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Graph Analysis: Random Walk Model
• Many properties of a graph can be obtained or estimated from properties
of the so-called Fundamental Tensor derived using RandomWalk model.
• average hitting times, commute times.
• distances or affinities between nodes.
• betweenness measures.
• importance/centrality measures.
• bottlenecks in computer communication networks, road networks.
• influence propagation.

• Much existing theory is for undirected graphs
• Some can be extended to directed graphs.
• Much of this material is from [Boley et al., 2010; Boley et al., 2018;
Golnari et al., 2019].
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Undirected vs Directed graphs
Undirected Graph

• social networks:
friends and contact lists

• passive electrical networks

• recommender systems:
e.g. bipartite graph:
users ↔ movies.

• the internet, computer
communication networks.

Directed Graph

• the WWW: random walk on
relaxed graph yields pagerank.

• road network with one-way
streets.

• wireless device network with mix
of high and low-powered devices.

• propagation of influence or trust
in social networks.
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Basics: Graphs and Matrices
• Graph represented by

• Adjacency Matrix A s.t. aij 6= 0 when ∃ an edge i → j.

• Markov chain transition matrix P s.t. pij = probability of transition
from node i to node j.

• Undirected graph ⇐⇒ symmetric adjacency matrix
⇐⇒ reversible Markov chain.

• Assume no absorbing states ⇐⇒ strongly connected.

• Related Quantities

• d = A · 1 vector of node (out) degrees,

• D = diag(d) = diagonal matrix of degrees,

• π = vector of stationary probabilities, s.t. πTP = πT,

• Π = diagonal matrix of stationary probabilities,

• Z = (I − P + 1πT)−1 = Fundamental Matrix
[Grinstead & Snell, 2006].
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Alternative Laplacians
Laplacians lead to many graph properties (many for undirected graphs)

• La = D−A = D(I−P ) ”combinatorial,” based on node degrees.
• Matrix Tree Theorem → number of spanning ‘trees’ anchored at each

node (DiGraphs too) [Brualdi & Ryser, 1991; Chebotarev & Shamis, 2006]

• smallest graph cut relative to number of nodes in each half
[Shi & Malik, 2000; Spielman & Teng, 1996; von Luxburg, 2007].

• L = Π(I − P ) ”Random Walk” = La · vol*2 if undirected.
• pseudo-inverse leads to average commute times/resistances

[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993; Boley et al., 2011].
• pseudo-inverse leads to metric embedding in Rn

[Gower & Legendre, 1986; Fouss et al., 2007].

• Lp = I − P = I −D−1A = D−1La “normalized”
• smallest graph cut relative to number of edges in each half

[von Luxburg, 2007].
• Consensus dynamics over nodes of a graph: ẋ = −Lx (DiGraphs

too). [Olfati-Saber et al., 2004, 2006], [Bamieh et al., 2008], [Young et al., 2010, 2011].

• L = D
1/2LpD−1/2 = D−1/2LaD−1/2 = symmetrized normalized Laplacian.

• shares same eigenvalues as Lp = I − P .
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Example – Undirected Graph

1

2 3

4

56

A =




0 1 0 0 0 1
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 1
1 0 0 0 1 0




d =




2
3
2
2
3
2




π =
1

14
·




2
3
2
2
3
2
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Laplacians

• La =




2 −1 0 0 0 −1
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 −1 0 −1 3 −1

−1 0 0 0 −1 2




= 14 ∗ L

• Number of spanning ‘trees’: det(La
[2:6],[2:6]) = 15.

• Eigenvalues are 0, 1, 2, 3, 3, 5.

• Eigenvector corresp. to 1 (Fiedler vector): (1, 0,−1,−1, 0, 1)/2.
Used in Spectral Graph Partitioning.

• Volume = number of edges = 1/2trace(L
a) = 7.
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Fundamental Tensor: Number of Visits

• Partition P =

[
P11 p12

pT
21 pnn

]
.

• If last row replaced with [0T , 1], then [P k
11]ij is the probability of being

in node j starting in node i at the k − th step, before reaching n.

• [I + P11 + P 2
11 + · · ·]ij = [(I − P11)

−1]ij
def
= N(i, j, n)

= # visits to j starting from i before reaching n.

• (I − P11)
−1 = [Π−1

1,...,n−1 Π1,...,n−1(I − P11)︸ ︷︷ ︸
L11

]−1 = L−1
11 Π1,...,n−1.

• Since L · 1 = 0, 1TL = 0T , can write (I − P11)
−1 in terms of M

def
= L+

to yield N(i, j, n) = (mij +mnn −min −mnj)πj.

• Choice of destination node n is arbitrary, so have Tensor:
N(i, j, k) = (mij +mkk −mik −mkj)πj for all i, j, k.
= average number of visits to j starting from i before reaching k.
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Lemma 1 – Inverse of Submatrix

Let L =

(
L11 l12
lT21 lnn

)
be an n × n irreducible matrix s.t. nullity(L) = 1.

Let M = L+ be the pseudo-inverse of L partitioned similarly and
assume (uT, 1)L = 0, L(v; 1) = 0, where u,v are (n− 1)-vectors.

Then the inverse of the (n− 1)× (n− 1) matrix L11 exists and is given by

L−1
11 = X

def
= (In−1 + vvT)M11(In−1 + uuT)

= (In−1 , −v)

(
M11 m12

mT
21 mnn

)(
In−1

−uT

)

= M11 −m12u
T − vmT

21 +mnnvu
T.

If u = v = 1 then [L−1
11 ]ij = mij +mnn −min −mnj.
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Proof

• Idea: Plug prospective inverse X in to verify XL11 = I:

XL11 = (In−1 , −v)

(
M11 m12

mT
21 mnn

)(
In−1

−uT

)
L11

= (In−1 , −v)

(
M11 m12

mT
21 mnn

)(
L11

lT21

)
A

= (In−1 , −v)ML

(
In−1

0T

)

= (In−1 , −v)

(
In−1

0T

)
= In−1 B

A From (uT, 1)L = (uTL11 + lT21 , uTl12 + lnn) = 0.

B From ML = In −
(
v
1

)
(vT , 1)/(vTv + 1) (ortho projector).
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Get Pseudo-Inv of Laplacian

1. Compute normalized Laplacian L = I − P .

2. Compute inverse of the upper (n− 1)× (n− 1) part: I − P11

3. Solve for the stationary probabilites: (π1, . . . , πn−1) = −(Lp
11)

−1ℓp12πn;

4. Form random walk Laplacian L = Diag(π) · L = Π(I − P ).

5. Compute the inverse of L−1
11 = (I − P11)

−1Π−1
1

6. Compute desired pseudoinverse M

M =

(
R1

−1
n
1T

)
L−1

11

(
R1,

−1
n
1
)
,

where R1 = (In−1 − 1
n
11T ).

7. N(i, j, k) = (mij +mkk −mik −mkj)πj for all i, j, k.
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Re-order Laplacian for Small World Graphs

0 2000 4000 6000 8000 10000 12000 14000 16000

nz = 81786

0

2000

4000

6000

8000

10000

12000

14000

16000

Laplacian

0 2000 4000 6000 8000 10000 12000 14000 16000

nz = 81786

0

2000

4000

6000

8000

10000

12000

14000

16000

reordered Laplacian

original order approx minimum degree ordering
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Cost for Small World Graphs

number of time in csec
vertices edges LU fill LU backsolve

1,024 4,059 20,620 5 2
2,048 8,140 66,851 2 < 1
4,096 16,314 205,826 4 < 1
8,192 32,671 763,440 12 1
16,384 65,402 2,804,208 56 5
32,768 130,884 10,740,194 250 19
65,536 261,882 43,504,911 1,363 82
131,072 523,920 168,455,437 7,989 328

• Double the size =⇒
LU cost grows by about a factor of 5 instead of a factor of 23 = 8.
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Hitting and Commute Times

Adding up previous gives

• H(i, k) =
∑

j N(i, j, k) = mkk −mik +
∑

j(mij −mkj)πj

• C(i, k) = H(i, k) +H(k, i) = mkk +mii −mik −mki.

• Above holds also for strongly connected directed graphs
(arbitrary Markov chain with no transient states).

• Could add along other dimensions to get betweenness measures, etc.
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Commute Times

• Pseudo inverse of L = La/14 is a Gram matrix:

M = L+ =
7

90
·




83 −1 −37 −43 −19 17
−1 47 −1 −19 −7 −19
−37 −1 83 17 −19 −43
−43 −19 17 83 −1 −37
−19 −7 −19 −1 47 −1
17 −19 −43 −37 −1 83




• =⇒ expected commute times in random walk [(ℓ2 metric)2]

C =




diag(L+) · 1T

+ 1 · diag(L+)

− L+ − (L+)T


 =

14

15
·




0 11 20 21 14 11
11 0 11 14 9 14
20 11 0 11 14 21
21 14 11 0 11 20
14 9 14 11 0 11
11 14 21 20 11 0



.

• Red numbers: average extra cost of detour thru given node.
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Embedding

• L+ = STS with

S =




2.5408

s1
−.0306

s2
−1.1326

s3
−1.3163

s4
−.5816

s5
.52040

s6

0 1.9117 −.0588 −.7941 −.2941 −.7647
0 0 2.2736 −.0947 −.9473 −1.2315
0 0 0 2.02070 −.5774 −1.4434
0 0 0 0 1.4142 −1.4142
0 0 0 0 0 0




• For all i, j, ‖si − sj‖22 = Cij.

• Since L+1 = 0, the columns of S are already centered.

• Previous red numbers are distance2 from origin = Centrality
[83, 47, 83, 83, 47, 83] × (7/90).
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Example – Directed Graph

1

2 3

4

56

P =




0 1.0 0 0 0 0
0 0 0.5 0 0.5 0
0 0 0 1.0 0 0
0 0 0 0 1.0 0
0 0 0 0 0 1.0
1.0 0 0 0 0 0




, d =




1
2
1
1
1
1




6∝ π =




0.2
0.2
0.1
0.1
0.2
0.2
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Laplacian from Probabilities

• Obtain Tensor & commute times same way, but from L = Π− ΠP :

L =




0.2 −0.2 0 0 0 0
0 0.2 −0.1 0 −0.1 0
0 0 0.1 −0.1 0 0
0 0 0 0.1 −0.1 0
0 0 0 0 0.2 −0.2

−0.2 0 0 0 0 0.2




, nullvec =




1
1
1
1
1
1




M = L+ = 5
6




3 2 0 −2 −1 −2
−2 3 1 −1 0 −1
−3 −4 6 4 −1 −2
−1 −2 −4 6 1 0
1 0 −2 −4 3 2
2 1 −1 −3 −2 3




Laplacians: only Π− ΠP has null vector (1, . . . , 1) on both sides.
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Hitting & Commute Times

1

2 3

4

56

H (hitting times)


0 1 6 7 3 4
4 0 5 6 2 3
4 5 0 1 2 3
3 4 9 0 1 2
2 3 8 9 0 1
1 2 7 8 4 0




C (commute times)


0 5 10 10 5 5
5 0 10 10 5 5
10 10 0 10 10 10
10 10 10 0 10 10
5 5 10 10 0 5
5 5 10 10 5 0




• Only nodes 3, 4 are peripheral. Others are all equally important.
• Same reflected in average commute times from node 2.
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Tensor Applications
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Effective Resistances – Undirected Graphs
• Commute times correspond to effective resistances.

[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993].

• Eigenvalues of

Lds = I − P =
1

6
·




6 −3 0 0 0 −3
−2 6 −2 0 −2 0
0 −3 6 −3 0 0
0 0 −3 6 −3 0
0 −2 0 −2 6 −2

−3 0 0 0 −3 6




are 0, 1/2 , 5/6, 7/6, 3/2, 2. The 1/2 is related to the expander
graph or Cheeger bound of the graph. [Chung, 2005; Zhou et al., 2005].

• Also 1/2 ↔ mixing rate for random walk over the graph.

• The corresponding eigenvector used in spectral graph partitioning
(−1, 0, 1, 1, 0,−1).
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Incidence Matrix

• The incidence matrix N has n columns and vol(G) rows. Each column
corresponds to a node (vertex) of graph G and each row corresponds to
an edge (in some arbitrary order).

• The j-th row represents the edge ej = (i, j), and looks like

0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0

where the nonzero entries are in columns i, j corresponding to the vertices
connected by that edge.

• Then a simple calculation shows L = D − A = NTN, where A =
adjacency matrix and D = diagonal matrix of degrees.

• In general: if v is a vector of voltages, then Nv is the vector of currents
across each link, assuming unit conductances.
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Example Incidence Matrix

1

2 3

4

56

N =




+1 −1 0 0 0 0

+1 0 0 0 0 −1
0 +1 −1 0 0 0

0 +1 0 0 −1 0

0 0 +1 −1 0 0

0 0 0 +1 −1 0

0 0 0 0 +1 −1
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Resistances
[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993].

• Current = Incidence matrix · Voltage (using unit resistances):
I = N · V



i1
...
i7


 =




1 −1 0 0 0 0
1 0 0 0 0 −1
0 1 −1 0 0 0
0 1 0 0 −1 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1




·



v1
...
v6




• Kirchoff’s law: If unit current is injected between nodes i & j, then
net current through every other vertex must be zero:

ei−ej = NT
I = · · · = NTNV = La

V.

• Solve for voltages = V = (La)+(ei−ej).

• Net voltage drop i to j = effective resistance =
vi−vj = (ei−ej)

T
V = (ei−ej)

T(La)+(ei−ej).
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Resistances
ei−ej ⊥ Nullsp(NTN), so can use pseudo-inverse to find voltages.

• Solve for voltages V = (NTN)+ · (ei − ej) = (La)+(ei − ej).

• Effective resistance between nodes i & j is

vi − vj = (eTi − eTj ) · V
= (eTi − eTj ) · (NTN)+ · (ei − ej)

= (eTi − eTj ) · (La)+ · (ei − ej)

= [(La)+]ii + [(La)+]jj − [(La)+]ij − [(La)+]ji.

• Collect matrix of effective resistances: (= commute times)

αC = diag(La)+ · 1T + 1 · diag(La)+ − (La)+ − [(La)+]T.

• The entries Cij are squares of a Euclidean metric. [Schoenberg, 1935;

Schoenberg, 1938; Berg et al., 1984],
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Vector showing 2 classes

• Define v = {α,−β}n where vi = α > 0 is node i is in class A, and
vi = −β < 0 if node i is in class B.

• Then the non-zero entries of the vectorNv are in the positions corresponding
to the edges with one end in class A and the other end in class B.

• Hence vTNTNv = vTLv = cut(A,B)(α+ β)2 =
∑

i<j

aij(vi − vj)
2.

• Also vTv = nAα
2 + nBβ

2.

• Also vTDv = dAα
2 + dBβ

2

• Here nA = # vertices in class A, dA = sum of all degrees of nodes in
class A. Ditto for class B. And n = nA+nB = total number of vertices,
and d = dA + dB = 2 times total number of edges.
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Cut relative to |nodes|
• Let α2 = nB/nA, β

2 = nA/nB.

• Then vTLv == cut(A,B)

(
nA + nB√

nAnB

)2

= cut(A,B)
n2

nAnB

,

• and vTv = nA(nB/nA) + nB(nA/nB) = n.

• Hence
vTLv

vTv
=

cut(A,B)

nAnB

n

• Also vT1 = nAα− nBβ =
√
nAnB −√

nBnA = 0.

• Hence
vTLv

vTv
≥ min

x⊥1

xTLx

xTx
.
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Cut relative to |edges|
• Now look at minimal cut relative to the number of edges in each half.

• Let α2 = dB/dA, β
2 = dA/dB.

• Then vTLv == cut(A,B)

(
dA + dB√

dAdB

)2

= cut(A,B)
d2

dAdB
,

• and vTDv = dA(dB/dA) + dB(dA/dB) = d.

• Hence
vTLv

vTDv
=

cut(A,B)

dAdB
d
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Generalized Eigenvalue Problem

• Let w = D
1/2v. Then wT

√
d = vTd = αdA − βdB = 0.

• Also L
√
d = D−1/2LD−1/2

√
d = 0.

• The Rayleigh Quotient is

vTLv

vTDv
=

wTLw
wTw

≥ min
x⊥

√
d

xTLx
xTx

= λ2(L).
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Relation to Random Walk

• The smallest non-zero eigenvalue of L is related to best edge-relative
cut.

• The eigenvalues of L are the same as the eigenvalues of I − P :

D−1/2LD1/2 = D−1/2(I −D−1/2AD−1/2)D
1/2 = I −D−1A = I − P.

• The smallest non-zero eigenvalue of L corresponds to second largest
eigenvalue of P , i.e., the mixing rate.

• The largest eigenvalue of L corresponds to the smallest (most negative)
eigenvalue of P . The latter is at least -1 (exactly -1 iff random walk is
2-cyclic, periodic). So the former is at most 2, and exactly equal to 2 iff
graph is bipartite.
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Cheeger Bounds

• Denote the eigenvalue of L as 0 = λ1 < λ2 ≤ · · · ≤ λn ≤ 2.

• The basic Cheeger bound is [Chung, 2005]

2hG ≥ λ2(L) ≥ 1/2h
2
G

where
hG = minimum cut relative to the edge weights,

λ2(L) = 2nd smallest eigenvalue of L = I −D−1/2AD−1/2 .
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Isoperimetric Constant
Definitions: [Chung, 2005]

• Neighborhood of set X of nodes, N(X), is the set of nodes not in X
but with an edge to X .

• gG = min
X:vol(X)≤vol(X)

vol(N(X))

vol(X)

2 bounds: [Chung, 2005]

• λ2 ≥
g2G

2d(2 + 2gG + g2G)
.

• gG ≥ 1− (1− λ′)2

(1− λ′)2 + vol(X)

vol(X)

≥ (1− (1− λ′)2)(1− vol(X)

vol(X)
,

where λ′ = 2λ2

λ2+λn
if 1− λ2 < λn − 1, and λ′ = λ2 o.w.
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Conclusions

• Introduced “Random Walk” Laplacian for strongly connected directed
graph

• Fundamental Tensor - fast way to encode many properties

• Laplacian Related to Average Commute Times

• Laplacian Related to Electric Resistance

• Laplacian Related to mixing times and Graph Cuts.
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Lemma 2 – Conditionally Definite
If M is a symmetric positive semi-definite Gram matrix of inner products,
Then C = dM1T+1dT

M−2M s.t. cij = mii+mjj−2mij is the conditionally
definite matrix of squared distances. [here dM = (m11; . . . ;mnn)]
Note “Conditionally definite” means xTCx ≤ 0 for all x ⊥ 1,
and for simplicity cii = 0, ∀i. A typical example is a matrix of pairwise
squared ℓ2 distances.

If C is a conditionally definite matrix,
Then one can find a matching semi-definite Gram matrix M .
Note: A prospective uncentered M is given by 2M̂ = ck1

T + 1cTk − C,
where ck is some arbitrarily selected column out of C.
The result can be centered around the origin, yielding:

M =
(
I − 11T

n

)
M̂

(
I − 11T

n

)
= −1/2

(
I − 11T

n

)
C
(
I − 11T

n

)
.

[Schoenberg, 1935; Schoenberg, 1938; Berg et al., 1984; Gower & Legendre, 1986]

Proof: AWLOG x1 = 0. Then c1k = ck1 = ‖xk‖22.
So cij = mii +mjj − 2mij = ci1 + c1j − 2mij .
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