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Paper Goals

• Dimensionality Reduction

• Assume data lies on a manifold in high dimensional space

• Maintain locality in reduced representation

• Theory related spectral graph partitioning

• Also related to Local Linear Embedding.
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Motivating Examples

• images of same object/scene from different angles

• common motifs repeated in data.

• PCA is too rigid, does not admit non-affine manifolds.
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Algorithm

1. Induce a neighborhood graph over the data:
• vertices ←→ sample points
• edges ←→ join points which are neighbors.

2. Assign suitable weights for the edges.

3a. Compute eigenvectors for graph Laplacian.

3b. Project points onto m leading eigenvectors.
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Algorithm - Step 1

1. Step 1 (constructing the adjacency graph). We put an edge between
nodes i and j if xi and xj are “close.” There are two variations:

(a) ǫ-neighborhoods (parameter ǫ ∈ R). Nodes i and j are con-
nected by an edge if ‖xi − xj‖

2 < ǫ where the norm is the usual

Euclidean norm in Rl. Advantages: Geometrically motivated,
the relationship is naturally symmetric. Disadvantages: Often
leads to graphs with several connected components, difficult
to choose ǫ.

(b) n nearest neighbors (parameter n ∈ N). Nodes i and j are con-
nected by an edge if i is among n nearest neighbors of j or j is
among n nearest neighbors of i. Note that this relation is sym-
metric. Advantages: Easier to choose; does not tend to lead to
disconnected graphs. Disadvantages: Less geometrically intu-
itive.
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Algorithm - Step 2

2. Step 2 (choosing the weights).1 Here as well, we have two variations
for weighting the edges:

(a) Heat kernel (parameter t ∈ R). If nodes i and j are connected,
put

Wij = e−
‖xi−xj‖

2

t ;

otherwise, put Wij = 0. The justification for this choice of
weights will be provided later.

(b) Simple-minded (no parameters (t = ∞)). Wij = 1 if vertices i
and j are connected by an edge and Wij = 0 if vertices i and
j are not connected by an edge. This simplification avoids the
need to choose t.
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Algorithm - Step 3 prep

3. Step 3 (eigenmaps). Assume the graph G, constructed above, is con-
nected. Otherwise, proceed with step 3 for each connected component.
Compute eigenvalues and eigenvectors for the generalized eigenvec-
tor problem,

Lf = λDf, (2.1)

where D is diagonal weight matrix, and its entries are column (or
row, since W is symmetric) sums of W, Dii =

∑
j Wji. L = D − W is

the Laplacian matrix. Laplacian is a symmetric, positive semidefinite
matrix that can be thought of as an operator on functions defined on
vertices of G.

Let f0, . . . , fk−1 be the solutions of equation 2.1, ordered according
to their eigenvalues:
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Algorithm - Step 3

Lf0 = λ0Df0

Lf1 = λ1Df1

· · ·

Lfk−1 = λk−1Dfk−1

0 = λ0 ≤ λ1 ≤ · · · ≤ λk−1.

We leave out the eigenvector f0 corresponding to eigenvalue 0 and use
the next m eigenvectors for embedding in m-dimensional Euclidean
space:

xi → (f1(i), . . . , fm(i)).
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Example - Swiss Roll
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Figure 1: 2000 Random data points on the swiss roll.
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Swiss Roll Projections

N = 5     t = 5.0 N = 10     t = 5.0 N = 15     t = 5.0

N = 5     t = 25.0 N = 10     t = 25.0 N = 15     t = 25.0

N = 5     t = ∞ N = 10    t = ∞ N = 15     t = ∞

Figure 2: Two-dimensional representations of the swiss roll data, for different
values of the number of nearest neighbors N and the heat kernel parameter t.
t = ∞ corresponds to the discrete weights.
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Example: Bars
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Figure 3: (Left) A horizontal and a vertical bar. (Middle) A two-dimensional
representation of the set of all images using the Laplacian eigenmaps. (Right)
The result of PCA using the first two principal directions to represent the data.
Blue dots correspond to images of vertical bars, and plus signs correspond to
images of horizontal bars.
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300 Words (bigrams)
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Figure 4: The 300 most frequent words of the Brown corpus represented in the
spectral domain.
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Some specific words
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Figure 5: Fragments labeled by arrows: (left) infinitives of verbs, (middle)
prepositions, and (right) mostly modal and auxiliary verbs. We see that syn-
tactic structure is well preserved.
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Example - Speech Sounds
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Figure 6: The 685 speech data points plotted in the two-dimensional Laplacian
spectral representation.
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Some Specific Sounds
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Figure 7: A blowup of the three selected regions corresponding to the arrows
in Figure 6. Notice the phonetic homogeneity of the chosen regions. The data
points corresponding to the same region have similar phonetic identity, though
they may (and do) arise from occurrences of the same phoneme at different
points in the utterance. The symbol sh stands for the fricative in the word she; aa
and ao stand for vowels in the words dark and all, respectively; kcl, dcl, and gcl
stand for closures preceding the stop consonants k, d, g, respectively. h# stands
for silence.
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