CSci 427\W
Development of Secure Software Systems
Day 13: More Permissions, and OS-level Injection Threats

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Legal context for security, contd

CFAA

©) Computer Fraud and Abuse Act of 1986

) Civil and criminal liability for “unauthorized access” to
a computer

£) Gradually extended to cover any computer, and
many related activities

) Potentially applied to any contract or

terms-of-service violation
® Not always successfully

Example: Randal Schwartz

£) Schwartz worked as a contract sysadmin several
Intel divisions

£) He ran a password cracking program and moved
password files between machines in a division he no
longer worked for

) He was convicted of three felonies under an Oregon

state law
® Similar to the CFAA, somewhat more vague

DMCA

©) Digital Millennium Copyright Act of 1998
©) Leqally reinforces DRM by criminalizing
“circumvention” and tools that perform it
£) But, can violate without violating copyright
® App stores, video game bots, garage door openers
©) A narrow exemptions process is growing in
application

Example: Sony BMG “rootkit”

) In 2005, sold CDs with software that modified a
Windows or Mac OS to interfere with copying
£) To prevent removal, the software used techniques
usually used by malicious software
® A “rootkit” is backdoor software installed on a
compromised machine
® Common techniques include hiding files and processes
£) Led to a recall, class action suits, FTC settlement,

etc.

Outline

More Unix permissions

Process UIDs and setuid(2)

£) UID is inherited by child processes, and an
unprivileged process can't change it

£) But there are syscalls root can use to change the
UID, starting with setuid

©) Eg. login program, SSH server




Setuid programs, different UIDs

£ If 04000 “setuid” bit set, newly execd process will
take UID of its file owner
® Other side conditions, like process not traced
©) Specifically the effective UID is changed, while the
real UID is unchanged
® Shows who called you, allows switching back

More different UIDs

£) Two mechanisms for temporary switching:
® Swap real UID and effective UID (BSD)
® Remember saved UID, allow switching to it (System V)
£) Modern systems support both mechanisms at the
same time

Setgid, games

©) Setgid bit 02000 mostly analogous to setuid
©) But note no supergroup, so UID O is still special

) Classic application: setgid games for managing
high-score files

Special case: /tmp

£) Wed like to allow anyone to make files in /tmp
£) So, everyone should have write permission

£) But don't want Alice deleting Bob's files

£) Solution; “sticky bit" 01000

Special case: group inheritance

©) When using group to manage permissions, want a
whole tree to have a single group
£) When 02000 bit set, newly created entries with
have the parent's group
® (Historic BSD behavior)

) Also, directories will themselves inherit 02000

Other permission rules

£) Only file owner or root can change permissions
£) Only root can change file owner

® Former System V behavior: “give away chown”
£) Setuid/qid bits cleared on chown

® Set owner first, then enable setuid

Outline

Announcements intermission

Midterm 1 grade statistics

47
56789
001699
1677
002466
0

S © o ~NO W,

[ury

£) Mean: 7875, Median: 79




Project 0.5 now available

©) Code auditing and attacking against BCBASIC

©) Audit and attacks in groups of up to 3, write reports
individually

£) More realistic code auditing than you've had to do
before

©) Due a week from Friday, October 27th

Project 0.5 suggestions

£) Understand more than 1000 lines of C

® Vulnerabilities are bugs, but easy to miss
® Attack techniques are also more complex

£) Group activities will be individual in the next project

® Help everyone in your group understand process and
results

©) Software/Al tools allowed, but don't expect them to
make it easy

BCBASIC basic introduction

) £ib.bcbas shown in text editor

Outline

Shell code injection and related threats

Two kinds of privilege escalation

©) Local exploit: give higher privilege to a regular user
® Eg, caused by bug in setuid program or OS kernel
©) Remote exploit: give access to an external user
who doesn't even have an account
® E.g, caused by bug in network-facing server or client

Shell code injection

£) The command shell is convenient to use, especially
in scripts
® In C: system, popen

) But it is bad to expose the shell's power to an
attacker

©) Key pitfall: assembling shell commands as strings

©) Note: different from binary “shellcode”

Shell code injection example

©) Benign: system("cp $argl $arg2"), argl =
"filel.txt"

©) Attack: argl = "a b; echo Gotcha"

©) Command: "cp a b; echo Gotcha file2.txt"

£) Not a complete solution: prohibit *;"

The structure problem

£) What went wrong here?

£) Basic mistake: assuming string concatenation will

respect language grammar
® Eg, that attacker supplied “filename” will be interpreted
that way




Best fix: avoiding the shell

©) Avoid letting untrusted data get near a shell

) For instance, call external programs with lower-level
interfaces
m Eg, fork and exec instead of system

£) May constitute a security/flexibility trade-off

Less reliable: text processing

£) Allow-list: known-good characters are allowed,

others prohibited
® Eg, username consists only of letters
® Safest, but potential functionality cost

) Deny-list: known-bad characters are prohibited,

others allowed
® Easy to miss some bad scenarios

£) "Sanitization”: transform bad characters into good
® Same problem as deny-list, plus extra complexity

Terminology note

) Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

©) These terms have been criticized for a problematic
*white=good”, “"black=bad" association

©) The push to avoid the terms got significant additional
attention in summer 2020, but is still somewhat
political and in flux

Different shells and multiple interpretation

£) Complex Unix systems include shells at multiple
levels, making these issues more complex
® Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

£) Other shell-like programs also have caveats with
levels of interpretation
® Tcl before version 9 interpreted leading zeros as octal

Related local dangers

©) File names might contain any character except / or
the null character

©) The PATH environment variable is user-controllable,
S0 cp may not be the program you expect

©) Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

£ In Unix, splitting a command line into words is the
shell’'s job
® String — argv array
®grep a b cVs. grep ’a b’ ¢

£) Choice of separator characters (default space, tab,
newline) is configurable

©) Exploit system("/bin/uname")

£) In modern shells, improved by not taking from
environment




