Intro - Examples.
classintro.pdf - Class Introduction (Boley)
Topics
review of linear algebra for graphs
* synmetric eigenvalues
* courant fisher
graph properties via linear algebra
* clustering ; mixing
* Laplacian: clustering, commute/hitting time
* averaging (heat equ) minimum energy on edges.
Tutorial
-
Lx = b Laplacian Solvers and Their Algorithmic Applications
by Nisheeth K. Vishnoi
Foundations and Trends R(C) in Theoretical Computer Science Vol. 8, Nos. 1-2 (2012) 1-141
https://theory.epfl.ch/vishnoi/Lxb-Web.pdf
DOI: DOI: 10.1561/0400000054
tutorial-style.
2013
Importance Measures
-
Normalized cuts and image segmentation ;
by Shi, J. and Malik, J. ;
Pattern Analysis and Machine Intelligence, IEEE Transactions on vol 22#8:88-905, Aug 2000 ;
note: detailed intro
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf ;
-
A Survey of Eigenvector Methods for Web Information Retrieval ;
by Amy N. Langville and Carl D. Meyer ;
SIAM Review, Vol. 47, No. 1 (Mar., 2005), pp. 135-161 ;
note: HITS Pagerank SALSA
http://www.jstor.org/stable/20453606?seq=24#page_scan_tab_contents
http://www.jstor.org/stable/pdf/20453606.pdf;
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.8006&rep=rep1&type=pdf
-
Laplacians of graphs and Cheeger inequalities ;
by Fan Chung ;
note: theory isoparimetric number. mentions expander graphs
http://www.math.ucsd.edu/~fan/wp/cheeger.pdf ;
-
Network Properties Revealed through Matrix Functions. ;
by E Estrada, D Higham. ;
SIAM Review (2010) ;
note: centrality+commincability+betweenness; spectral clustering; resolvant vs exponential
"https://epubs.siam.org/doi/10.1137/090761070"
-
Fast matrix computations for pairwise and columnwise commute times and Katz scores ;
by F Bonchi, P Esfandiar, DF Gleich, C Greif
http://arxiv.org/pdf/1104.3791 ;
note: Katz scores using Lanczos and theory of moments. (refers to Fouss)
-
Maintaining the duality of closeness and betweenness centrality
by Ulrik Brandes & Stephen P.Borgatti & Linton C.Freeman
Social Networks 44 pp. 153-159
https://www.sciencedirect.com/science/article/pii/S0378873315000738
DOI: https://doi.org/10.1016/j.socnet.2015.08.003
tensor of shortest paths.
2016
-
Commute times for a directed graph using an asymmetric Laplacian. ;
by Boley, D., Ranjan, G., Zhang, Z.-L. ;
Linear Algebra and Appl., 435, 224-242. (2011). ;
note: mainly showing how certain commutes quantities for undirected graphs work also for digraphs
http://www.sciencedirect.com/science/article/pii/S0024379511000668
http://www-users.cs.umn.edu/~boley/publications/papers/Laplacian10-LAA.pdf;
-
Learning from Labeled and Unlabeled Data on a Directed Graph
by Dengyong Zhou & Jiayuan Huang & Bernhard Scholkopf
ICML '05:
https://is.mpg.de/fileadmin/user_upload/files/publications/ICMLGRAPH_3518[0].pdf
| https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.294.7765&rep=rep1&type=pdf
"https://pure.mpg.de/rest/items/item_1791381_2/component/file_3175263/content"
"https://www.semanticscholar.org/paper/Learning-from-labeled-and-unlabeled-data-on-a-graph-Zhou-Huang/df95ae968cb0b722143f6000fa0dc7ce21cc35e2"
-
Markov fundamental tensor and its applications to network analysis.
by G. Golnari, Z.-L. Zhang, & D. Boley.
Linear Algebra and Appl., 564:126--158, 2019.
"https://www.sciencedirect.com/science/article/abs/pii/S0024379518305470"
Fast Solvers for Laplacian Systems
-
Graph Sparsification by Effective Resistances
by Daniel A. Spielman, Nikhil Srivastava
https://arxiv.org/abs/0803.0929
-
A nearly-mlogn time solver for SDD linear systems
by Ioannis Koutis & Gary Miller & Richard Peng
FOCS11
https://arxiv.org/abs/1102.4842
-
Approximate Gaussian Elimination for Laplacians: Fast, Sparse, and Simple
by Rasmus Kyng, Sushant Sachdeva
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)
arxiv.org/abs/1605.02353
2016
-
On the Limiting Behavior of Parameter-Dependent Network Centrality Measures
by Michele Benzi & Christine Klymko
SIMAX 36 2 pp. 686-706
https://epubs.siam.org/doi/abs/10.1137/130950550
DOI: https://doi.org/10.1137/130950550
2015
presented in 2019
-
Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
by Mikhail Belkin & Partha Niyogi
Neural Computation 15 pp. 1373-1396
http://www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.pdf;
https://www.mitpressjournals.org/doi/pdf/10.1162/089976603321780317
2003
presented in 2019
Deep Neural Networks for Structured/Graph Data
-
Gradient-Based Learning Applied to Document Recognition
by Yan LeCun, Leon Bottou Yoshua Bengio, Patrick Haffner
Proc. IEEE, November 1998.
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
-
ImageNet Classification with Deep Convolutional Neural Networks
by Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton
NIPS 2012.
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
=== NIPS-2012-imagenet-classification-with-deep-convolutional-neural-networks-Paper.pdf ===
=====
tutorial on CNNs: https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
tutoral on NN+ back-prop: https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
=====
-
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
by Michael Defferrard and Xavier Bresson and Pierre Vandergheynst
https://arxiv.org/abs/1606.09375
-
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
by Chaoyue Liu & Libin Zhu & Mikhail Belkin
https://arxiv.org/abs/2003.00307
-
Convolutional Networks and Applications in Vision
by Yann LeCun & Koray Kavukvuoglu & Clement Farabet
Proc. International Symposium on Circuits and Systems (ISCAS'10) (IEEE)
http://yann.lecun.com/exdb/publis/pdf/lecun-iscas-10.pdf
2010
presented in 2019
-
Deep Convolutional Networks on Graph-Structured Data
by Mikael Henaff & Joan Bruna & Yann LeCun
https://arxiv.org/abs/1506.05163
2015
-
Spectral networks and deep locally connected networks on graphs
by Joan Bruna & Wojciech Zaremba & Arthur Szlam & and Yann LeCun
Proceedings of the 2nd International Conference on Learning Representations
https://arxiv.org/abs/1312.6203
2013
-
node2vec: Scalable Feature Learning for Networks
by Aditya Grover & Jure Leskovec
KDD
https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf
2016
presented in 2019
-
Variational graph auto-encoders
by Thomas Kipf & Max Welling
NIPS
https://arxiv.org/abs/1611.07308
2016
Matrix Sketching
-
Simple and deterministic matrix sketching
by Edo Liberty
KDD '13:
"https://www.cs.yale.edu/homes/el327/papers/simpleMatrixSketching.pdf"
-
Practical Sketching Algorithms for Low-Rank Matrix Approximation
by Joel A. Tropp & Alp Yurtsever & Madeleine Udell & Andvolkan Cevher
SIMAX Vol. 38, No. 4, pp. 1454-1485
https://epubs.siam.org/doi/epdf/10.1137/17M1111590
| https://epubs.siam.org/doi/abs/10.1137/17M1111590
2017
-
Matrix sketching for supervised classification with imbalanced classes
by Falcone, Roberta & Anderlucci, Laura & Montanari, Angela
Data Mining and Knowledge Discovery 36 1 pp. 174-208
https://link.springer.com/article/10.1007/s10618-021-00791-3
| https://doi.org/10.1007/s10618-021-00791-3
2022
-
Semi-Supervised Classification with Graph Convolutional Networks
by Thomas N. Kipf & Max Welling
ICLR 2017
https://arxiv.org/abs/1609.02907
2017
-
Loss landscapes and optimization in over-parameterized non-linear systems and neural networks
by Chaoyue Liu & Libin Zhu & Mikhail Belkin
ICLR 2017
https://arxiv.org/abs/2003.00307
2017
-
Graphs Neural Networks
by Thomas N. Kipf
Web tutorial, Sept 2016
https://tkipf.github.io/graph-convolutional-networks/
-
A Light-Weight Multi-Objective Asynchronous Hyper-Parameter Optimizer
by Gabriel Maher & Stephen Boyd & Mykel Kochenderfer & Cristian Matache & Dylan Reuter & Alex Ulitsky & Slava Yukhymuk & Leonid Kopman
arXiv:2202.07735, 2022
https://arxiv.org/abs/2202.07735
-
DeepWalk: Online Learning of Social Representations
by Bryan Perozzi & Rami Al-Rfou & Steven Skiena.
arXiv:1403.6652 (2014)
https://arxiv.org/abs/1403.6652
-
Attention Is All You Need
by Ashish Vaswani & Noam Shazeer & Niki Parmar & Jakob Uszkoreit &Llion Jones & Aidan N. Gomez & Lukasz Kaiser & Illia Polosukhin
arXiv:1706.03762 (2017)
https://arxiv.org/abs/1706.03762
-
RapidEELS: machine learning for denoising and classification in rapid
acquisition electron energy loss spectroscopy
by Cassandra M. Pate & James L. Hart & Mitra L. Taheri.
Scientific Reports volume 11, Article number: 19515 (2021)
https://doi.org/10.1038/s41598-021-97668-8
-
Discovering faster matrix multiplication algorithms with reinforcement learning
by Alhussein Fawzi & Matej Balog & Aja Huang & Thomas Hubert & Bernardino Romera-Paredes & Mohammadamin Barekatain & Alexander Novikov & Francisco J. R. Ruiz & Julian Schrittwieser & Grzegorz Swirszcz & David Silver &Demis Hassabis & Pushmeet Kohli.
Nature volume 610, pages 47-53 (2022)
https://doi.org/10.1038/s41586-022-05172-4
-
Hypergraph clustering by iteratively reweighted modularity maximization
by Tarun Kumar & Sankaran Vaidyanathan & Harini Ananthapadmanabhan & Srinivasan Parthasarathy & Balaraman Ravindran
Applied Network Science volume 5, Article number: 52 (2020)
https://doi.org/10.1007/s41109-020-00300-3
-
Deep Contextualized Word Representations
by Matthew E. Peters & Mark Neumann & Mohit Iyyer & Matt Gardner & Christopher Clark
& Kenton Lee & Luke Zettlemoyer
arXiv:1802.05365
https://arxiv.org/abs/1802.05365
-
On Fast Computation of Directed Graph Laplacian Pseudo-Inverse
by Daniel Boley
Linear Algebra and its Applications, Volume 623, 15 August 2021, Pages 128-148
https://doi.org/10.1016/j.laa.2020.10.018
https://arxiv.org/abs/1802.05365
-
Dual octree graph networks for learning adaptive volumetric shape representations
by Peng-Shuai Wang & Yang Liu & Xin Tong
ACM Transactions on GraphicsVolume 41Issue 4July 2022 Article No.: 103pp 1–15
https://doi.org/10.1145/3528223.3530087
https://arxiv.org/abs/2205.02825