CSci 427\W
Development of Secure Software Systems
Day 17: Web Security 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

More choices for isolation (contd)

Separate users

©) Reuse OS facilities for access control

©) Unit of trust: program or application

©) Older example: gmail

©) Newer example: Android

©) Limitation: lots of things available to any user

chroot

£ Unix system call to change root directory
£) Restrict/virtualize file system access

£) Only available to root

£) Does not isolate other namespaces

0OS-enabled containers

©) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

£) Presents hardware-like interface to an untrusted
kernel

£) Strong isolation, full administrative complexity

©) /0 interface looks like a network, etc.

Virtual machine designs

o) (Type 1) hypervisor: ‘superkernel’ underneath VMs

©) Hosted: reqular OS underneath VMs

) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

£) Hardware based: fastest, now common
©) Partial translation: e.g,, original VMware

©) Full emulation: eg. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

©) Separates “browser kernel” from less-trusted
“rendering engine”
® Pragmatic, keeps high-risk components together

©) Experimented with various Windows and Linux
sandboxing techniques

©) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

Outline

The web from a security perspective

Once upon a time: the static web

©) HTTP: stateless file download protocol
® TCR usually using port 80
©) HTML: markup language for text with formatting and
links
©) All pages public, so no need for authentication or
encryption

Web applications

£) The modern web depends heavily on active software

£) Static pages have ads, paywalls, or “Edit” buttons

£) Many web sites are primarily forms or storefronts

) Web hosted versions of desktop apps like word
processing

Server programs

©) Could be anything that outputs HTML
©) In practice, heavy use of databases and frameworks
£) Wide variety of commercial, open-source, and

custom-written
) Flexible scripting languages for ease of development
® PHP, Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to other uses

£) ActiveX: Windows-only binaries, no sandboxing
® Glad to see it on the way out
£) Flash and Silverlight: last important use was DRM-ed
video

©) Core lanquage: JavaScript

JavaScript and the DOM

£) JavaScript (JS) is a dynamically-typed prototype-O0O
language
® No real similarity with Java
©) Document Object Model (DOM): lets JS interact with
pages and the browser

©) Extensive security checks for untrusted-code model

Same-origin policy

©) Origin is a tuple (scheme, host, port)
® Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed only with the
same origin
) Different sites are (mostly) isolated applications

GET, POST, and cookies

£) GET request loads a URL, may have parameters
delimited with ?, &, =
® Standard: should not have side-effects
£) POST request originally for forms
® Can be larger, more hidden, have side-effects
£) Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

£) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
£) "Network attacker” can view and sniff unencrypted
data
® Unprotected coffee shop WiFi

Outline

Announcements intermission

Project 1 now available

) Two submissions, November 10th and December 1st

£) We're implementing extensions as “late” Canvas
submissions

Next reading and related quiz

©) Next reading is an OWASP web page about the top
10 web risks

©) Another 5-question reading quiz is due a week from
today.

Instructor working from home

) Prof. McCamant won't be in the lab tomorrow
afternoon

£) Thursday’s lecture will also be via Zoom.

Outline

SQL injection

Relational model and SQL

£) Relational databases have tables with rows and
single-typed columns

) Used in web sites (and elsewhere) to provide
scalable persistent storage

©) Allow complex queries in a declarative language SQL

Example SQL queries

©) SELECT name, grade FROM Students WHERE
grade < 60 ORDER BY name;

) UPDATE Votes SET count = count + 1 WHERE
candidate = ’John’;

Template: injection attacks

£) Your program interacts with an interpreted language
£) Untrusted data can be passed to the interpreter

£) Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

©) Why is this named most critical web app. risk?
©) Easy mistake to make systematically
£) Can be easy to exploit

©) Database often has high-impact contents
® Eg, logins or credit cards on commerce site

Strings do not respect syntax

£) Key problem: assembling commands as strings
€) "WHERE name = ’$name’;"

©) Looks like $name is a string

©) Try $name = "me’ OR grade > 80; --"

Using tautologies

©) Tautology: formula that's always true
) Often convenient for attacker to see a whole table
0 Classic: OR 1=1

Non-string interfaces

£) Best fix: avoid constructing queries as strings
£) SQL mechanism: prepared statement
® Original motivation was performance
£) Web languages/frameworks often provide other
syntax

Retain functionality: escape

£) Sanitizing data is transforming it to prevent an attack

©) Escaped data is encoded to match language rules
for literal
mEg,\"and \ninC
©) But many pitfalls for the unwary:

» Differences in escape syntax between servers
® Must use right escape for context: not everything's a
string

Lazy sanitization: allow-listing

£) Allow only things you know to be safe/intended

©) Error or delete anything else

©) Short allow-list is easy and relatively easy to secure
£) Eg, digits only for non-negative integer

£) But, tends to break benign functionality

Poor idea: deny-listing

) Space of possible attacks is endless, don't try to
think of them all

©) Want to guess how many more comment formats
SQL has?

o) Particularly silly: deny 1=1

Attacking without the program

£) Often web attacks don't get to see the program
® Not even binary, it's on the server
£) Surmountable obstacle:

® Guess natural names for columns
® Harvest information from error messages

Blind SQL injection

) Attacking with almost no feedback

) Common: only “error” or “no error”

£) One bit channel you can make yourself: if (x) delay
10 seconds

) Trick to remember: go one character at a time

Injection beyond SQL

£ Earlier: shell commands, format strings
£) XPath/XQuery: queries on XML data
€) LDAP: queries used for authentication
€ Next up: XSS

Outline

Cross-site scripting

XSS: HTML/JS injection

£) Note: CSS is “Cascading Style Sheets”

£) Another instance of injection template

©) Attacker supplies HTML containing JavaScript (or
occasionally CSS)

) OWASP's most prevalent weakness

® A category unto itself
® Easy to commit in any dynamic page construction

Why XSS is bad (and named that)

£) attacker.com can send you evil JS directly
£) But XSS allows access to bank. com data

) Violates same-origin policy

©) Not all attacks actually involve multiple sites

Reflected XSS

£ Injected data used immediately in producing a page
£) Commonly supplied as query/form parameters
£) Classic attack is link from evil site to victim site

Persistent XSS

©) Injected data used to produce page later
) For instance, might be stored in database

) Can be used by one site user to attack another user
® Eg, to gain administrator privilege

DOM-based XSS

£ Injection occurs in client-side page construction
£) Flaw at least partially in code running on client

£) Many attacks involve mashups and inter-site
communication

No string-free solution

) For server-side XSS, no way to avoid string
concatenation

£) Web page will be sent as text in the end
£) XSS especially hard kind of injection

Danger: complex language embedding

£) JS and CSS are complex languages in their own
right
£) Can appear in various places with HTML
® But totally different parsing rules
) Example: "..." used for HTML attributes and JS
strings
® What happens when attribute contains JS?

Danger: forgiving parsers

©) History: handwritten HTML, browser competition
©) Many syntax mistakes given “likely” interpretations
©) Handling of incorrect syntax was not standardized

Sanitization: plain text only

©) Easiest case: no tags intended, insert at document
text level

£) Escape HTML special characters with entities like
< for <

) OWASP recommendation: & < > " * /

Sanitization: context matters

£) An OWASP document lists 5 places in a web page
you might insert text
® For the rest, "don't do that”

©) Each one needs a very different kind of escaping

Sanitization: tag allow-listing

©) In some applications, want to allow benign markup
like

£) But, even benign tags can have JS attributes

£) Handling well essentially requires an HTML parser
® But with an adversarial-oriented design

Don't deny-list

£) Browser capabilities continue to evolve

£) Attempts to list all bad constructs inevitably
incomplete

©) Even worse for XSS than other injection attacks

Filter failure: one-pass delete

©) Simple idea: remove all occurrences of <script>
©) What happens to <scr<script>ipt>?

Filter failure: UTF-7

©) You may have heard of UTF-8
® Encode Unicode as 8-bit bytes

©) UTF-7 is similar but uses only ASCII

©) Encoding can be specified in a <meta> tag, or some
browsers will guess
€) +ADw-script+AD4-

Filter failure: event handlers

©) Put this on something the user will be tempted to
click on
£) There are more than 100 handlers like this
recognized by various browsers

Use good libraries

©) Coding your own defenses will never work
) Take advantage of known good implementations

£) Best case: already built into your framework
® Disappointingly rare

Content Security Policy

©) Added HTTP header, W3C recommendation

£ Lets site opt-in to stricter treatment of embedded
content, such as:

® No inline JS, only loaded from separate URLs
® Disable JS eval et al.

£) Has an interesting violation-reporting mode

