commute Times

- Only nodes 3,4 are peripheral. Others are all equally important.
- Same reflected in average commute times from node 2.

Tensor Applications

Effective Resistances - Undirected Graphs

- Commute times correspond to effective resistances.
[Doyle \& Snell, 1984; Chandra et al., 1989; Klein \& Randic, 1993].
- Eigenvalues of

$$
L^{\mathrm{ds}}=I-P=\frac{1}{6} \cdot\left(\begin{array}{rrrrrr}
6 & -3 & 0 & 0 & 0 & -3 \\
-2 & 6 & -2 & 0 & -2 & 0 \\
0 & -3 & 6 & -3 & 0 & 0 \\
0 & 0 & -3 & 6 & -3 & 0 \\
0 & -2 & 0 & -2 & 6 & -2 \\
-3 & 0 & 0 & 0 & -3 & 6
\end{array}\right)
$$

are $0,1 / 2,5 / 6,7 / 6,3 / 2,2$. The $1 / 2$ is related to the expander graph or Cheeger bound of the graph. [Chung, 2005; zhou et al., 2005].

- Also $1 / 2 \leftrightarrow$ mixing rate for random walk over the graph.
- The corresponding eigenvector used in spectral graph partitioning $(-1,0,1,1,0,-1)$.

Incidence Matrix

- The incidence matrix \mathbf{N} has n columns and $\operatorname{vol}(G)$ rows. Each column corresponds to a node (vertex) of graph G and each row corresponds to an edge (in some arbitrary order).
- The j-th row represents the edge $e_{j}=(i, j)$, and looks like

$$
0, \ldots, 0,1,0, \ldots, 0,-1,0, \ldots, 0
$$

where the nonzero entries are in columns i, j corresponding to the vertices connected by that edge.

- Then a simple calculation shows $L=D-A=\mathbf{N}^{T} \mathbf{N}$, where $A=$ adjacency matrix and $D=$ diagonal matrix of degrees.
- In general: if \mathbf{v} is a vector of voltages, then $\mathbf{N v}$ is the vector of currents across each link, assuming unit conductances.

Example Incidence Matrix

$$
\mathbf{N}=\left(\begin{array}{rrrrrr}
+1 & -1 & 0 & 0 & 0 & 0 \\
+1 & 0 & 0 & 0 & 0 & -1 \\
0 & +1 & -1 & 0 & 0 & 0 \\
0 & +1 & 0 & 0 & -1 & 0 \\
0 & 0 & +1 & -1 & 0 & 0 \\
0 & 0 & 0 & +1 & -1 & 0 \\
0 & 0 & 0 & 0 & +1 & -1
\end{array}\right)
$$

Resistances

[Doyle \& Snell, 1984; Chandra et al., 1989; Klein \& Randic, 1993].

- Current $=$ Incidence_matrix \cdot Voltage (using unit resistances):
- Kirchoff's law: If unit current is injected between nodes $i \& j$, then net current through every other vertex must be zero:

$$
\mathbf{e}_{i}-\mathbf{e}_{j}=\mathbf{N}^{T} \mathbf{I}=\cdots=\mathbf{N}^{T} \mathbf{N} \mathbf{v}=L^{\mathrm{a}} \mathbf{v}
$$

- Solve for voltages $=\mathbf{v}=\left(L^{\mathrm{a}}\right)^{+}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)$.
- Net voltage drop i to $j=$ effective resistance $=$

$$
\mathrm{v}_{i}-\mathrm{v}_{j}=\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\mathrm{T}} \mathbf{v}=\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)^{\mathrm{T}}\left(L^{\mathrm{a}}\right)^{+}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)
$$

Resistances

$\mathbf{e}_{i}-\mathbf{e}_{j} \perp \operatorname{Nullsp}\left(\mathbf{N}^{T} \mathbf{N}\right)$, so can use pseudo-inverse to find voltages.

- Solve for voltages $\mathbf{v}=\left(\mathbf{N}^{T} \mathbf{N}\right)^{+} \cdot\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=\left(L^{\mathrm{a}}\right)^{+}\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)$.
- Effective resistance between nodes $i \& j$ is

$$
\begin{aligned}
\mathrm{v}_{i}-\mathrm{v}_{j} & =\left(\mathbf{e}_{i}^{T}-\mathbf{e}_{j}^{T}\right) \cdot \mathbf{v} \\
& =\left(\mathbf{e}_{i}^{T}-\mathbf{e}_{j}^{T}\right) \cdot\left(\mathbf{N}^{T} \mathbf{N}\right)^{+} \cdot\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \\
& =\left(\mathbf{e}_{i}^{T}-\mathbf{e}_{j}^{T}\right) \cdot\left(L^{\mathrm{a}}\right)^{+} \cdot\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right) \\
& =\left[\left(L^{\mathrm{a}}\right)^{+}\right]_{i i}+\left[\left(L^{\mathrm{a}}\right)^{+}\right]_{j j}-\left[\left(L^{\mathrm{a}}\right)^{+}\right]_{i j}-\left[\left(L^{\mathrm{a}}\right)^{+}\right]_{j i} .
\end{aligned}
$$

- Collect matrix of effective resistances: (= commute times)

$$
\alpha \mathbf{C}=\operatorname{diag}\left(L^{\mathrm{a}}\right)^{+} \cdot \mathbf{1}^{\mathrm{T}}+\mathbf{1} \cdot \operatorname{diag}\left(L^{\mathrm{a}}\right)^{+}-\left(L^{\mathrm{a}}\right)^{+}-\left[\left(L^{\mathrm{a}}\right)^{+}\right]^{\mathrm{T}}
$$

- The entries $\mathbf{C}_{i j}$ are squares of a Euclidean metric. [Schoenberg, 1935; Schoenberg, 1938; Berg et al., 1984],

Vector showing 2 classes

- Define $\mathbf{v}=\{\alpha,-\beta\}^{n}$ where $v_{i}=\alpha>0$ is node i is in class A , and $v_{i}=-\beta<0$ if node i is in class B .
- Then the non-zero entries of the vector $\mathbf{N v}$ are in the positions corresponding to the edges with one end in class A and the other end in class B.
- Hence $\mathbf{v}^{T} \mathbf{N}^{T} \mathbf{N} \mathbf{v}=\mathbf{v}^{T} L \mathbf{v}=\operatorname{cut}(\mathrm{A}, \mathrm{B})(\alpha+\beta)^{2}=\sum_{i<j} a_{i j}\left(v_{i}-v_{j}\right)^{2}$.
- Also $\mathbf{v}^{T} \mathbf{v}=n_{\mathrm{A}} \alpha^{2}+n_{\mathrm{B}} \beta^{2}$.
- Also $\mathbf{v}^{T} D \mathbf{v}=d_{\mathrm{A}} \alpha^{2}+d_{\mathrm{B}} \beta^{2}$
- Here $n_{\mathrm{A}}=\#$ vertices in class $\mathrm{A}, d_{\mathrm{A}}=$ sum of all degrees of nodes in class A . Ditto for class B . And $n=n_{\mathrm{A}}+n_{\mathrm{B}}=$ total number of vertices, and $d=d_{\mathrm{A}}+d_{\mathrm{B}}=2$ times total number of edges.

Cut relative to |nodes|

- Let $\alpha^{2}=n_{\mathrm{B}} / n_{\mathrm{A}}, \beta^{2}=n_{\mathrm{A}} / n_{\mathrm{B}}$.
- Then $\mathbf{v}^{T} L \mathbf{v}==\operatorname{cut}(\mathrm{A}, \mathrm{B})\left(\frac{n_{\mathrm{A}}+n_{\mathrm{B}}}{\sqrt{n_{\mathrm{A}} n_{\mathrm{B}}}}\right)^{2}=\operatorname{cut}(\mathrm{A}, \mathrm{B}) \frac{n^{2}}{n_{\mathrm{A}} n_{\mathrm{B}}}$,
- and $\mathbf{v}^{T} \mathbf{v}=n_{\mathrm{A}}\left(n_{\mathrm{B}} / n_{\mathrm{A}}\right)+n_{\mathrm{B}}\left(n_{\mathrm{A}} / n_{\mathrm{B}}\right)=n$.
- Hence

$$
\frac{\mathbf{v}^{T} L \mathbf{v}}{\mathbf{v}^{T} \mathbf{v}}=\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{n_{\mathrm{A}} n_{\mathrm{B}}} n
$$

- Also $\mathbf{v}^{T} \mathbf{1}=n_{\mathrm{A}} \alpha-n_{\mathrm{B}} \beta=\sqrt{n_{\mathrm{A}} n_{\mathrm{B}}}-\sqrt{n_{\mathrm{B}} n_{\mathrm{A}}}=0$.
- Hence

$$
\frac{\mathbf{v}^{T} L \mathbf{v}}{\mathbf{v}^{T} \mathbf{v}} \geq \min _{\mathbf{x} \perp \mathbf{1}} \frac{\mathbf{x}^{T} L \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

Cut relative to |edges|

- Now look at minimal cut relative to the number of edges in each half.
- Let $\alpha^{2}=d_{\mathrm{B}} / d_{\mathrm{A}}, \beta^{2}=d_{\mathrm{A}} / d_{\mathrm{B}}$.
- Then $\mathbf{v}^{T} L \mathbf{v}==\operatorname{cut}(\mathrm{A}, \mathrm{B})\left(\frac{d_{\mathrm{A}}+d_{\mathrm{B}}}{\sqrt{d_{\mathrm{A}} d_{\mathrm{B}}}}\right)^{2}=\operatorname{cut}(\mathrm{A}, \mathrm{B}) \frac{d^{2}}{d_{\mathrm{A}} d_{\mathrm{B}}}$,
- and $\mathbf{v}^{T} D \mathbf{v}=d_{\mathrm{A}}\left(d_{\mathrm{B}} / d_{\mathrm{A}}\right)+d_{\mathrm{B}}\left(d_{\mathrm{A}} / d_{\mathrm{B}}\right)=d$.
- Hence

$$
\frac{\mathbf{v}^{T} L \mathbf{v}}{\mathbf{v}^{T} D \mathbf{v}}=\frac{\operatorname{cut}(\mathrm{A}, \mathrm{~B})}{d_{\mathrm{A}} d_{\mathrm{B}}} d
$$

Generalized Eigenvalue Problem

- Let $\mathbf{w}=D^{1 / 2} \mathbf{v}$. Then $\mathbf{w}^{T} \sqrt{\mathbf{d}}=\mathbf{v}^{T} \mathbf{d}=\alpha d_{\mathrm{A}}-\beta d_{\mathrm{B}}=0$.
- Also $\mathcal{L} \sqrt{\mathrm{d}}=D^{-1 / 2} L D^{-1 / 2} \sqrt{\mathrm{~d}}=0$.
- The Rayleigh Quotient is

$$
\frac{\mathbf{v}^{T} L \mathbf{v}}{\mathbf{v}^{T} D \mathbf{v}}=\frac{\mathbf{w}^{T} \mathcal{L} \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}} \geq \min _{\mathrm{x} \perp \sqrt{\mathbf{d}}} \frac{\mathbf{x}^{T} \mathcal{L} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\lambda_{2}(\mathcal{L}) .
$$

Relation to Random Walk

- The smallest non-zero eigenvalue of \mathcal{L} is related to best edge-relative cut.
- The eigenvalues of \mathcal{L} are the same as the eigenvalues of $I-P$:

$$
D^{-1 / 2} \mathcal{L} D^{1 / 2}=D^{-1 / 2}\left(I-D^{-1 / 2} A D^{-1 / 2}\right) D^{1 / 2}=I-D^{-1} A=I-P .
$$

- The smallest non-zero eigenvalue of \mathcal{L} corresponds to second largest eigenvalue of P, i.e., the mixing rate.
- The largest eigenvalue of \mathcal{L} corresponds to the smallest (most negative) eigenvalue of P. The latter is at least -1 (exactly -1 iff random walk is 2 -cyclic, periodic). So the former is at most 2 , and exactly equal to 2 iff graph is bipartite.

Cheeger Bounds

- Denote the eigenvalue of \mathcal{L} as $0=\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n} \leq 2$.
- The basic Cheeger bound is [Chung, 2005]

$$
2 h_{G} \geq \lambda_{2}(\mathcal{L}) \geq 1 / 2 h_{G}^{2}
$$

where
$h_{G}=$ minimum cut relative to the edge weights, $\lambda_{2}(\mathcal{L})=2$ nd smallest eigenvalue of $\mathcal{L}=I-D^{-1 / 2} A D^{-1 / 2}$.

Isoperimetric Constant

Definitions: [Chung, 2005]

- Neighborhood of set X of nodes, $N(X)$, is the set of nodes not in X but with an edge to X.
- $g_{G}=\min _{X: \operatorname{vol}(X) \leq \operatorname{vol}(\bar{X})} \frac{\operatorname{vol}(N(X))}{\operatorname{vol}(X)}$

2 bounds: [Chung, 2005]

- $\lambda_{2} \geq \frac{g_{G}^{2}}{2 d\left(2+2 g_{G}+g_{G}^{2}\right)}$.
- $g_{G} \geq \frac{1-\left(1-\lambda^{\prime}\right)^{2}}{\left(1-\lambda^{\prime}\right)^{2}+\frac{\operatorname{vol}(\bar{X})}{\operatorname{vol}(\bar{X})}} \geq\left(1-\left(1-\lambda^{\prime}\right)^{2}\right)\left(1-\frac{\operatorname{vol}(X)}{\operatorname{vol}(\bar{X})}\right.$,
where $\lambda^{\prime}=\frac{2 \lambda_{2}}{\lambda_{2}+\lambda_{n}}$ if $1-\lambda_{2}<\lambda_{n}-1$, and $\lambda^{\prime}=\lambda_{2}$ o.w.

Conclusions

- Introduced "Random Walk" Laplacian for strongly connected directed graph
- Fundamental Tensor - fast way to encode many properties
- Laplacian Related to Average Commute Times
- Laplacian Related to Electric Resistance
- Laplacian Related to mixing times and Graph Cuts.

Lemma 2 - Conditionally Definite

If M is a symmetric positive semi-definite Gram matrix of inner products, Then $\mathbf{C}=\mathbf{d}_{M} \mathbf{1}^{\mathrm{T}}+\mathbf{1} \mathbf{d}_{M}^{\mathrm{T}}-2 M$ s.t. $c_{i j}=m_{i i}+m_{j j}-2 m_{i j}$ is the conditionally definite matrix of squared distances. [here $\mathbf{d}_{M}=\left(m_{11} ; \ldots ; m_{n n}\right)$] Note "Conditionally definite" means $\mathrm{x}^{\mathrm{T}} \mathrm{Cx} \leq 0$ for all $\mathrm{x} \perp \mathbf{1}$, and for simplicity $c_{i i}=0, \forall i$. A typical example is a matrix of pairwise squared ℓ_{2} distances.

If C is a conditionally definite matrix,
Then one can find a matching semi-definite Gram matrix M.
Note: A prospective uncentered M is given by $2 \widehat{M}=\mathbf{c}_{k} \mathbf{1}^{\mathrm{T}}+\mathbf{1} \mathbf{c}_{k}^{\mathrm{T}}-\mathrm{C}$, where \mathbf{c}_{k} is some arbitrarily selected column out of \mathbf{C}.
The result can be centered around the origin, yielding:

$$
M=\left(I-\frac{11^{\mathrm{T}}}{n}\right) \widehat{M}\left(I-\frac{11^{\mathrm{T}}}{n}\right)=-1 / 2\left(I-\frac{11^{\mathrm{T}}}{n}\right) \mathrm{C}\left(I-\frac{11^{\mathrm{T}}}{n}\right)
$$

[Schoenberg, 1935; Schoenberg, 1938; Berg et al., 1984; Gower \& Legendre, 1986]
Proof: AWLOG $\mathrm{x}_{1}=0$. Then $c_{1 k}=c_{k 1}=\left\|x_{k}\right\|_{2}^{2}$.
So $c_{i j}=m_{i i}+m_{j j}-2 m_{i j}=c_{i 1}+c_{1 j}-2 m_{i j}$.
slides12tail.22.9.14.112

References

Bamieh, B., Jovanovic, M., Mitra, P., \& Patterson, S. (2008). Effect of topological dimension on rigidity of vehicle formations: Fundamental limitations of local feedback. Proc. CDC (pp. 369-374). Cancun, Mexico.

Berg, C., Christiansen, J., \& Ressel, P. (1984). Harmonic analysis on semigroups. Springer Verlag.
Boley, D., Buendia, A., \& Golnari, G. (2018). Random walk laplacian and network centrality measures. arXiv 1808.02912.

Boley, D., Ranjan, G., \& Zhang, Z.-L. (2010). Commute times for a directed graph using an asymmetric laplacian. U of Mn CS\&E Dept report TR 10-005, Univ. of Minn., Dept. of Comp uter Science and Eng. (a revised version is to appear in LAA 2011).

Boley, D., Ranjan, G., \& Zhang, Z.-L. (2011). Commute times for a directed graph using an asymmetric Laplacian. Linear Algebra and Appl., 435, 224-242.

Brualdi, R. A., \& Ryser, H. J. (1991). Combinatorial matrix theory. Cambridge Univ. Press.
Chandra, A., Raghavan, P., Ruzzo, W., Smolensky, R., \& Tiwari, P. (1989). The electrical resistance of a graph captures its commute and cover times. Proc. of Annual ACM Symposium on Theory of Computing (pp. 574-586).

Chebotarev, P., \& Shamis, E. (2006). Matrix-forest theorems.
Chung, F. (2005). Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9, 1-19.

Doyle, P., \& Snell, J. (1984). Random walks and electric networks. The Math. Assoc. of Am. front.math.ucdavis.edu/math.PR/0001057.

Fouss, F., Pirotte, A., Renders, J., \& Saerens, M. (2007). Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. on Knowledge and Data Engineering, 19, 355-369.

Golnari, G., Zhang, Z.-L., \& Boley, D. (2019). Markov fundamental tensor and its applications to network analysis. Linear Algebra and Appl., 564, 126-158.

Gower, J., \& Legendre, P. (1986). Metric and euclidean properties of dissimilarities coefficients. J. Classification, 3, 5-48.

Grinstead, C. M., \& Snell, J. L. (2006). Introduction to probability. American Mathematical Society. 2nd edition, www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html.

Klein, D., \& Randic, M. (1993). Resistance distance. J. Math. Chemistry, 12, 81-95.
Olfati-Saber, R., Murray, R. M., A, \& B (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Auto. Contr., 49, 1520-1533.

Schoenberg, I. J. (1935). Remarks to Maurice Fréchet's article "Sur la définition axiomatique d'une classe d'espace distanciés vectoriellement applicable sur l'espace de Hilbert". Annals of Mathematics, 36, 724-732.

Schoenberg, I. J. (1938). Metric spaces and positive definite functions. Trans. of the Amer. Math Soc., 44, 522-536.

Shi, J., \& Malik, J. (2000). Normalised cuts and image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence, 22, 888-905.

Spielman, D. A., \& Teng, S.-H. (1996). Spectral partitioning works:planar graphs and finite element meshes. 37th Annual Symposium on Foundations of Computer Science. IEEE Computer Soc. Press.
von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17, 395-416. Max Planck Institute for Biological Cybernetics. Technical Report No. TR-149.

Young, G. F., Scandovi, L., \& Leonard, N. (2010). Robustness of noisy consensus dynamics with directed communication. Proc. $A C C$ (pp. 6312-6317).

Zhou, D., Huang, J., \& Schölkopf, B. (2005). Learning from labeled and unlabeled data on a directed graph. Proc. 22nd Int'l Conf. Machine Learning (pp. 1041-1048).

