
CSci 5271
Introduction to Computer Security

Day 16: Cryptography part 1: intro, symmetric
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Some classic network attacks

Announcements intermission

Crypto basics

Stream ciphers

Block ciphers and modes of operation

Packet sniffing

Watch other people’s traffic as it goes by on network

Easiest on:
Old-style broadcast (thin, “hub”) Ethernet
Wireless

Or if you own the router

Forging packet sources

Source IP address not involved in routing, often not
checked

Change it to something else!

Might already be enough to fool a naive UDP
protocol

TCP spoofing

Forging source address only lets you talk, not listen

Old attack: wait until connection established, then
DoS one participant and send packets in their place
Frustrated by making TCP initial sequence numbers
unpredictable

But see Oakland’12, WOOT’12 for fancier attacks, keyword
“off-path”

ARP spoofing

Impersonate other hosts on local network level

Typical ARP implementations stateless, don’t mind
changes

Now you get victim’s traffic, can read, modify, resend

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on allow-list

How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on allow-list

How can you attack this mechanism with an honest
source IP address?

Remember, ownership of reverse-DNS is by IP
address

Outline

Some classic network attacks

Announcements intermission

Crypto basics

Stream ciphers

Block ciphers and modes of operation

Logistics updates

It is looking like we will grade the midterms in time
to turn back in Wednesday’s lecture

Exercise set 2 grading will be longer

Next project progress reports are due Wednesday
night

Outline

Some classic network attacks

Announcements intermission

Crypto basics

Stream ciphers

Block ciphers and modes of operation

-ography, -ology, -analysis

Cryptography (narrow sense): designing encryption

Cryptanalysis: breaking encryption

Cryptology: both of the above

Code (narrow sense): word-for-concept substitution

Cipher: the “codes” we actually care about

Caesar cipher

Advance three letters in alphabet:
A! D;B! E; : : :

Decrypt by going back three letters

Internet-era variant: rot-13

Easy to break if you know the principle

Keys and Kerckhoffs’s principle

The only secret part of the cipher is a key

Security does not depend on anything else being
secret

Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

Symmetric (today’s lecture): one key used by all
participants

AKA shared key, secret key

Public key: one key kept secret, another published
Techniques invented in 1970s
Makes key distribution easier
Depends on fancier math

Goal: secure channel

Leaks no content information
Not protected: size, timing

Messages delivered intact and in order
Or not at all

Even if an adversary can read, insert, and delete
traffic

One-time pad

Secret key is truly random data as long as message

Encrypt by XOR (more generally addition mod
alphabet size)

Provides perfect, “information-theoretic” secrecy

No way to get around key size requirement

Computational security

More realistic: assume adversary has a limit on
computing power
Secure if breaking encryption is computationally
infeasible

E.g., exponential-time brute-force search

Ties cryptography to complexity theory

Key sizes and security levels

Difficulty measured in powers of two, ignore small
constant factors

Power of attack measured by number of steps, aim
for better than brute force

232 definitely too easy, probably 264 too

Modern symmetric key size: at least 2128

Crypto primitives

Base complicated systems on a minimal number of
simple operations

Designed to be fast, secure in wide variety of uses

Study those primitives very intensely

Attacks on encryption

Known ciphertext
Weakest attack

Known plaintext (and corresponding ciphertext)

Chosen plaintext

Chosen ciphertext (and plaintext)
Strongest version: adaptive

Certificational attacks

Good primitive claims no attack more effective than
brute force
Any break is news, even if it’s not yet practical

Canary in the coal mine

E.g., 2126:1 attack against AES-128

Also watched: attacks against simplified variants

Fundamental ignorance

We don’t really know that any computational
cryptosystem is secure

Security proof would be tantamount to proving
P 6= NP

Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

Prove security under an unproved assumption

In symmetric crypto, prove a construction is secure
if the primitive is

Often the proof looks like: if the construction is insecure,
so is the primitive

Can also prove immunity against a particular kind of
attack

Random oracle paradigm

Assume ideal model of primitives: functions selected
uniformly from a large space

Anderson: elves in boxes

Not theoretically sound; assumption cannot be
satisfied

But seems to be safe in practice

Pseudorandomness and distinguishers

Claim: primitive cannot be distinguished from a truly
random counterpart

In polynomial time with non-negligible probability

We can build a distinguisher algorithm to exploit any
weakness

Slightly too strong for most practical primitives, but a
good goal

Open standards

How can we get good primitives?

Open-world best practice: run competition, invite
experts to propose then attack

Run by neutral experts, e.g. US NIST

Recent good examples: AES, SHA-3

A certain three-letter agency

National Security Agency (NSA): has primary
responsibility for “signals intelligence”
Dual-mission tension:

Break the encryption of everyone in the world
Help US encryption not be broken by foreign powers

Outline

Some classic network attacks

Announcements intermission

Crypto basics

Stream ciphers

Block ciphers and modes of operation

Stream ciphers

Closest computational version of one-time pad

Key (or seed) used to generate a long
pseudorandom bitstream

Closely related: cryptographic RNG

Shift register stream ciphers

Linear-feedback shift register (LFSR): easy way to
generate long pseudorandom sequence

But linearity allows for attack

Several ways to add non-linearity

Common in constrained hardware, poor security
record

RC4

Fast, simple, widely used software stream cipher
Previously a trade secret, also “ARCFOUR”

Many attacks, none yet fatal to careful users (e.g.
TLS)

Famous non-careful user: WEP

Now deprecated, not recommended for new uses

Encryption 6= integrity

Encryption protects secrecy, not message integrity

For constant-size encryption, changing the
ciphertext just creates a different plaintext

How will your system handle that?

Always need to take care of integrity separately

Stream cipher mutability

Strong example of encryption vs. integrity

In stream cipher, flipping a ciphertext bit flips the
corresponding plaintext bit, only

Very convenient for targeted changes

Salsa and ChaCha

Published by Daniel Bernstein 2007-2008

Stream cipher with random access to stream
Related to counter mode discussed later

Fast on general-purpose CPUs without specialized
hardware
Adopted as option for TLS and SSH

Prominent early adopter: Chrome on Android

Stream cipher assessment

Currently out of fashion as a primitive in software

Not inherently insecure
Other common pitfall: must not reuse key(stream)

Outline

Some classic network attacks

Announcements intermission

Crypto basics

Stream ciphers

Block ciphers and modes of operation

Basic idea

Encryption/decryption for a fixed sized block

Insecure if block size is too small
Barely enough: 64 bits; current standard: 128

Reversible, so must be one-to-one and onto function

Pseudorandom permutation

Ideal model: key selects a random invertible function

I.e., permutation (PRP) on block space
Note: not permutation on bits

“Strong” PRP: distinguisher can decrypt as well as
encrypt

Confusion and diffusion

Basic design principles articulated by Shannon

Confusion: combine elements so none can be
analyzed individually

Diffusion: spread the effect of one symbol around to
others

Iterate multiple rounds of transformation

Substitution/permutation network

Parallel structure combining reversible elements:

Substitution: invertible lookup table (“S-box”)

Permutation: shuffle bits

AES

Advanced Encryption Standard: NIST contest 2001
Developed under the name Rijndael

128-bit block, 128/192/256-bit key

Fast software implementation with lookup tables (or
dedicated insns)

Allowed by US government up to Top Secret

Feistel cipher

Split block in half, operate in turn:
(Li+1; Ri+1) = (Ri; Li � F(Ri; Ki))

Key advantage: F need not be invertible
Also saves space in hardware

Luby-Rackoff: if F is pseudo-random, 4 or more
rounds gives a strong PRP

DES

Data Encryption Standard: AES predecessor
1977-2005

64-bit block, 56-bit key

Implementable in 70s hardware, not terribly fast in
software

Triple DES variant still used in places

Some DES history

Developed primarily at IBM, based on an earlier
cipher named “Lucifer”
Final spec helped and “helped” by the NSA

Argued for smaller key size
S-boxes tweaked to avoid a then-secret attack

Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware

1993 est. $1m cost custom hardware

1997 distributed software break

1998 $250k built ASIC hardware

2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

Combine two different block ciphers?
Belt and suspenders

Anderson: don’t do it

FS&K: could do it, not a recommendation

Maurer and Massey (J.Crypt’93): might only be as
strong as first cipher

Modes of operation

How to build a cipher for arbitrary-length data from a
block cipher
Many approaches considered

For some reason, most have three-letter acronyms

More recently: properties susceptible to relative
proof

ECB

Electronic CodeBook

Split into blocks, apply cipher to each one individually

Leaks equalities between plaintext blocks

Almost never suitable for general use

Do not use ECB

CBC

Cipher Block Chaining

Ci = EK(Pi � Ci-1)

Probably most popular in current systems

Plaintext changes propagate forever, ciphertext
changes only one block

CBC: getting an IV

C0 is called the initialization vector (IV)
Must be known for decryption

IV should be random-looking
To prevent first-block equalities from leaking (lesser
version of ECB problem)

Common approaches
Generate at random
Encrypt a nonce

Stream modes: OFB, CTR

Output FeedBack: produce keystream by repeatedly
encrypting the IV

Danger: collisions lead to repeated keystream

Counter: produce from encryptions of an
incrementing value

Recently becoming more popular: allows parallelization
and random access

