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Graph Analysis: Random Walk Model

e Many properties of a graph can be obtained or estimated from properties
of the so-called Fundamental Tensor derived using Random Walk model.

average hitting times, commute times.

distances or affinities between nodes.

betweenness measures.

importance/centrality measures.

bottlenecks in computer communication networks, road networks.

influence propagation.

e Much existing theory is for undirected graphs

e Some can be extended to directed graphs.

e Much of this material is from [Boley et al., 2010; Boley et al., 2018;
Golnari et al., 2019].
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Undirected vs Directed graphs

Undirected Graph Directed Graph

e social networks: e the WWW: random walk on
friends and contact lists relaxed graph yields pagerank.

e passive electrical networks e road network with one-way

streets.

e recommender systems:
e.g. bipartite graph: e wireless device network with mix
users <> movies. of high and low-powered devices.

e the internet, computer e propagation of influence or trust
communication networks. in social networks.
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Basics: Graphs and Matrices

e Graph represented by
e Adjacency Matrix A s.t. a;; # 0 when 3 an edge 1 — j.

e Markov chain transition matrix P s.t. p;; = probability of transition
from node ¢ to node j.

e Undirected graph <= symmetric adjacency matrix
<= reversible Markov chain.

e Assume no absorbing states <= strongly connected.
e Related Quantities

e d = A-1 vector of node (out) degrees,

e D = diag(d) = diagonal matrix of degrees,

e 7 = vector of stationary probabilities, s.t. #'P = w",

e II = diagonal matrix of stationary probabilities,
o 7/ = (I —P+1x")"! = Fundamental Matrix

[Grinstead & Snell, 2006].
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Alternative Laplacians

Laplacians lead to many graph properties (many for undirected graphs)
e [*=D—-A=D({-P) ”combinatorial,” based on node degrees.

e Matrix Tree Theorem — number of spanning ‘trees’ anchored at each
node (DiGraphs too) [Brualdi & Ryser, 1991; Chebotarev & Shamis, 2006]

e smallest graph cut relative to number of nodes in each half
[Shi & Malik, 2000; Spielman & Teng, 1996; von Luxburg, 2007].

e L =1I(l — P) ”"Random Walk” = L?* - vol*2 if undirected.

e pseudo-inverse leads to average commute times/resistances
[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993; Boley et al., 2011].

e pseudo-inverse leads to metric embedding in R"
[Gower & Legendre, 1986; Fouss et al., 2007].

o [IP=]—P=]—-D'1'A=D"1L2 “normalized”

e smallest graph cut relative to number of edges in each half
[von Luxburg, 2007].

e Consensus dynamics over nodes of a graph: x = —LX (piGraphs
too). [Olfati-Saber et al., 2004, 2006], [Bamieh et al., 2008], [Young et al., 2010, 2011].

o L=DPRIPD =D r[aD = symmetrized normalized Laplacian.
e shares same eigenvalues as LP =1 — P.
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Example — Undirected Graph

01000 1 9 2
(101010\ (3\ /3\
01010 0 2 1|9
A=19 0 10 1 0 d=1, TT1| 2
01010 1 3 3
\1 000 1 0) \ 2/ \ 2/
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Laplacians

-1 3 -1 0 -1
o1 2 -1 0 -
"=l 0 0 -1 o2 -1 o M

0 -1 0 -1 3 -1
\-1 0 0 0 -1 2

e Number of spanning ‘trees’: det(Li,.q 5.6) = 15.

2 —1 0 0 0 —1
( A
0

e Ligenvalues are 0, 1, 2, 3, 3, 5.

e Figenvector corresp. to 1 (Fiedler vector): (1,0, —1,—1,0,1)/2.
Used in Spectral Graph Partitioning.

e Volume = number of edges = 'htrace(L?*) = 7.
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Fundamental Tensor: Number of Visits

e Partition P = [Pﬂ ‘ p12]_

P;q ‘ Pnn

e If last row replaced with [0, 1], then [Pf;];; is the probability of being
in node j starting in node 7 at the k£ — th step, before reaching n.

o [[+Pu+Ph+--1y=[I—Pu) "y = NG jn)
= # visits to j starting from ¢ before reaching n.

.....

def

e Since L-1=0, 1L = 0", can write (I — P;;) ! intermsof M = L™
to yleld N(Zaja n) : (mij T Mpp — Mip — mnj)ﬂ_j-

e Choice of destination node n is arbitrary, so have Tensor:
N(i,j, k) for all 7, 7, k.
= average number of visits to j starting from ¢ before reaching k.
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Fundamental Tensor: Number of Visits

e Partition P = [Pﬂ ‘ p12].

Pgl ‘ Pnn

e If last row replaced with [0, 1], then [Pf;];; is the probability of being
in node j starting in node ¢ at the k£ — th step, before reaching n.

o [[+Pu+Ph+--1y=[I~-Pu) "y = NG Jjn)
= # visits to j starting from ¢ before reaching n.

..........

def

e Since L-1=0, 1L = 0", can write (I — P;;) ! intermsof M = L™
to yleld N<Z7]7 n) : (mij T Mpp — Mip — mnj)ﬂ_j-

e Choice of destination node n is arbitrary, so have Tensor:
N(i,j, k) for all 7, 7, k.
= average number of visits to j starting from ¢ before reaching k.
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Fundamental Tensor: Number of Visits

" P
e Partition P = [ o ‘ p12].
P2 ‘ Pnn

e If last row replaced with [0, 1], then [P} ];; is the probability of being
in node j starting in node ¢ at the & — th step, before reaching n.

N(i, j, k) for all 4, 7, k.
= average number of visits to j starting from ¢ before reaching k.
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Fundamental Tensor: Number of Visits

e Partition P = [Pﬂ ‘ p12].

Pg1 ‘ Pnn

e If last row replaced with [0, 1], then [P} ];; is the probability of being
in node j starting in node ¢ at the & — th step, before reaching n.

o [+Pu+Pi+--y=[I-Pu) " = N(i, j,n)
= # visits to j starting from ¢ before reaching n.

N(i, j, k) for all 4, 7, k.
= average number of visits to j starting from ¢ before reaching k.
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Fundamental Tensor: Number of Visits

e Partition P = [Pﬂ ‘ p12].

Pg1 ‘ Pnn

e If last row replaced with [0, 1], then [P} ];; is the probability of being
in node j starting in node ¢ at the & — th step, before reaching n.

o [+Pu+Pi+--y=[I-Pu) " = N(i, j,n)
= # visits to j starting from ¢ before reaching n.

.....

N(i, j, k) for all 4, 7, k.
= average number of visits to j starting from ¢ before reaching k.
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Fundamental Tensor: Number of Visits

e Partition P = [Pﬂ ‘ p12].

Pg1 ‘ Pnn

e If last row replaced with [0, 1], then [P} ];; is the probability of being
in node j starting in node ¢ at the & — th step, before reaching n.

o [+Pu+Pi+--y=[I-Pu) " = N(i, j,n)
= # visits to j starting from ¢ before reaching n.

.....

L1
e Since L-1=0,17L = 07, can write (I — Py;)~!in terms of M = L+

to yleld N(Zaja n) — (mij T Mpp — Mip — mnj)ﬂ-j-

N(i, j, k) for all 4, 7, k.
= average number of visits to j starting from ¢ before reaching k.
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Fundamental Tensor: Number of Visits

e Partition P = [Pﬂ ‘ p12].

Pg1 ‘ Pnn

e If last row replaced with [0, 1], then [P} ];; is the probability of being
in node j starting in node ¢ at the & — th step, before reaching n.

o [+Pu+Pi+--y=[I-Pu) " = N(i, j,n)
= # visits to j starting from ¢ before reaching n.

o ([ —Py)t= [Hl_l LI (I =Py = L1_11H1,...,n—1-

geecy
A\ 7
Ve

L1
e Since L-1=0,17L = 07, can write (I — Py;)~!in terms of M = L+

to yleld N(Zaja n) — (mij T Mpp — Mip — mnj)ﬂ-j-

e Choice of destination node n is arbitrary, so have Tensor:
N(i, j, k) for all 4, 4, k.
= average number of visits to j starting from ¢ before reaching k.
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Lemma 1 — Inverse of Submatrix

Let L = ( 11?%1 1112 ) be an n x n irreducible matrix s.t. nullity(L) = 1.
21 lnn

Let M = LT be the pseudo-inverse of L partitioned similarly and
assume (u',1)L =0, L(v;1) = 0, where u, v are (n — 1)-vectors.

Then the inverse of the (n — 1) x (n — 1) matrix L;; exists and is given by

Ll_ll = X déf ([n_1+va)M11(]n_1—|—uuT)

o My myy In—q
= (o) () ()

T T T
= My —mpu — vy, +my,va- .

If u=v =1 then [Ll_ll]ij — My + My, — My, — My .
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Proof

e |dea: Plug prospective inverse X in to verify X Ly = I:

My m I, _
XLy = ([n—1, —V) ( flrl 2 ) ( _u% )Ln

I
S
l
=
7\
o =
3 |

—
N—
|

3

1

vy,

Al From (u', 1)L = (u'Ly; + 15, , u'lyy +1,,) = 0.

\Y
1

B| From ML =1, — ( > (v, 1)/(v*v + 1) (ortho projector).
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Get Pseudo-Inv of Laplacian

Compute normalized Laplacian L =1 — P.

Compute inverse of the upper (n — 1) x (n — 1) part: I — Py

Solve for the stationary probabilites: (m,...,m,—1) = — (L)) 1 ¥m,;
Form random walk Laplacian L = DiAG(w) - L = II(I — P).
Compute the inverse of L' = (I — Py)~'II; !

S A e

Compute desired pseudoinverse M
Ry _ _
M = (__11T ) L) (R, =1,

where Ry = ([,,_1 — =117).
7. N(’L,], ]{) — (mz-j + My — My — mkj)’ﬂ'j for all ’i,j, k.
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Get Pseudo-Inv of Laplacian

Compute normalized Laplacian L =1 — P.

Compute inverse of the upper (n — 1) x (n — 1) part: I — P;| Expensive

Solve for the stationary probabilites: (m,...,m,—1) = — (L)) 1 ¥m,;
Form random walk Laplacian L = DiAG(w) - L = II(I — P).
Compute the inverse of L}' = (I — Pll)_ll_[l_l

S A e

Compute desired pseudoinverse M
Ry _ _
M = (__11T ) L) (R, =1,

where Ry = ([,,_1 — =117).
7. N(’L,], ]{) — (mz-j + My — My — mkj)ﬂj for all ’i,j, k.
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e-order Laplacian for Small World Graphs

10000

12000

14000

16000
0 2000 4000
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12000
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4000

6000

8000

10000

12000

14000

16000

reordered Laplacian

faks
2000 4000 6000 8000 10000 12000 14000
nz = 81786

approx minimum degree ordering
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Cost for Small World Graphs

number of time in csec

vertices | edges LU fill LU |backsolve
1,024 4,059 20,620 5 2

2,048 8,140 66,851 2 <1

4,096 | 16,314 205,826 4 <1
8,192 | 32,671 763,440 12 1
16,384 | 65,402 2,804,208 56 D
32,768 130,884 | 10,740,194 | 250 19
65,536 261,882 | 43,504,911 |1,363 82
131,072 |523,920 (168,455,437 |7,989 328

e Double the size =
LU cost grows by about a factor of 5 instead of a factor of 23 = 8.
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Hitting and Commute Times

Adding up previous gives
o H(i, k) =) N(i,7,k) = mpr — ma + 3 _;(mij — my;)m;

e Above holds also for strongly connected directed graphs
(arbitrary Markov chain with no transient states).

e Could add along other dimensions to get betweenness measures, etc.
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Commute Times

e Pscudo inverse of L = L*/14 is a Gram matrix:

( 83
—1
7 —37

_ 7+
M=L - 90 —43
19

\ 17

e — expected commute times in random walk [(¢3 metric)?]

diag(L*) -1t
+ 1 - diag(L™)
— [t — (L—i—)T

14

e Red numbers: average extra cost of detour thru given node.
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—1 —37 —43 —19
A7 -1 =19 -7
1 83 17 —19
19 17 83 -1
—7 19 -1 47
—19 —43 —37 -1

(0 11 20 21 14

11 0 11 14 9

20 11 0 11 14

21 14 11 0 11

14 9 14 11 0

\ 11 14 21 20 11

11
14 \
21
20

11
0/
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Embedding

o LT =SS with

S1 S2
( 2.0408 —.0306
0 1.9117
0 0
5 = 0 0
0 0
\ 0 0

S3
—1.1326
—.0588
2.2736
0
0
0

e For all i,j, HSZ — Sj”% - CZ]

Sy
—1.3163
—.7941
—.0947
2.02070
0
0

S5
—.5816
—.2941
—.9473
—.5774

1.4142
0

e Since L1 = 0, the columns of S are already centered.

52040 \
—.7647
—1.2315
—1.4434
—1.4142
0/

e Previous red numbers are distance” from origin = Centrality
183, 47, 83, 83, 47, 83] x (7/90).
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Example — Directed Graph

0 1.0 0 0 0 0 1 0.2

( 0 0 05 0 05 0 \ (2\ (0.2\
0 0 0 1.0 0 0 1 0.1
P=109 0o 0o o 10 ol 971 A I
0O 0 0 0 0 10 1 0.2

\1.0 0 0 0 0 0/ \1) \ 0.2/
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Laplacian from Probabilities

e Obtain Tensor & commute times same way, but from L = II — I1P:

0.2 —0.2 0 0 0 0 1
( 0 0.2 —0.1 0 —0.1 0 \ {1\
1

0 0 0.1 —0.1 0 0 null

0 0 0 01 —01 0 ['veeT |1
0 0 0 0 02 —02 1
\-02 0 0 0 0 02 \1)
(3 2 0 -2 -1 -2)
2 3 1 -1 0 -1
Mopr_3| 34 6 412

-1 -2 -4 6 1 0
1 0 -2 -4 3 2
\ 2 1 -1 -3 -2 3)

Laplacians: only Il — ITP has null vector (1,...,1) on both sides.
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Hitting & Commute Times

)

H (hitting times C (commute times)

016734\ (051010 5 5)
4056 23 5 010 10 5 5
450123 10 10 0 10 10 10
3409012 10 10 10 0 10 10
238901 5 510 10 0 5
\1 27840/ \ 5 51010 5 0

e Only nodes 3, 4 are peripheral. Others are all equally important.
e Same reflected in average commute times from node 2.
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Tensor Applications

Ys.m¢ F= Topological index

(Source node) 2
SA Zm F

Fundamental Distance
Zs,m F= tensor F meafrure
Closeness matrix
centrality t /1 t ‘

(Target node)

measure
vector L > m

(Middle node)

=

2.5+ F= Betweenness
centrality measure vector

slides12tail.22.9.14.112 p21 of34



Effective Resistances — Undirected Graphs

e Commute times correspond to effective resistances.
[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993].

e Eigenvalues of

[ 6 -3 0 0 0 —=3)
2 6 -2 0 -2 0

0 -3 6 =3 0 0

0 0 -3 6 -3 0

0 -2 0 -2 6 —2

\-3 0 0 0 -3 6

DD

are 0, |1/2|, 5/6, 7/6, 3/2, 2. The |1/2| is related to the expander
graph or Cheeger bound of the graph. (chung, 2005; Zhou et al., 2005].

e Also [1/2| +» mixing rate for random walk over the graph.

e The corresponding eigenvector used in spectral graph partitioning
(—1,0,1,1,0,—1).
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Incidence Matrix

e The incidence matrix IN has n columns and vol(G) rows. Each column
corresponds to a node (vertex) of graph G and each row corresponds to
an edge (in some arbitrary order).

e The j-th row represents the edge e; = (7, 7), and looks like
0,...,0,1,0,....0,—1,0,....0

where the nonzero entries are in columns 7, 7 corresponding to the vertices
connected by that edge.

e Then a simple calculation shows L = D — A = NN, where A =
adjacency matrix and D = diagonal matrix of degrees.

e In general: if v is a vector of voltages, then Nv is the vector of currents
across each link, assuming unit conductances.
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Example Incidence Matrix

slides12tail.22.9.14.112

+1
/ +1

o O O O

-1 0 0 0 0\
o 0 0 0 —1
+1 -1 0 0 0
+1 0 0 -1 0
0 +1 —1 0 0
0O 0 4+1 —1 0
0 0 0 41 —1)
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Resistances

[Doyle & Snell, 1984; Chandra et al., 1989; Klein & Randic, 1993].
e Current = Incidence_matrix - Voltage (using unit resistances):

| N -V
(1 -1 0 0 0 o\
1 0 0 0 0 —1
11 0 1 —1 0 0 0 Vi
=10 1 0 0 -1 o0]-/|:
i 0 0 1 —1 0 0 Ve
o 0 0 1 —1 0
\0 0 0 0 1 -1}

e Kirchoff’s law: If unit current is injected between nodes 7 & j, then
net current through every other vertex must be zero:

e;—e; = Nl1=... = N'Nv = L?v.
e Solve for voltages = v = (L*)"(e;—e;).

e Net voltage drop 2 to 7 = effective resistance =
vi—v; = (e;—e;) v = (e;—e;) (L*) T (e;—ey).

slides12tail.22.9.14.112 p25 of34



Resistances

e;—e; L Nullsp(N'IN), so can use pseudo-inverse to find voltages.

e Solve for voltages v = (N'N)* - (e; —e;) = (L*) " (e; — €;).

o Effective resistance between nodes ¢ & j is

vi—v; = (ef —el)-v
= (ef —e;)  (N'N)* - (e; —e))
= (e —ej)- (L)' -(ei—e))
= (L") e + (L) 75 — [(L7) iy = (L) e

e Collect matrix of effective resistances: (= commute times)
aC = diag(L*)" - 11 4+ 1 - diag(L*)" — (L*)" — [(L*)T]*.

e The entries C;; are squares of a Fuclidean metric. (schoenberg, 1935,

Schoenberg, 1938; Berg et al., 1984],
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Vector showing 2 classes

e Define v = {«a, —3}" where v; = a > 0 is node i is in class A, and
v; = —F < 0 if node 7 is in class B.

e Then the non-zero entries of the vector Nv are in the positions corresponding
to the edges with one end in class A and the other end in class B.

e Hence vIN'Nv = v! Lv = cut(A,B)(a + 8)* = Z aij(v; — v;)°.
i<j

'y =naa? + nppB2.

e Also v
o Also v Dv = dya? + dgf?

e Here ny = # vertices in class A, dy = sum of all degrees of nodes in
class A. Ditto for class B. And n = ns +ng = total number of vertices,
and d = dp + dg = 2 times total number of edges.
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Cut relative to |nodes

o Let a® = np/na, 5% =na/ns.

2

2
na + ng n
e Then v Lv == cut(A,B = cut(A, B ,
(A, B) ( NG ) (A B)

e and vIv =ns(ng/na) + np(na/ng) = n.

e Hence
viLv  cut(A,B)
— n
viv NANE
o Also vI'1l = nya — ngB = /nang — /npna = 0.
e Hence
v Lv x! [x

> min .
viv T x11 xTx
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Cut relative to |edges]

e Now look at minimal cut relative to the number of edges in each half.

o Let o? = dB/dA, 52 = dA/dB.

da +dg\’ d?
e Then v/ Lv == cut(A, B) < j%chj) = cut(A, B)dAdB,

e and vI Dv = da(dg/da) + dg(da/dg) = d.

e Hence
viLv  cut(A,B)

vIiDv  dadg

d
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Generalized Eigenvalue Problem

o Let w= D"”v. Then wiv/d = vid = ady — pdg = 0.

e Also £v/d = D~ 2LD~"/d = 0.
e The Rayleigh Quotient is

vilv  wllw o x! Lx
— > min
vl Dv wiw T 1vad xtx

— Mo(L).
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Relation to Random Walk

e The smallest non-zero eigenvalue of L is related to best edge-relative
cut.

e The eigenvalues of L are the same as the eigenvalues of [ — P:

D "RLD" =D (I —DPAD"2)D2 =] —D'A=1—P.

e The smallest non-zero eigenvalue of L corresponds to second largest
eigenvalue of P, i.e., the mixing rate.

e The largest eigenvalue of £ corresponds to the smallest (most negative)
eigenvalue of P. The latter is at least -1 (exactly -1 iff random walk is
2-cyclic, periodic). So the former is at most 2, and exactly equal to 2 iff
graph is bipartite.
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Cheeger Bounds

e Denote the eigenvalueof Las 0= < A <--- <\, < 2.

e The basic Cheeger bound is [chung, 2005]

2he > Ma(L) > ahe,

where
he = minimum cut relative to the edge weights,

Xo(L) = 2nd smallest eigenvalue of £L =1 — D~2AD~ ",
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Isoperimetric Constant

Definitions: [chung, 2005]

e Neighborhood of set X of nodes, N(X), is the set of nodes not in X
but with an edge to X.

. vol (N (X))
® go = min
Xwol(X)<vol(X)  Vol(X)

2 bounds: [chung, 2005]

2
9da
Aoy > )
* =242 1 296 + 63
o 2
. o> ——U Aw)l(x) > (1 (1— a1 - LX)
(1 — )\/)2 + m UOZ(X)

where \ = % if 1 =X <\, —1,and N = Xy o.w.
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Conclusions

e Introduced “Random Walk" Laplacian for strongly connected directed
graph

e Fundamental Tensor - fast way to encode many properties
e Laplacian Related to Average Commute Times
e Laplacian Related to Electric Resistance

e Laplacian Related to mixing times and Graph Cuts.
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Lemma 2 — Conditionally Definite

If M is a symmetric positive semi-definite Gram matrix of inner products,
Then C = dy 11 +1d3,—2M s.t. ¢;; = my;+m;; —2m;; is the conditionally
definite matrix of squared distances. |here dy; = (M1 .. Mpn)]

Note “Conditionally definite” means x'Cx < 0 for all x L 1,

and for simplicity ¢;; = 0,Ve. A typical example is a matrix of pairwise
squared /5 distances.

If C is a conditionally definite matrix,

Then one can find a matching semi-definite Gram matrix M.

Note: A prospective uncentered M is given by oM = c,1' + 1c} — C,
where c;, is some arbitrarily selected column out of C.

The result can be centered around the origin, yielding:

= (1) - i ) o),

[Schoenberg, 1935; Schoenberg, 1938; Berg et al., 1984; Gower & Legendre, 1986]

Proof: AWLOG x; = 0. Then ¢, = cp1 = ||z1]|3.
SO Cij = ™y, -+ mjj — Qmij == Ci1 + Clj — 2mw
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