
CSci 4271W
Development of Secure Software Systems

Day 14: OS Attacks and Protection
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Good technical writing

Secure OS interaction

Different shells and multiple interpretation

Complex Unix systems include shells at multiple
levels, making these issues more complex

Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

Other shell-like programs also have caveats with
levels of interpretation

Tcl before version 9 interpreted leading zeros as octal

Related local dangers

File names might contain any character except / or
the null character

The PATH environment variable is user-controllable,
so cp may not be the program you expect

Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem
In Unix, splitting a command line into words is the
shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default space, tab,
newline) is configurable

Exploit system("/bin/uname")

In modern shells, improved by not taking from
environment

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Good technical writing

Secure OS interaction

Bad/missing error handling

Under what circumstances could each system call
fail?

Careful about rolling back after an error in the middle
of a complex operation

Fail to drop privileges) run untrusted code anyway

Update file when disk full) truncate

Race conditions

Two actions in parallel; result depends on which
happens first

Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

Many other examples

Classic races: files in /tmp

Temp filenames must already be unique

But “unguessable” is a stronger requirement

Unsafe design (mktemp(3)): function to return
unused name

Must use O EXCL for real atomicity

TOCTTOU gaps

Time-of-check (to) time-of-use races
1. Check it’s OK to write to file
2. Write to file

Attacker changes the file between steps 1 and 2

Just get lucky, or use tricks to slow you down

Read It Twice (WOOT’12)

Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

Malicious USB device replaces app between steps

TV “rooted”/“jailbroken”

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1;

struct stat s;

stat(path, &s)

if (!S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

Changing file references

With symbolic links

With hard links

With changing parent directories

Directory traversal with ..

Program argument specifies file, found in directory
files

What about files/../../../../etc/passwd?

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Good technical writing

Secure OS interaction

First reading assignment posted

The external reading on today’s topics is chapters
from a web-hosted book by David A. Wheeler

5 multiple-choice reading questions are a repeatable
auto-graded Canvas quiz, due by a week from today,
Thursday 10/26.

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Good technical writing

Secure OS interaction

Writing in CS versus other writing

Key goal is accurately conveying precise technical
information

More important: careful use of terminology,
structured organization

Less important: writer’s personality, persuasion,
appeals to emotion

Still important: concise expression

Don’t use long words or complicated expressions
when simpler ones would convey the same meaning.
Negative examples:

necessitate
utilize
due to the fact that

Beneficial for both clarity and style

Know your audience: terminology

When technical terminology makes your point clearly,
use it
Provide definitions if a concept might be new to
many readers

Be careful to provide the right information in the definition
Define at the first instead of a later use

But, avoid introducing too many new terms
Keep the same term when referring to the same concept

Precise explanations

Don’t say “we” do something when it’s the computer
that does it

And avoid passive constructions

Don’t anthropomorphize (computers don’t “know”)

Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes two tests

Provide structure

Use plenty of sections and sub-sections

It’s OK to have some redundancy in previewing
structure
Limit each paragraph to one concept, and not too
long

Start with a clear topic sentence

Split long, complex sentences into separate ones

Know your audience: Project 0.5

For projects in this course, assume your audience is
another student who already understands general
course concepts

Up to the current point in the course
I.e., don’t need to define “buffer overflow” from scratch

But you need to explain specifics of a vulnerable
program

Make clear what part of the program you’re referring to
Explain all the specific details of a vulnerability

Inclusive language

Avoid words and grammar that implies relevant
people are male

My opinion: avoid using he/him pronouns for
unknown people
Some possible alternatives

“he/she”
Alternating genders
Rewrite to plural and use “they” (may be less clear)
Singular “they” (least traditional, but spreading)

Outline

Shell code injection related threats, cont’d

Race conditions and related threats

Announcements intermission

Good technical writing

Secure OS interaction

Avoid special privileges

Require users to have appropriate permissions
Rather than putting trust in programs

Dangerous pattern 1: setuid/setgid program

Dangerous pattern 2: privileged daemon

But, sometimes unavoidable (e.g., email)

Prefer file descriptors

Maintain references to files by keeping them open
and using file descriptors, rather than by name

References same contents despite file system
changes

Use openat, etc., variants to use FD instead of
directory paths

Prefer absolute paths

Use full paths (starting with /) for programs and files

$PATH under local user control

Initial working directory under local user control
But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

Each directory component in a path must be write
protected

Read-only file in read-only directory can be changed
if a parent directory is modified

Don’t separate check from use

Avoid pattern of e.g., access then open

Instead, just handle failure of open
You have to do this anyway

Multiple references allow races
And access also has a history of bugs

Be careful with temporary files

Create files exclusively with tight permissions and
never reopen them

See detailed recommendations in Wheeler (q.v.)

Not quite good enough: reopen and check matching
device and inode

Fails with sufficiently patient attack

Give up privileges

Using appropriate combinations of set*id functions
Alas, details differ between Unix variants

Best: give up permanently

Second best: give up temporarily

Detailed recommendations: Setuid Demystified
(USENIX’02)

Allow-list environment variables

Can change the behavior of called program in
unexpected ways
Decide which ones are necessary

As few as possible

Save these, remove any others

For more details. . .

The external reading on this topic is chapters from a
web-hosted book by David A. Wheeler

Reading questions will normally be due one week
after they are posted on Canvas

OS security topics

Resource protection

Process isolation

User authentication (will cover later)

Access control (already covered)

Protection and isolation

Resource protection: prevent processes from
accessing hardware

Process isolation: prevent processes from interfering
with each other

Design: by default processes can do neither

Must request access from operating system

Reference monitor

Complete mediation: all accesses are checked

Tamperproof: the monitor is itself protected from
modification

Small enough to be thoroughly verified

Hardware basis: memory protection

Historic: segments

Modern: paging and page protection
Memory divided into pages (e.g. 4k)
Every process has own virtual to physical page table
Pages also have R/W/X permissions

Linux example Hardware basis: supervisor bit

Supervisor (kernel) mode: all instructions available

User mode: no hardware or VM control instructions

Only way to switch to kernel mode is specified entry
point

Also generalizes to multiple “rings”

