
Computer Science 5271
Fall 2024
Midterm exam
October 23rd, 2024
Time Limit: 75 minutes, 1:00pm-2:15pm

� Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to. Don’t put any of your answers on this page.

� This exam contains 8 pages (including this cover page) and 4 questions. Once we tell you to
start, please check that no pages are missing.

� You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

� You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

� Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

� By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 2:15pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Sign and date:

Question Points Score

1 30

2 20

3 30

4 20

Total: 100

Mark the icon corresponding to your seat:

Computer Science 5271 Midterm exam - Page 2 of 8

1. (30 points) Multiple choice. Each question has only one correct answer: circle its letter.

(a) The number 20 in decimal is represented as 0x14 in hex. All of the following pairs of
32-bit integers, shown in hex, would produce a value of 0x14 when multiplied using the
rules of C for unsigned int on x86-64, except:

A. 0xfffffffb · 0xfffffffc
B. 0x80000002 · 0x8000000a
C. 0x33333333 · 0x00000003
D. 0x00000005 · 0x00000004
E. 0x80000005 · 0x00000004

(b) Suppose a local variable whose type is an array of 100 characters contains sensitive infor-
mation in the form of short (3-6 character) printable strings separated by null bytes, and
assume the platform is Linux/x86-64. If the function containing the variable also has a
call to printf that is vulnerable to a format string attack, which of these format specifiers
would be the best choice for an attacker to use repeatedly to dump the entire contents of
the array?

A. %lx B. %c C. %ho D. %s E. %x

(c) The set of all subsets of the letters A though J forms a lattice when the ordering operation
v is defined to be the subset operation ⊆. Under this definition, what is the least upper
bound {A,B} t {E,F}?

A. ∅ (the empty set)

B. {A,B}
C. {A,B,E, F}
D. {A,B,C,D,E, F}
E. {A,B,C,D,E, F,G,H, I, J}

(d) Why would password capabilities be an appropriate kind of capability-based access control
to be used in a large-scale networked system?

A. Object-aggregated authority management scales to having many objects

B. A centralized server can immediately revoke password capabilities

C. Capabilities automatically provide ambient authority

D. Password capabilities don’t need to be managed by an OS kernel

E. Password capabilities cannot be transferred via network messages

(e) Random stack canaries and ASLR share all of the following features except:

A. They are more resistant to guessing if they are re-randomized frequently

B. They make some control-flow hijacking attacks more difficult

C. They require kernel support to implement

D. They are more resistant to guessing if they have more entropy

E. Their protection is compromised if information leaks to an attacker

Page 2

Computer Science 5271 Midterm exam - Page 3 of 8

(f) All of these attack techniques were predecessors of ROP, except:

A. Control-flow bending

B. Return to libc

C. ret2pop

D. Chained return to libc

E. Stack smashing

(g) Suppose a program on an x86-32 platform has a hard-to-control memory safety vulnera-
bility that leads to a return address being overwritten by a uniformly random 32-bit value.
An attacker is able to set up a heap spray by allocating 1000 memory objects, each of
which is 1 MiB (220 = 1048576 bytes) long, containing a NOP sled and a 100 byte-long
shellcode. These objects are placed at non-overlapping locations in the address space. If
the attacker repeats the attack 10 times, what is the probability of succeeding at least
once?

A. (1− (1000 · (220 − 100)/232))10 ≈ 6%

B. 10 · 100 · 220/232 ≈ 24%

C. (10 · 100 · 1000/220)10 ≈ 62%

D. 1− (1− ((1000− 100) · (220)/232))10 ≈ 92%

E. 1− (1− (1000 · (220 − 100 + 1)/232))10 ≈ 94%

(h) All of the following situations are specified to constitute undefined behavior in the C
language standard except:

A. Dereferencing a null pointer

B. Accessing a memory region after it has been free()d

C. An unhandled case in a switch statement

D. Accessing outside the bounds of an array

E. Integer overflow of a signed integer

(i) Applying the metric of net risk reduction implies that a security protection becomes more
worthwhile when any of these happen, except:

A. The expected damage caused by an attack increases

B. The attack becomes more frequent

C. The cost of carrying out the attack goes up

D. The defense becomes less expensive

(j) Some laptops and smartphones now encourage users to log in via facial recognition or a
fingerprint instead of with a password or PIN. These are examples of:

A. Single sign-on

B. Two-factor authentication

C. Biometric authentication

D. Compromise recording

E. CAPTCHAs

Page 3

Computer Science 5271 Midterm exam - Page 4 of 8

2. (20 points) A race condition attack.

The following high-level C code attempts to copy the contents of one temporary file belonging
to the Alice (username alice) into a new file that will also be owned by Alice. However, you
may be able to see that it has TOCTTOU/race condition problems.

char data[32000]; size_t data_len;

void copy_alice_file(char *input_file, char *output_file) {

/*** point A ***/

if (!file_exists(input_file))

print_error_and_exit();

/*** point B ***/

if (!is_alice_owned_and_readable(input_file))

print_error_and_exit();

/*** point C ****/

if (!file_exists(output_file))

create_alice_file(output_file);

/*** point D ****/

FILE *input_fh = fopen(input_file, "r");

if (!input_fh)

print_error_and_exit();

read_data(input_fh, data, &data_len, sizeof(data));

fclose(input_fh);

/*** point E ***/

FILE *output_fh = fopen(output_file, "w");

if (!output_fh)

print_error_and_exit();

write_data(output_fh, data, data_len);

fclose(output_fh);

}

int main(int argc, char **argv) {

/* ... */

copy_alice_file("/tmp/alice.in", "/tmp/alice.out");

return 0;

}

Suppose that the program containing this code runs with superuser privileges, and your goal
as an attacker with the username bob is to trick the program into doing something else. Specif-
ically Bob wants the program to copy the contents of the secret file /etc/shadow, which con-
tains information about other users’ passwords, into a file that he (Bob) can read. (To start,
/etc/shadow is only readable by the superuser.) Assume that Bob triggers the execution of
this program at a time when initially neither the input file /tmp/alice.in nor the output file
/tmp/alice.out exists yet. But a different file named /tmp/alice-recipes owned by Alice
with 0600 permissions does exist. Bob is able to run other programs, using his write access to
/tmp, at the same time this code is running. In particular, to achieve his attack, Bob will try
to get certain file system operations to occur in between the vulnerable program’s operations,
namely at the points marked point A through point E.

Page 4

Computer Science 5271 Midterm exam - Page 5 of 8

In the parts below, describe which racing attacker actions Bob should take at each point for a
successful attack. You may not need to use all of the points. Suggestion: use symbolic links.

(a) At point A:

(b) At point B:

(c) At point C:

(d) At point D:

(e) At point E:

Assume that all of the functions whose names contain underscores do what their name sounds
like they do: The function file_exists returns true if a file exists with a given pathname,
and false otherwise. The function print_error_and_exit prints an error message and then
causes the program to exit. The function is_alice_owned_and_readable returns true if its
pathname argument is owned by alice and has read permissions for alice. Otherwise it
returns false. The function create_alice_file creates a file with the given name suitable for
storing information private to Alice: the owner of the file is alice and only alice has read or
write permissions. The function read_data reads the contents from an open file handle into a
memory buffer, keeping track of the amount of data it reads. You don’t have to worry about
the possibility of the file contents being bigger than the buffer. The function write_data is the
matching operation to read_data and similar to the standard library function fwrite, writing
data from memory back into a file handle open for writing.

The standard library function fopen opens a file handle used to read from or write to a file
(specified by the second argument). It returns a null pointer if the file cannot be opened, such
as if it does not exist. The standard library function fclose is used to close a file handle
opened by fopen. We have left off error handling for fclose because it is not important to
this vulnerability.

Page 5

Computer Science 5271 Midterm exam - Page 6 of 8

3. (30 points) Function preconditions.

Each of the following short C functions performs some operations that are potentially unsafe,
but could be performed correctly if appropriate properties of the function arguments, precon-
ditions, are checked by the code calling the function. For each function, write one or more
preconditions that are sufficient to guarantee that no safety or security problems will happen
when running the function, but allow appropriate uses of the function to occur. Use the syntax
of C to represent the preconditions whenever possible, and in other cases write clear text such
as might appear in documentation.

You don’t have to mention any properties that are already checked with the assert function
inside the function, and the number of blank lines is not intended to signal the number of
preconditions we expect. We’ve done the first function as an example.

n >= 0

unsigned int fib(int n) {

if (n == 0 || n == 1) {

return 1;

} else {

return fib(n - 1) + fib(n - 2);

}

}

(a)

void strcat3(char *buf, const char *s1, const char *s2, const char *s3) {

assert(buf && s1 && s2 && s3);

strcpy(buf, s1);

strcat(buf, s2);

strcat(buf, s3);

}

(b)

long *alloc_and_zero_array(size_t size) {

long *p = malloc(size * sizeof(long));

assert(p);

for (size_t i = 0; i < size; i++) {

p[i] = 0;

}

return p;

}

Page 6

Computer Science 5271 Midterm exam - Page 7 of 8

(c)

void poke(char *p, char c) {

*p = c;

}

(d)

char peek(char *p) {

return *p;

}

(e)

int abs_dynamic(int x) {

int *pos_ptr = malloc(sizeof(int));

int result;

assert(pos_ptr);

if (x >= 0) {

*pos_ptr = x;

result = *pos_ptr;

free(pos_ptr);

}

if (x <= 0) {

*pos_ptr = -x;

result = *pos_ptr;

free(pos_ptr);

}

return result;

}

Here are some reminders about some C functions that appear in the question. assert (which
is technically a macro) takes as an argument a boolean condition that is supposed to be true.
If the condition is true nothing happens, and if the condition is false the program immediately
stops with an error message. malloc takes a number of bytes as an argument, and allocates
that much memory, returning a pointer to the allocated memory. The pointer returned by
malloc should be passed to free when the program is done with it. strcpy and strcat both
copy a string into a destination buffer in their first argument. The difference between them is
that strcpy overwrites the buffer from the beginning, while strcat performs concatenation by
copying its second argument after the end of the string already in the destination buffer.

Page 7

Computer Science 5271 Midterm exam - Page 8 of 8

4. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) Library function to execute a string with a shell

(b) System call to change user and group associated with a file

(c) Exempt from all discretionary access-control checks

(d) Virtual machine underneath a normal kernel

(e) Allow-list-style mechanism to stop control-flow hijacking

(f) x86-64 register pointing to the beginning of a stack frame

(g) CPU mode where all memory is accessible

(h) Specifying which inputs constitute an attack

(i) Subject to buffer overflow and format string bugs

(j) Stores CPU registers in a memory buffer

(k) Compilation mode where all code is position-independent

(l) Added to password hash to conceal equality

(m) Allows information to flow in only one direction

(n) A value which, if overwritten, indicates an attack

(o) x86-64 register pointing to the top of the stack

(p) Architecture vulnerability related to, e.g., branch prediction

(q) An isolated environment for untrusted code

(r) CPU mode where page tables cannot be changed

(s) Trusted Computer System Evaluation Criteria

(t) Point where false-positive and false-negative rates are equal

A. canary B. CFI C. chown D. data diode E. deny list F. EER G. hypervisor
H. kernel mode I. Orange Book J. PIE K. %rbp L. %rsp M. salt N. sandbox
O. setjmp P. Spectre Q. sprintf(3) R. superuser S. system(3) T. user mode

Page 8

