CSci 427\W
Development of Secure Software Systems
Day 24: Protocols in practice

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Cryptographic protocols, contd

Anti-pattern: “oracle”

©) Any way a legitimate protocol service can give a
capability to an adversary

©) Can exist whenever a party decrypts, signs, etc.

£) "Padding oracle” was an instance of this at the
implementation level

Outline

Some classic network attacks

Packet sniffing

£) Watch other people’s traffic as it goes by on network

©) Easiest on:

® Old-style broadcast (thin, “*hub”) Ethernet
® Wireless

©) Or if you own the router

Forging packet sources

£) Source IP address not involved in routing, often not
checked

£) Change it to something else!

£) Might already be enough to fool a naive UDP
protocol

TCP spoofing

) Forging source address only lets you talk, not listen

©) Old attack: wait until connection established, then
DoS one participant and send packets in their place
©) Frustrated by making TCP initial sequence numbers
unpredictable
® Fancier attacks modern attacks are “off-path”

ARP spoofing

£) Impersonate other hosts on local network level

£) Typical ARP implementations stateless, don't mind
changes

£ Now you get victim's traffic, can read, modify, resend

rlogin and reverse DNS

©) rlogin uses reverse DNS to see if originating host is
on whitelist

£) How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

£ rlogin uses reverse DNS to see if originating host is
on whitelist

£) How can you attack this mechanism with an honest
source IP address?

£) Remember, ownership of reverse-DNS is by IP
address

Outline

Key distribution and PKiI

Public key authenticity

£) Public keys don't need to be secret, but they must
be right

£) Wrong key — can't stop middleperson
£) So we still have a pretty hard distribution problem

Symmetric key servers

) Users share keys with server, server distributes
session keys

©) Symmetric key-exchange protocols, or channels

©) Standard: Kerberos

©) Drawback: central point of trust

Certificates

£) A name and a public key, signed by someone else
®m Ca = Signg(A, Ka)

£) Basic unit of transitive trust

£) Commonly use a complex standard “X.509”

Certificate authorities

£) "CA” for short: entities who sign certificates
©) Simplest model: one central CA
£) Works for a single organization, not the whole world

Web of trust

£) Pioneered in PGP for email encryption
£) Everyone is potentially a CA: trust people you know

£) Works best with security-motivated users
® Ever attended a key signing party?

CA hierarchies

©) Organize CAs in a tree

©) Distributed, but centralized (like DNS)

) Check by follow a path to the root

£) Best practice: sub CAs are limited in what they
certify

PKI for authorization

£) Enterprise PKI can link up with permissions

£) One approach: PKI maps key to name, ACL maps
name to permissions

) Often better: link key with permissions directly, name
is a comment

The revocation problem

©) How can we make certs “go away” when needed?
©) Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking

Outline

Announcements intermission

Project 1 status

£) Probably don't need reminder that second
submission is Friday

©) Some clarifications on Piazza, consider asking more
questions there

o) I'll be available for questions after class

Outline

SSH

Short history of SSH

) Started out as freeware by Tatu Yi6nen in 1995
©) Original version commercialized

©) Fully open-source OpenSSH from OpenBSD

) Protocol redesigned and standardized for “SSH 2"

OpenSSH t-shirt
www- OpenSSH.- < ~

Putting an end to unencrypted network logins

SSH host keys

©) Every SSH server has a public/private keypair
©) Ideally, never changes once SSH is installed

©) Early generation a classic entropy problem
® Especially embedded systems, VMs

Authentication methods

£) Password, encrypted over channel
©) .shosts: like .rhosts, but using client host key
£) User-specific keypair
® Public half on server, private on client
£) Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

©) 1x had only CRC for integrity
® Worst case: when used with RC4
©) Injection attacks still possible with CBC
® CRC compensation attack
) For least-insecure 1.x-compatibility, attack detector
£) Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

£) IV chaining: IV based on last message ciphertext

® Allows chosen plaintext attacks
® Better proposal: separate, random Vs

£) Some tricky attacks still left

® Send byte-by-byte, watch for errors
® Of arquable exploitability due to abort

£) Now migrating to CTR mode

SSH over SSH

£) SSH to machine 1, from there to machine 2
® Common in these days of NATs

) Better: have machine 1 forward an encrypted
connection

1. No need to trust 1 for secrecy
2. Timing attacks against password typing

SSH (non-)PKI

£) When you connect to a host freshly, a mild note
£) When the host key has changed, a large warning

@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @

IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!

It is also possible that a host key has just been changed.

Outline

SSL/TLS

SSL/TLS

£) Developed at Netscape in early days of the public
web
m Usable with other protocols too, eg. IMAP
£) SSL 1.0 pre-public, 2.0 lasted only one year, 3.0
much better
£) Renamed to TLS with RFC process
® TLS 10 improves SSL 3.0

£) TLS 11 and 1.2 in 2006 and 2008, only gradual
adoption

IV chaining vulnerability

) TLS 1.0 uses previous ciphertext for CBC IV

©) But, easier to attack in TLS:

® More opportunities to control plaintext
® Can automatically repeat connection

©) "BEAST" automated attack in 2011: TLS 1.1 wakeup
call

Compression oracle vuln.

£ Compr(S || A), where S should be secret and A is
attacker-controlled

£) Attacker observes ciphertext length
2 If A is similar to S, combination compresses better
£) Compression exists separately in HTTP and TLS

But wait, there’s morel

£) Too many vulnerabilities to mention them all in
lecture
©) Kaloper-Mersinjak et al. have longer list
® “"Lessons learned” are variable, though

©) Meta-message: don't try this at home

HTTPS hierarchical PKI

©) Browser has order of 100 root certs

® Not same set in every browser
® Standards for selection not always clear

£) Many of these in turn have sub-CAs
) Also, “wildcard” certs for individual domains

Hierarchical trust?

©) No. Any CA can sign a cert for any domain

©) A couple of CA compromises recently

£) Most major governments, and many companies
you've never heard of, could probably make a
google.com cert

) Still working on: make browser more picky, compare
notes

CA vs. leaf checking bug

£) Certs have a bit that says if theyre a CA

©) All but last entry in chain should have it set

£) Browser authors repeatedly fail to check this bit
£) Allows any cert to sign any other cert

MD5 certificate collisions

£) MD5 collisions allow forging CA certs

©) Create innocuous cert and CA cert with same hash

® Requires some guessing what CA will do, like sequential
serial numbers
® Also 200 PS3s

£) Oh, should we stop using that hash function?

CA validation standards

£) CA's job to check if the buyer really is foo.com

£) Race to the bottom problem:

® CA has minimal liability for bad certs
® Many people want cheap certs
® Cost of validation cuts out of profit

£) “Extended validation” (green bar) certs attempt to fix

HTTPS and usability

©) Many HTTPS security challenges tied with user
decisions

0 Is this really my bank?

£) Seems to be a quite tricky problem
® Security warnings often ignored, etc.

