CSci 427\W
Development of Secure Software Systems
Day 19: Web part 3 and cryptography part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Confidentiality and privacy, contd

Third party content / web bugs

£) Much tracking involves sites other than the one in

the URL bar
m For fun, check where your cookies are coming from

©) Various levels of cooperation
) Web bugs are typically 1x1 images used only for
tracking

Fuke <0

Cookies arms race

£) Privacy-sensitive users like to block and/or delete
cookies
£) Sites have various reasons to retain identification
) Various workarounds:
® Similar features in Flash and HTML5
® Various channels related to the cache

® Evercookie: store in . places, regenerate if subset are
deleted

Browser fingerprinting

) Combine various server or JS-visible attributes
passively
® User agent string (10 bits)
® Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (154 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

£ History of what sites you've visited is not supposed

to be JS-visible
©) But, many side-channel attacks have been possible
® Query link color
® CSS style with external image for visited links
® Slow-rendering timing channel
® Harvesting bitmaps
® User perception (e.g. fake CAPTCHA)

Browser and extension choices

£) More aggressive privacy behavior lives in extensions

® Disabling most JavaScript (NoScript)
® HTTPS Everywhere (centralized list)
® Tor Browser Bundle
) Default behavior is much more controversial
® Concern not to kill advertising support as an economic
model

Outline

Even more web risks

Misconfiguration problems

©) Default accounts
©) Unneeded features

©) Framework behaviors
® Don't automatically create variables from query fields

Openness tradeoffs

©) Error reporting

® Few benign users want to see a stack backtrace
) Directory listings

® Hallmark of the old days
£) Readable source code of scripts

® Doesn't have your DB password in it, does it?

Using vulnerable components

©) Large web apps can use a lot of third-party code

) Convenient for attackers too

® OWASP: two popular vulnerable components downloaded
22m times

©) Hiding doesn't work if it's popular
£) Stay up to date on security announcements

Clickjacking

£) Fool users about what they're clicking on
® Circumvent security confirmations
® Fabricate ad interest
©) Example techniques:
® Frame embedding
® Transparency

® Spoof cursor
® Temporal “bait and switch”

Crawling and scraping

o) A lot of web content is free-of-charge, but

proprietary
® Yours in a certain context, if you view ads, etc.

) Sites don't want it downloaded automatically (web
crawling)

o) Or parsed and user for another purpose (screen
scraping)

©) High-rate or honest access detectable

Outline

Announcements intermission

Course reminders

£) The OWASP Top Ten reading quiz is due tonight
©) Project 1 submission 1's reqular deadline is Friday
night
® Please bring more questions to office hours and Piazza

Non-course reminders

©) Today is Election Day; in Minneapolis, it is the city
council election
£) Polls are open until 8pm tonight

Outline

Crypto basics

-ography, -ology, -analysis

£) Cryptography (narrow sense): designing encryption
£) Cryptanalysis: breaking encryption

£ Cryptology: both of the above

£) Code (narrow sense). word-for-concept substitution
) Cipher: the “codes” we actually care about

Caesar cipher

©) Advance three letters in alphabet:
A—D,B—-E,...

©) Decrypt by going back three letters
©) Internet-era variant: rot-13
©) Easy to break if you know the principle

Keys and Kerckhoffs's principle

£) The only secret part of the cipher is a key

£) Security does not depend on anything else being
secret

£) Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

£) Symmetric key (today’s lecture): one key used by all
participants
©) Public key: one key kept secret, another published

® Techniques invented in 1970s
® Makes key distribution easier
® Depends on fancier math

Goal: secure channel

©) Leaks no content information
® Not protected: size, timing
£) Messages delivered intact and in order
® Or not at all
©) Even if an adversary can read, insert, and delete
traffic

One-time pad

©) Secret key is truly random data as long as message

©) Encrypt by XOR (more generally addition mod
alphabet size)

©) Provides perfect, “information-theoretic” secrecy

©) No way to get around key size requirement

Computational security

£) More realistic: assume adversary has a limit on
computing power
©) Secure if breaking encryption is computationally
infeasible
® E.g, exponential-time brute-force search

£) Ties cryptography to complexity theory

Key sizes and security levels

) Difficulty measured in powers of two, ignore small
constant factors

©) Power of attack measured by number of steps, aim
for better than brute force

0 232 definitely too easy, probably 2** too

© Modern symmetric key size: at least 2'28

Crypto primitives

£) Base complicated systems on a minimal number of
simple operations

£) Designed to be fast, secure in wide variety of uses

©) Study those primitives very intensely

Attacks on encryption

©) Known ciphertext
® Weakest attack

£) Known plaintext (and corresponding ciphertext)
£) Chosen plaintext

£) Chosen ciphertext (and plaintext)
® Strongest version: adaptive

Certificational attacks

£) Good primitive claims no attack more effective than
brute force
£) Any break is news, even if it's not yet practical
® Canary in the coal mine
o Eg, 227 attack against AES-128

©) Also watched: attacks against simplified variants

Fundamental ignorance

£) We don't really know that any computational
cryptosystem is secure

©) Security proof would be tantamount to proving
P # NP

©) Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

£) Prove security under an unproved assumption
£ In symmetric crypto, prove a construction is secure
if the primitive is
® Often the proof looks like: if the construction is insecure,
so is the primitive
£) Can also prove immunity against a particular kind of
attack

Random oracle paradigm

©) Assume ideal model of primitives: functions selected
uniformly from a large space
® Anderson: elves in boxes
£) Not theoretically sound; assumption cannot be
satisfied
£) But seems to be safe in practice

Pseudorandomness and distinquishers

£) Claim: primitive cannot be distinguished from a truly
random counterpart
® In polynomial time with non-negligible probability
£) We can build a distinguisher algorithm to exploit any
weakness
) Slightly too strong for most practical primitives, but a
good goal

Open standards

©) How can we get good primitives?
) Open-world best practice: run competition, invite
experts to propose then attack

©) Run by neutral experts, eg. US NIST
©) Recent good examples: AES, SHA-3

A certain three-letter agency

£) National Security Agency (NSA): has primary
responsibility for “signals intelligence”
£) Dual-mission tension:

® Break the encryption of everyone in the world
® Help US encryption not be broken by foreign powers

Outline

Stream ciphers

Stream ciphers

£) Closest computational version of one-time pad

£) Key (or seed) used to generate a long
pseudorandom bitstream

) Closely related: cryptographic RNG

Shift register stream ciphers

©) Linear-feedback shift register (LFSR): easy way to
generate long pseudorandom sequence
® But linearity allows for attack
©) Several ways to add non-linearity
£) Common in constrained hardware, poor security
record

RC4

£) Fast, simple, widely used software stream cipher
® Previously a trade secret, also "ARCFOUR"

£) Many attacks, none yet fatal to careful users (e.g.
TLS)
® Famous non-careful user: WEP

©) Now deprecated, not recommended for new uses

Encryption # integrity

©) Encryption protects secrecy, not message integrity
) For constant-size encryption, changing the
ciphertext just creates a different plaintext

©) How will your system handle that?
©) Always need to take care of integrity separately

Stream cipher mutability

£) Strong example of encryption vs. integrity

£ In stream cipher, flipping a ciphertext bit flips the
corresponding plaintext bit, only

£) Very convenient for targeted changes

Salsa and ChaCha

) Published by Daniel Bernstein 2007-2008
) Stream cipher with random access to stream
® Related to counter mode discussed later
©) Fast on general-purpose CPUs without specialized
hardware
©) Adopted as option for TLS and SSH
® Prominent early adopter: Chrome on Android

Stream cipher assessment

£) Currently less fashionable as a primitive in software

£) Not inherently insecure
® Other common pitfall: must not reuse key(stream)

