
CSci 5271: Introduction to Computer Security

Exercise Set 3 due: November 25th, 2024

Ground Rules. You may complete these exercises in a group of up to three students. Each group
should turn in one set of answers, designating all group members using the group submission
feature of Gradescope. You may use any written source you can find to help with this assignment
but you must explicitly reference any source you use besides the lecture notes,assigned readings,
or textbook. Unlike exercise set 1, AI tools like ChatGPT may not be used on this assignment.
Submit an electronic copy of your solution online by 11:59pm on Monday, November 25th.

For this assignment, we will use Gradescope’s template-based submission style. We will supply
a template document with spaces to insert your answers in, in your choice of LaTeX or Google
Docs formats. Prepare your answers by filling in this document and converting it to a PDF in a
way that preserves the template formatting, and submit this to Gradescope. Note that we still ask
that you type your written answers, rather than hand-writing and scanning them, since it is best
for both you and us if your answers are easy to read.

1. Caesar’s block cipher. (20 pts) The Caesar cipher is a historical encryption method based on
advancing letters circularly through the alphabet. To discuss it in a modern context on ASCII, we
can consider it to be a block cipher with an 8-bit block and a 5-bit key k. The encryption function
Ek is defined as:

Ek(b) =

0x41 + ((b− 0x41 + k) mod 26) if 0x41 ≤ b ≤ 0x5A

0x61 + ((b− 0x61 + k) mod 26) if 0x61 ≤ b ≤ 0x7A

b, otherwise

Recall that 0x41 through 0x5A are the ASCII codes for A through Z, and similarly 0x61 through
0x7A are a through z. The inverse operation is just shifting by the same amount in the opposite
direction, so Dk = E26−k (we use the convention that the result of mod is always positive when
the modulus is). ROT-13 corresponds to the special case E13 = D13.

(a) CaesarCrypt S.p.A. is an Italian computer security company which got started building on
their national heritage to market modern block ciphers that also have an 8-bit block size, but
they have taken the lesson that the original Caesar cipher had too small a key size. Their
first flagship product CCEA1 was a 8-bit block cipher with a 2048-bit key size. Their new
successor cryptosystem, named CCEA2, increases CCEA1’s key size to 4096 bits. Caesar-
Crypt’s marketing materials suggest that this yields an astronomical increase in security by a
factor of 22048. What do you think of this security claim: can CCEA2 really be more secure
than CCEA1?

(b) In fact there are some general problems that affect any block cipher with a small block size.
Describe a chosen-plaintext attack that would easily break any block cipher with an 8-bit
block size.

1

2. Poor block ciphers. (30 pts)
Creating good block ciphers is difficult. In this question, your job is to point out why each of

these proposals is not a good block cipher. Each cipher operates on 64-bit blocks and uses a 64-bit
key. The cipher is shown in the form of C code for encryption and decryption functions operating
on values of type uint64_t, which is equivalent to unsigned long on x86-64.

These flaws/possible attacks should be of one of four categories: a block cipher is not usable
if it is not invertible, or it is insecure if it is vulnerable to a key recovery, plaintext recovery, or
distinguisher attack under the chosen-plaintext assumption. For each part, state which kind of flaw
you have identified (more than one may be possible), and then give the specifics of the flaw. Often
the flaw/attack can be expressed in a short mathematical formula or example. You can also use
words (and a brief explanation might help qualify for partial credit), but you don’t need to write
code. Variables P , C, and k (and with subscripts) always stand for plaintext blocks, ciphertext
blocks, and keys respectively.

A cipher is not invertible if there is any key and plaintext message for which the decryption of
the ciphertext is not the same as the original plaintext, i.e. Dec(Enc(P, k), k) 6= P . The setup for
a chosen plaintext attack is that there is a key kC and a plaintext PC which are chosen randomly
and initially unknown to the attacker (subscript C for “challenge”); let CC = Enc(PC ,KC). The
attacker receives CC , and then chooses one or more plaintexts P1, P2, . . . , Pn, and gets their en-
cryptions under the challenge key, Ci = Enc(Pi, kC). Given this setup, the attacker is successful
in key recovery if they can efficiently (much faster than brute force) compute kC . Similarly, the
attacker succeeds in plaintext recovery if they can efficiently compute PC . The attacker succeeds as
a distinguisher if they can compute a condition whose probability of being true with the randomly
keyed block cipher is significantly different from the probability if the block cipher were replaced
with a random permutation (one selected uniformly at random among all permutations on the
block space). Some attacks may work for any values of the plaintext(s) without the attacker having
to choose them (a known plaintext attack), in which case you don’t need to describe choosing them.

(a) The identity function.

uint64_t enc(uint64_t p, uint64_t k) { return p; }

uint64_t dec(uint64_t c, uint64_t k) { return c; }

(b) Multiplication.

uint64_t enc(uint64_t p, uint64_t k) {

if (k == 0) return p;

return p * k; }

uint64_t dec(uint64_t c, uint64_t k) {

if (k == 0) return c;

return c / k; }

(c) XOR.

uint64_t enc(uint64_t p, uint64_t k) { return p ^ k; }

uint64_t dec(uint64_t c, uint64_t k) { return c ^ k; }

2

(d) A more complex use of XOR.

uint64_t enc(uint64_t p, uint64_t k) {

return (p ^ (k >> 8)) ^ k; }

uint64_t dec(uint64_t c, uint64_t k) {

return (c ^ k) ^ (k >> 8); }

(e) A Feistel cipher.

uint64_t enc(uint64_t p, uint64_t k) {

/* Split into two 32-bit halves */

uint32_t left = p >> 32;

uint32_t right = p & 0xffffffff;

for (int i = 0; i <= 55; i += 5) {

uint32_t new_left = right;

right = left ^

(right << ((k >> i) & 31));

left = new_left;

}

/* Reassemble the halves */

return ((uint64_t)left << 32) | right;

}

uint64_t dec(uint64_t c, uint64_t k) {

/* Split into two 32-bit halves */

uint32_t left = c >> 32;

uint32_t right = c & 0xffffffff;

for (int i = 55; i >= 0; i -= 5) {

uint32_t new_right = left;

left = right ^

(left << ((k >> i) & 31));

right = new_right;

}

/* Reassemble the halves */

return ((uint64_t)left << 32) | right;

}

3

3. (Mis-)using message authentication codes. (20 pts) Armed with a copy of Schneier’s
Applied Cryptography from a used bookstore, Sly can’t wait to design his own encrypted thinga-
madoodad protocol. He starts off with a super-secure key exchange protocol that ends with Alice
and Bob sharing secret keys for encryption (Ke) and authentication (Ka). Now he wants to design
a secure symmetric channel using these keys.

(a) Sly decides at first that he wants to use a CBC-MAC based on AES with 128 bit blocks
for integrity. He looks carefully at his key exchange protocol and realizes that an adversary
can interfere to make Alice and Bob end up deciding on different keys. So the first message
sent over by Alice will be τ0 = cbcMACKa(0128) = aesEncryptKa

(0128). (The notation 0n

means n zero bits.) If Bob’s local value doesn’t check out, he aborts, otherwise the channel
is usable. Afterwards, whenever Alice wants to send the message M over the secure channel,
she’ll compute τM ← cbcMACKa(M) and send the pair (M, τM) over the channel; Bob will
check whether τM = cbcMACKa(M) and if so will conclude that Alice said M .

This is a pretty bad idea. Show how to use the values τ0, M and τM to compose a message
to Bob that will convince him Alice meant to say the two-block message (M, τM) instead of
just M . Explain why your message will convince Bob that Alice meant to say (M, τM) rather
than just M . Hint: try writing a recursive definition of CBC-MAC, and use the facts that
for any string A, A⊕A = 0|A| and A⊕ 0|A| = A.

Since τM is just 128 random-looking bits, why is this a big deal?

(b) Sly’s friend Sally notices the same attack on his scheme. She proposes a different method
of authenticating (and encrypting) messages: ignore the key Ka. Instead, to authenticate
and encrypt the message M , first compute H(M) using SHA-256; then encrypt (M,H(M))
together, using AES-CTR encryption. So the message sent on the insecure channel would be
CTR-EncryptKe

(M,H(M)); Bob would decrypt the message using Ke, check that the last 256
bits of the plaintext are the hash of all of the previous bits, and accept the message if they
are.

Show that this is also a bad idea: if Alice ever sends a ciphertext corresponding to the message
M , where Eve knows M , Eve can generate a ciphertext corresponding to any message M ′,
(of the same length as M) that Bob will accept. (For example, if Alice sends the message
“ATTACK AT TEN AM” Eve can drop it and make Bob accept the message “GO BACK
HOME BOB” instead.)

4

4. Protocol (an)droids. (16 pts) Two robots Artoo and C3-2-0 often fly on different starships
and need to alert each other to their presence when their ships come in contact—otherwise they
might accidentally blow each other up! They agree on a shared key K and a MAC algorithm that
outputs 256-bit tags to use in the following protocol.

1. A −→ C: a random 256-bit string NA and MACK(NA).

2. C: on message n, t check that MACK(n) = t, and if so, accept A, otherwise blow up the other
party.

3. C −→ A: MACK(t).

4. A: on message t′ check that t′ = MACK(MACK(NA)). If so, accept C, otherwise blow C up.

The idea here is that A proves it is A by correctly MACing NA (which, if the key is secret, only
A or C could do) and C proves it is C by MACing the MAC. But...

(a) A and C use this protocol for a while and then discover, to their dismay, that sometimes
the evil galactic robo-emperor, E, has been successfully fooling C into believing it is A.
Even supposing that robot-in-the-middle attacks are prevented by speed-of-light limitations
or some other plot contrivance, what is a simple way for E to do this?

(b) A and C decide that one way to prevent the attack is for C to remember every value of NA

used in a previous challenge and reject if one is ever reused. Suppose E sees one authentication
between A and C. How can it fool C into believing it is A as many times afterwards as it
wants?

5. Hashing and Signing. (14 pts) Nearly every digital signature scheme works by first hashing a
message to be signed (with a cryptographic hash function) and then performing some operation on
the hash—so in essence, we are “signing the hash” and not the message. In particular, if Eve sees
Alice’s signature on the message M and can find a message M ′ 6= M so that H(M) = H(M ′), she
can convince people that Alice signed M ′. This is OK, since a good cryptographic hash function
H will resist finding targeted collisions (second pre-images) like this.

Suppose our signature scheme uses a hash function H with an output length ` that is sufficient
to resist second pre-images but NOT resistant to free collisions (e.g. the hash length is around 100-
120 bits). Then it is possible that if Eve can get Alice to sign one of a pair of colliding messages,
she can later claim that Alice signed the other.

The classic birthday attack works by hashing random messages until two have the same hash.
This could already be a problem in some applications, but you might object that Alice is unlikely
to agree to sign a random message. So let’s think about how to create a collision with more specific
messages.

Suppose that a message is “favorable” if it is something that Alice would sign, for example
“I will pay $10 to McDonald’s for my lunch.” Suppose that a message is “undesirable” if it is
something that Alice would not sign, like “I will pay $10,000,000 to Eve for her lunch.” Notice
that we can generate 256 different “favorable” messages from the example above, for instance by
varying the number of space characters between words between 1 and 2. Extend this idea to show
how to generate a pair of messages, one favorable and one undesirable, with the same hash. Your
attack should compute about as many hashes as the birthday attack.

Then, describe how Eve completes the attack using the pair she generates to her advantage.

5

