CSci 427\W
Development of Secure Software Systems
Day 25: Authentication

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

User authentication

Authentication factors

©) Something you know (password, PIN)
©) Something you have (e.g., smart card)
©) Something you are (biometrics)

) CAPTCHAs, time and location, ...

©) Multi-factor authentication

-

Passwords: love to hate

£) Many problems for users, sysadmins, researchers
©) But familiar and near-zero cost of entry

£) User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

£) Model password choice as probabilistic process
©) If uniform, log; |S|
) Controls difficulty of guessing attacks

©) Hard to estimate for user-chosen passwords
® Length is an imperfect proxy

Password hashing

£ ldea: don't store password or equivalent information

£) Password ‘encryption’ is a long-standing misnomer
® Eg, Unix crypt (3)

£) Presumably hard-to-invert function h

) Store only h(p)

Dictionary attacks

©) Online: send quesses to server
o) Offline; attacker can check guesses internally

) Specialized password lists more effective than literal
dictionaries
® Also generation algorithms (s — $, etc.)

£) ~25% of passwords consistently vulnerable

Better password hashing

©) Generate random salt s, store (s, h(s,p))
® Block pre-computed tables and equality inferences
® Salt must also have enough entropy

) Deliberately expensive hash function

® AKA password-based key derivation function (PBKDF)
® Requirement for time and/or space

Password usability

©) User compliance can be a major challenge
® Often caused by unrealistic demands

) Distributed random passwords usually unrealistic
£) Password aging: not too frequently
©) Never have a fixed default password in a product

Backup authentication

£) Desire: unassisted recovery from forgotten password
£) Fall back to other presumed-authentic channel
® Email, cell phone
£) Harder to forget (but less secret) shared information
® Mother’s maiden name, first pet's name
) Brittle: ask Sarah Palin or Mat Honan

Backup auth suggestion: use time

£) Need for backup often comes for infrequently-used
accounts
£) May be acceptable to slow down recovery if it
reduces attack risk
® Account recovery is a hassle anyway
©) Time can allow legitimate owner to notice malicious
request

Centralized authentication

©) Enterprise-wide (e.g., UMN ID)

£) Anderson: Microsoft Passport

£) Today: Facebook Connect, Google ID

£) May or may not be single-sign-on (SSO)

Biometric authentication

©) Authenticate by a physical body attribute
+ Hard to lose

— Hard to reset

— Inherently statistical

— Variation among people

Example biometrics

£) (Handwritten) signatures

©) Fingerprints, hand geometry
£) Face and voice recognition
£ Iris codes

Outline

Announcements intermission

Some small updates

£) There will be no problem set 2

©) There will be labs both this week and next

£) SRTs are open, and I'l allocate lecture time for them
a week from today

Outline

Error rate trade-offs

Imperfect detection

£) Many security mechanisms involve imperfect
detection/classification of relevant events

£) Biometric authentication

£) Network intrusion detection

£) Anti-virus (malware detection)

£) Anything based on machine learning

Detection results

©) True positive: detector says yes, reality is yes

£) True negative: detector says no, reality is no

©) False positive: detector says yes, reality is no

©) False negative: detector says no, reality is yes

©) Note: terminology may flip based on detecting good
or bad

Why a trade-off?

©) Imperfect methods have a trade-off between
avoiding FPs and avoiding FNs
£) Sometimes a continuous trade-off (curve), eg. based
on a threshold
® Eg, spam detector “score”
£) May need to choose both a basic mechanism and a
threshold

Two ratios to capture the trade-off

©) True positive rate:

TP TP
TPR:F =PI 1 —FNR
©) False positive rate:
FP FP
FPR_W “FPPrIN 1 —TNR

ROC curve intro

100%

T

} ™R L7

A

- 0% FPR 100%

Source: https://commons.wikimedia.org/wiki/File:ROC_curves.svg CC-BY-SA 3.0 "Sharpr"

Error rates: ROC curve

Always
Perfect accept
1009

75% 20% FP &
9 20% P &

% 25% 50% 75% 100%

Extreme biometrics examples

£) exact_iris_code_match: very low false positive
(false authentication)

€) similar voice pitch: very low false negative
(false reject)

Where are these in ROC space?

if (iris()) return REJECT; else return ACCEPT;

return REJECT;

if (iris()) return ACCEPT; else return REJECT;

if (iris() && pitch()) return ACCEPT; else return REJECT;
return ACCEPT;

if (rand() & 1) return ACCEPT; else return REJECT;

if (pitch()) return ACCEPT; else return REJECT;

I @ m m O O W P>

if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

Web authentication

Per-website authentication

©) Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
— Inconvenient, many will reuse passwords
Lots of functionality each site must implement correctly
— Without enough framework support, many possible pitfalls

Building a session

©) HTTP was originally stateless, but many sites want
stateful login sessions

£) Built by tying requests together with a shared
session ID

£) Must protect confidentiality and integrity

Session ID: what

£) Must not be predictable
® Not a sequential counter
©) Should ensure freshness
® Eg, limited validity window
o) If encoding data in ID, must be unforgeable

® E.g, data with properly used MAC
® Negative example: crypt(username || server secret)

Session ID: where

£) Session IDs in URLs are prone to leaking
® Including via user cut-and-paste
£) Usual choice: non-persistent cookie
® Against network attacker, must send only under HTTPS
) Because of CSRF, should also have a non-cookie
unique ID

Session management

) Create new session ID on each login
©) Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
® Needed to protect users who fail to log out from public
browsers

Account management

©) Limitations on account creation
® CAPTCHA? Outside email address?
£) See previous discussion on hashed password
storage
£) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

) For usability, interface should show what's possible

©) But must not rely on client to perform checks

£) Attackers can read/modify anything on the client
side

©) Easy example: item price in hidden field

Direct object references

£) Seems convenient: query parameter names
resource directly
® Eg, database key, filename (path traversal)
£) Easy to forget to validate on each use

£) Alternative: indirect reference like per-session table

® Not fundamentally more secure, but harder to forget
check

Function-level access control

©) Eg9. pages accessed by URLs or interface buttons

) Must check each time that user is authorized
® Attack: find URL when authorized, reuse when logged off

©) Helped by consistent structure in code

Outline

TLS and certificates

HTTPS hierarchical PKI

©) Browser has order of 100 root certs

® Not same set in every browser
® Standards for selection not always clear

£) Many of these in turn have sub-CAs
©) Also, “wildcard” certs for individual domains

Hierarchical trust?

£) No. Any CA can sign a cert for any domain

) A couple of CA compromises recently

£) Most major governments, and many companies
you've never heard of, could probably make a
google.com cert

£ Still working on: make browser more picky, compare
notes

CA validation standards

£) CA's job to check if the buyer really is foo.com

©) Race to the bottom problem:;

® CA has minimal liability for bad certs
® Many people want cheap certs
® Cost of validation cuts out of profit

©) “Extended validation” (green bar) certs attempt to fix

HTTPS and usability

£) Many HTTPS security challenges tied with user
decisions

£ Is this really my bank?

£) Seems to be a quite tricky problem
® Security warnings often ignored, etc.

Outline

Names and identities

Accounts versus identities

£) "ldentity” is a broad term that can refer to a
personal conception or an automated sytem

£) "Name” is also ambiguous in this way

£) “Account” and “authentication” refer unambiguously
to institutional/computer abstractions

©) Any account system is only an approximation of the
real world

Real human names are messy

£) Most assumptions your code might make will fail for
someone
® ASCII, length limit, uniqueness, unchanging, etc.

£) So, don't design in assumptions about real names
£) Use something more computer-friendly as the core
identifier
® Make “real” names or nicknames a presentation aspect

Zooko's triangle

©) Claims (2001) it is hard/impossible for a naming
scheme to be simultaneously:
® Human-meaningful

® Secure
® Decentralized

£) Too imprecise to be definitively proven/refuted

® Blockchain-based name systems are highest-profile
claimed counterexamples

©) A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

£) "Send us a scan of your driver's license”
® Sometimes called for by specific regulations
® Unnecessary storage is a disclosure risk
® Fake IDs are very common

Identity numbers: mostly unhelpful

£) Common US example: social security number

£) Variously used as an identifier or an authenticator
® Dual use is itself a cause for concern

£) Known by many third parties (e.g., banks)
©) No checksum, guessing risks
£) Published soon after a person dies

“Identity theft”

) The first-order crime is impersonation fraud between
two other parties
® Eg, criminal trying to get money from a bank under false
pretenses
©) The impersonated “victim” is effectively victimized by
follow-on false statements
® Eg, by credit reporting agencies
® These costs are arguably the result of poor regulatory
choices

©) Be careful w/ negative info from 3rd parties

