
CSci 4271W
Development of Secure Software Systems
Day 7: More Threat Modeling, maybe ROP

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

More perspectives on threat modeling

Announcements intermission

Threat modeling: printer manager

Return-oriented programming (ROP)

Software-oriented modeling

This is what we’ve concentrated on until now
And it will still be the biggest focus

Think about attacks based on where they show up in
the software

Benefit: easy to connect to software-level
mitigations and fixes

Asset-oriented modeling

Think about threats based on what assets are
targeted / must be protected
Useful from two perspectives:

Predict attacker behavior based on goals
Prioritize defense based on potential losses

Can put other modeling in context, but doesn’t
directly give you threats

Kinds of assets

Three overlapping categories:
Things attackers want for themselves
Things you want to protect
Stepping stones to the above

Attacker-oriented modeling

Think about threats based on the attacker carrying
them out

Predict attacker behavior based on characteristics
Prioritize defense based on likelihood of attack

Limitation: it can be hard to understand attacker
motivations and strategies

Be careful about negative claims

Kinds of attackers (Intel TARA)

Competitor

Data miner

Radical activist

Cyber vandal

Sensationalist

Civil activist

Terrorist

Anarchist

Irrational individual

Gov’t cyber warrior

Corrupt gov’t official

Legal adversary

Kinds of attackers (cont’d)

Internal spy

Government spy

Thief

Vendor

Reckless employee

Information partner

Disgruntled employee

Outline

More perspectives on threat modeling

Announcements intermission

Threat modeling: printer manager

Return-oriented programming (ROP)

Problem Set 1 updates

Remember, due this Friday 9/29 by 11:59pm

PDF instructions updated Monday, recheck due date

Submit PDF on Gradescope, linked from Canvas

Use Piazza for clarifications, one post there already

Outline

More perspectives on threat modeling

Announcements intermission

Threat modeling: printer manager

Return-oriented programming (ROP)

Setting: shared lab with printer

Imagine a scenario similar to CSE Labs
Computer labs used by many people, with administrators

Target for modeling: software system used to
manage printing

Similar to real system, but use your imagination for
unknown details

Example functionality

Queue of jobs waiting to print
Can cancel own jobs, admins can cancel any

Automatically converting documents to format
needed by printer

Quota of how much you can print

Assets and attackers

What assets is the system protecting?
What negative consequences do we want to avoid?

Who are the relevant attackers?
What goals motivate those attackers?

Take 5 minutes to brainstorm with your neighbors

Assets and attackers

Administrators:
Want to let students do printing needed for classes
While minimizing spending on paper, toner, and admins
responding to problems

Attackers:
Non-students might try to print
Students might try to print too much
Students might interfere with each other

Data flow diagram

Show structure of users, software/hardware
components, data flows, and trust boundaries

For this exercise, can mix software, OS, and network
perspectives

Include details relevant to security design decisions

Take 15 minutes to draw with your neighbors

Data flow diagram: key DFD #1: access control

The absence of data flow will need an
implementation

DFD #2: optional processing

Text-to-PDF can’t add much risk here

DFD #3: a trust boundary

Different risks from where authentication lies

STRIDE threat brainstorming

Think about possible threats using the STRIDE
classification

Are all six types applicable in this example?

Take 10 minutes to brainstorm with your neighbors

Outline

More perspectives on threat modeling

Announcements intermission

Threat modeling: printer manager

Return-oriented programming (ROP)

Counterattack: code reuse

Attacker can’t execute new code

So, take advantage of instructions already in binary

There are usually a lot of them

And no need to obey original structure

Classic return-to-libc (1997)

Overwrite stack with copies of:
Pointer to libc’s system function
Pointer to "/bin/sh" string (also in libc)

The system function is especially convenient

Distinctive feature: return to entry point

Chained return-to-libc

Shellcode often wants a sequence of actions, e.g.
Restore privileges
Allow execution of memory area
Overwrite system file, etc.

Can put multiple fake frames on the stack
Basic idea present in 1997, further refinements

Pop culture analogy: ransom note trope

Basic new idea

Treat the stack like a new instruction set

“Opcodes” are pointers to existing code

Generalizes return-to-libc with more programmability

Academic introduction and source of name: Hovav
Shacham, ACM CCS 2007

ret2pop (Nergal, Müller)

Take advantage of shellcode pointer already present
on stack
Rewrite intervening stack to treat the shellcode
pointer like a return address

A long sequence of chained returns, one pop

ret2pop (Nergal, Müller) Gadgets

Basic code unit in ROP

Any existing instruction sequence that ends in a
return

Found by (possibly automated) search

Another partial example Overlapping x86 instructions

push %esi

mov $0x56,%dh sbb $0xff,%al inc %eax or %al,%dh

movzbl 0x1c(%esi),%edx incl 0x8(%eax) ...

0f b6 56 1c ff 40 08 c6

Variable length instructions can start at any byte

Usually only one intended stream

Where gadgets come from

Possibilities:
Entirely intended instructions
Entirely unaligned bytes
Fall through from unaligned to intended

Standard x86 return is only one byte, 0xc3

Building instructions

String together gadgets into manageable units of
functionality
Examples:

Loads and stores
Arithmetic
Unconditional jumps

Must work around limitations of available gadgets

Hardest case: conditional branch

Existing jCC instructions not useful

But carry flag CF is

Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

Can also use other indirect jumps, overlapping not
required

Automation in gadget finding and compilers

In practice: minimal ROP code to allow transfer to
other shellcode

