CSci 427\W
Development of Secure Software Systems
Day 7: More Threat Modeling, maybe ROP

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

More perspectives on threat modeling

Software-oriented modeling

©) This is what we've concentrated on until now
® And it will still be the biggest focus
©) Think about attacks based on where they show up in
the software
©) Benefit: easy to connect to software-level
mitigations and fixes

Asset-oriented modeling

©) Think about threats based on what assets are
targeted / must be protected
£) Useful from two perspectives:

® Predict attacker behavior based on goals
® Prioritize defense based on potential losses

£) Can put other modeling in context, but doesn't
directly give you threats

Kinds of assets

©) Three overlapping categories:
® Things attackers want for themselves
® Things you want to protect
® Stepping stones to the above

Attacker-oriented modeling

£) Think about threats based on the attacker carrying

them out
® Predict attacker behavior based on characteristics
® Prioritize defense based on likelihood of attack

©) Limitation: it can be hard to understand attacker

motivations and strategies
® Be careful about negative claims

Kinds of attackers (Intel TARA)

) Competitor) Terrorist

) Data miner) Anarchist

£) Radical activist £) Irrational individual
£) Cyber vandal £) Gov't cyber warrior
) Sensationalist) Corrupt gov't official

) Civil activist) Legal adversary

Kinds of attackers (contd)
£) Internal spy
£) Government spy
) Thief
) Disgruntled employee
£) Vendor

£) Reckless employee

) Information partner

Outline

Announcements intermission

Problem Set 1 updates

£) Remember, due this Friday 9/29 by 1:59pm

£) PDF instructions updated Monday, recheck due date
£) Submit PDF on Gradescope, linked from Canvas

£) Use Piazza for clarifications, one post there already

Outline

Threat modeling: printer manager

Setting: shared lab with printer

£ Imagine a scenario similar to CSE Labs
® Computer labs used by many people, with administrators
£) Target for modeling: software system used to
manage printing
® Similar to real system, but use your imagination for
unknown details

Example functionality

£) Queue of jobs waiting to print
® Can cancel own jobs, admins can cancel any

©) Automatically converting documents to format
needed by printer
©) Quota of how much you can print

Assets and attackers

£) What assets is the system protecting?

® What negative consequences do we want to avoid?
£) Who are the relevant attackers?

® What goals motivate those attackers?

£) Take 5 minutes to brainstorm with your neighbors

Assets and attackers

©) Administrators:
® Want to let students do printing needed for classes
® While minimizing spending on paper, toner, and admins
responding to problems
) Attackers:
® Non-students might try to print
® Students might try to print too much
® Students might interfere with each other

Data flow diagram

£) Show structure of users, software/hardware
components, data flows, and trust boundaries

£ For this exercise, can mix software, OS, and network
perspectives

£ Include details relevant to security design decisions

£) Take 15 minutes to draw with your neighbors

Data flow diagram: key

Data i| User/external
store 3 entity
1 Trust boundary

Software
component,
process

Data flow

DFD #1. access control

User [<—>| Quota Quota
manager database

£) The absence of data flow will need an
implementation

DFD #2: optional processing

User

Text to
PDF

) Text-to-PDF can't add much risk here

DFD #3: a trust boundary

UMN ID 5
B | G
mgmt E manager mgmt

CSE-IT servers

'
' '
e e o e e e e e e '

) Different risks from where authentication lies

STRIDE threat brainstorming

©) Think about possible threats using the STRIDE
classification

©) Are all six types applicable in this example?
) Take 10 minutes to brainstorm with your neighbors

Outline

Return-oriented programming (ROP)

Counterattack: code reuse

£) Attacker can't execute new code

©) So, take advantage of instructions already in binary
©) There are usually a lot of them

©) And no need to obey original structure

Classic return-to-libc (1997)

£) Overwrite stack with copies of:

® Pointer to libc’'s system function
® Pointer to "/bin/sh" string (also in libc)

£) The system function is especially convenient
£) Distinctive feature: return to entry point

Chained return-to-libc

©) Shellcode often wants a sequence of actions, eqg.
® Restore privileges
® Allow execution of memory area
® Overwrite system file, etc.
©) Can put multiple fake frames on the stack
® Basic idea present in 1997, further refinements

Pop culture analogy: ransom note trope

come] [at midnight], bring |

Basic new idea

£) Treat the stack like a new instruction set
“Opcodes” are pointers to existing code
©) Generalizes return-to-libc with more programmability

©) Academic introduction and source of name: Hovav
Shacham, ACM CCS 2007

()

ret2pop (Nergal, Miiller)

) Take advantage of shellcode pointer already present
on stack
£) Rewrite intervening stack to treat the shellcode
pointer like a return address
® A long sequence of chained returns, one pop

ret2pop (Nergal, Milller)

9 1~ shellcode

Gadgets

) Basic code unit in ROP

©) Any existing instruction sequence that ends in a
return

£) Found by (possibly automated) search

Another partial example

— syscall; ret

L

t—-mov srcx, wrax; ret
(syscall 59 = execve)
—pop %rex; ret

sssss
‘‘‘‘‘

o
8

|

Overlapping x86 instructions

push %esi

[mov $0x56, sdh|[sbb $0x£f, %all[inc %eax|or %al, sdh]
[movzbl Oxlc(%esi),%edx|[incl 0x8(%eax) | ...
0f b6 56 lc £f 40 08 c6

£) Variable length instructions can start at any byte
£ Usually only one intended stream

Where gadgets come from

) Possibilities:
® Entirely intended instructions
® Entirely unaligned bytes
® Fall through from unaligned to intended

©) Standard x86 return is only one byte, Oxc3

Building instructions

£) String together gadgets into manageable units of
functionality
£) Examples:

® Loads and stores
® Arithmetic
® Unconditional jumps

£) Must work around limitations of available gadgets

Hardest case: conditional branch

©) Existing jCC instructions not useful
©) But carry flag CF is

©) Three steps:

1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

£) Can also use other indirect jumps, overlapping not
required
©) Automation in gadget finding and compilers

©) In practice: minimal ROP code to allow transfer to
other shellcode

