CSci 427\W
Development of Secure Software Systems
Day 14: OS Attacks and Protection

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Shell code injection related threats, contd

Different shells and multiple interpretation

£) Complex Unix systems include shells at multiple
levels, making these issues more complex

® Frequent example: scp runs a shell on the server, so
flenames with whitespace need double escaping

) Other shell-like programs also have caveats with
levels of interpretation
® Tcl before version 9 interpreted leading zeros as octal

Related local dangers

£) File names might contain any character except / or
the null character

£) The PATH environment variable is user-controllable,
S0 cp may not be the program you expect

©) Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

©) In Unix, splitting a command line into words is the
shell's job
® String — argv array
®grep a b cVs. grep ’a b’ ¢
£) Choice of separator characters (default space, tab,
newline) is configurable
0 Exploit system("/bin/uname")
©) In modern shells, improved by not taking from
environment

Outline

Race conditions and related threats

Bad/missing error handling

©) Under what circumstances could each system call
fail?

©) Careful about rolling back after an error in the middle
of a complex operation

©) Fail to drop privileges = run untrusted code anyway

©) Update file when disk full = truncate

Race conditions

£) Two actions in parallel; result depends on which
happens first

£) Usually attacker racing with you
1. Write secret data to file

2. Restrict read permissions on file
£) Many other examples

Classic races: files in /tmp

) Temp filenames must already be unique
£) But “unguessable” is a stronger requirement

©) Unsafe design (mktemp (3)): function to return
unused name

£) Must use 0_EXCL for real atomicity

TOCTTOU gaps

©) Time-of-check (to) time-of-use races

1. Check it's OK to write to file
2. Write to file

) Attacker changes the file between steps 1and 2
£) Just get lucky, or use tricks to slow you down

Read It Twice (WOOT12)

©) Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

£) Malicious USB device replaces app between steps
) TV “rooted"/"jailbroken”

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1;
struct stat s;
stat(path, &s)
if (!S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, O0_RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !'S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, O_-RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !'S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, 0_-RDONLY);
return fd;

Changing file references

£) With symbolic links
©) With hard links
£) With changing parent directories

Directory traversal with . .

£) Program argument specifies file, found in directory
files

©) What about files/../../../../etc/passud?

Outline

Announcements intermission

First reading assignment posted

£) The external reading on today’s topics is chapters
from a web-hosted book by David A. Wheeler

©) 5 multiple-choice reading questions are a repeatable
auto-graded Canvas quiz, due by a week from today,
Thursday 10/26.

Outline

Good technical writing

Writing in CS versus other writing

£) Key goal is accurately conveying precise technical
information

£) More important: careful use of terminology,
structured organization

©) Less important: writer's personality, persuasion,
appeals to emotion

Still important: concise expression

©) Don't use long words or complicated expressions
when simpler ones would convey the same meaning.
Negative examples:
® necessitate
® utilize
® due to the fact that

) Beneficial for both clarity and style

Know your audience: terminology

£) When technical terminology makes your point clearly,
use it

£) Provide definitions if a concept might be new to
many readers

® Be careful to provide the right information in the definition
® Define at the first instead of a later use

£) But, avoid introducing too many new terms
® Keep the same term when referring to the same concept

Precise explanations

©) Don't say "we” do something when it's the computer
that does it
® And avoid passive constructions

©) Don't anthropomorphize (computers don't “know")

) Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes two tests

Provide structure

£) Use plenty of sections and sub-sections

o) It's OK to have some redundancy in previewing
structure
£ Limit each paragraph to one concept, and not too
long
® Start with a clear topic sentence

£) Split long, complex sentences into separate ones

Know your audience: Project 0.5

©) For projects in this course, assume your audience is
another student who already understands general
course concepts
® Up to the current point in the course
® le, don't need to define “buffer overflow” from scratch
£) But you need to explain specifics of a vulnerable
program
® Make clear what part of the program you're referring to
® Explain all the specific details of a vulnerability

Inclusive language

£) Avoid words and grammar that implies relevant
people are male

£) My opinion: avoid using he/him pronouns for
unknown people

£) Some possible alternatives

® “he/she”

® Alternating genders

® Rewrite to plural and use “they” (may be less clear)
® Singular “they” (least traditional, but spreading)

Outline

Secure OS interaction

Avoid special privileges

£) Require users to have appropriate permissions
® Rather than putting trust in programs

) Dangerous pattern 1. setuid/setgid program
£) Dangerous pattern 2: privileged daemon
©) But, sometimes unavoidable (e.g., email)

Prefer file descriptors

£) Maintain references to files by keeping them open
and using file descriptors, rather than by name

©) References same contents despite file system
changes

£) Use openat, etc, variants to use FD instead of
directory paths

Prefer absolute paths

£) Use full paths (starting with /) for programs and files
©) $PATH under local user control

©) Initial working directory under local user control
® But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

©) Each directory component in a path must be write
protected

£) Read-only file in read-only directory can be changed
if @ parent directory is modified

Don't separate check from use

£) Avoid pattern of eg, access then open
©) Instead, just handle failure of open

® You have to do this anyway
©) Multiple references allow races

® And access also has a history of bugs

Be careful with temporary files

©) Create files exclusively with tight permissions and
never reopen them
® See detailed recommendations in Wheeler (q.v.)
©) Not quite good enough: reopen and check matching

device and inode
® Fails with sufficiently patient attack

Give up privileges

£) Using appropriate combinations of set*id functions
® Alas, details differ between Unix variants

£) Best: give up permanently

£) Second best: give up temporarily

) Detailed recommendations: Setuid Demystified
(USENIX'02)

Allow-list environment variables

£) Can change the behavior of called program in
unexpected ways
) Decide which ones are necessary
® As few as possible

©) Save these, remove any others

For more details...

£) The external reading on this topic is chapters from a
web-hosted book by David A. Wheeler

©) Reading questions will normally be due one week
after they are posted on Canvas

OS security topics

£) Resource protection

£) Process isolation

©) User authentication (will cover later)
£) Access control (already covered)

Protection and isolation

£) Resource protection: prevent processes from
accessing hardware

£) Process isolation: prevent processes from interfering
with each other

£) Design: by default processes can do neither

£) Must request access from operating system

Reference monitor

£) Complete mediation: all accesses are checked

©) Tamperproof: the monitor is itself protected from
modification

©) Small enough to be thoroughly verified

Hardware basis: memory protection

©) Historic: segments

£) Modern: paging and page protection
= Memory divided into pages (e.qg. 4k)
® Every process has own virtual to physical page table
® Pages also have R/W/X permissions

Linux example

OxFFFFFFFFFFFFFFFF
Kernel
use only
0x8

rows|down

Mainlstack
o

0x40000000

METeap

Static code + data

0x400000

Usually unused

Hardware basis: supervisor bit

£) Supervisor (kernel) mode: all instructions available

£) User mode: no hardware or VM control instructions

£) Only way to switch to kernel mode is specified entry
point

£) Also generalizes to multiple “rings”

