
CSci 5271
Introduction to Computer Security

Day 17: More crypto primitives: integrity and public-key
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline
Block cipher modes of operation, cont’d

Hash functions and MACs

Announcements intermission

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Cryptographic protocols, pt. 1

CBC

Cipher Block Chaining

Ci = EK(Pi � Ci-1)

Probably most popular in current systems

Plaintext changes propagate forever, ciphertext
changes only one block

CBC: getting an IV

C0 is called the initialization vector (IV)
Must be known for decryption

IV should be random-looking
To prevent first-block equalities from leaking (lesser
version of ECB problem)

Common approaches
Generate at random
Encrypt a nonce

Stream modes: OFB, CTR

Output FeedBack: produce keystream by repeatedly
encrypting the IV

Danger: collisions lead to repeated keystream

Counter: produce from encryptions of an
incrementing value

Recently becoming more popular: allows parallelization
and random access

Outline
Block cipher modes of operation, cont’d

Hash functions and MACs

Announcements intermission

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Cryptographic protocols, pt. 1

Ideal model

Ideal crypto hash function: pseudorandom function
Arbitrary input, fixed-size output

Simplest kind of elf in box, theoretically very
convenient

But large gap with real systems: better practice is to
target particular properties

Kinds of attacks

Pre-image, “inversion”: given y, find x such that
H(x) = y

Second preimage, targeted collision: given x, H(x),
find x 0 6= x such that H(x 0) = H(x)

(Free) collision: find x1, x2 such that H(x1) = H(x2)



Birthday paradox and attack

There are almost certainly two people in this
classroom with the same birthday

n people have
�
n
2

�
= �(n2) pairs

So only about
p
n expected for collision

“Birthday attack” finds collisions in any function

Security levels

For function with k-bit output:

Preimage and second preimage should have
complexity 2k

Collision has complexity 2k=2

Conservative: use hash function twice as big as
block cipher key

Though if you’re paranoid, cipher blocks can repeat too

Non-cryptographic hash functions

The ones you probably use for hash tables

CRCs, checksums

Output too small, but also not resistant to attack

E.g., CRC is linear and algebraically nice

Short hash function history

On the way out: MD5 (128 bit)
Flaws known, collision-finding now routine

SHA(-0): first from NIST/NSA, quickly withdrawn
Likely flaw discovered 3 years later

SHA-1: fixed SHA-0, 160-bit output.

260 collision attack described in 2013
First public collision found (using 6.5 kCPU yr) in 2017

Length extension problem

MD5, SHA1, etc., computed left to right over blocks

Can sometimes compute H(a k b) in terms of
H(a)

k means bit string concatenation

Makes many PRF-style constructions insecure

SHA-2 and SHA-3

SHA-2: evolutionary, larger, improvement of SHA-1
Exists as SHA-f224; 256; 384; 512g
But still has length-extension problem

SHA-3: chosen recently in open competition like AES
Formerly known as Keccak, official standard Aug. 2015
New design, fixes length extension
Not yet very widely used

MAC: basic idea

Message authentication code: similar to hash
function, but with a key

Adversary without key cannot forge MACs

Strong definition: adversary cannot forge anything,
even given chosen-message MACs on other
messages

CBC-MAC construction

Same process as CBC encryption, but:
Start with IV of 0
Return only the last ciphertext block

Both these conditions needed for security

For fixed-length messages (only), as secure as the
block cipher



HMAC construction

H(K kM): insecure due to length extension
Still not recommended: H(M k K), H(K k M k K)

HMAC: H(K� a k H(K� b kM))

Standard a = 0x5c
�, b = 0x36

�

Probably the most widely used MAC

Outline
Block cipher modes of operation, cont’d

Hash functions and MACs

Announcements intermission

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Cryptographic protocols, pt. 1

Midterm solution set now available

Solution set for this semester’s midterm is now
linked from the schedule page of the public website

Technical questions can be public on Piazza

Regrade requests? Private Piazza post or email to
professor and TAs

Outline
Block cipher modes of operation, cont’d

Hash functions and MACs

Announcements intermission

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Cryptographic protocols, pt. 1

Session keys

Don’t use your long term password, etc., directly as
a key

Instead, session key used for just one channel

In modern practice, usually obtained with public-key
crypto

Separate keys for encryption and MACing

Order of operations

Encrypt and MAC (“in parallel”)
Safe only under extra assumptions on the MAC

Encrypt then MAC
Has cleanest formal safety proof

MAC then Encrypt
Preferred by FS&K for some practical reasons
Can also be secure

Authenticated encryption modes

Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
“Authenticated encryption” modes do both at once

Newer (circa 2000) innovation, many variants

NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

Also don’t want attacker to be able to replay or
reorder messages

Simple approach: prefix each message with counter

Discard duplicate/out-of-order messages



Padding

Adjust message size to match multiple of block size

To be reversible, must sometimes make message
longer

E.g.: for 16-byte block, append either 1, or 2 2, or
3 3 3, up to 16 “16” bytes

Padding oracle attack

Have to be careful that decoding of padding does
not leak information

E.g., spend same amount of time MACing and
checking padding whether or not padding is right

Remote timing attack against CBC TLS published
2013

Don’t actually reinvent the wheel

This is all implemented carefully in OpenSSL, SSH,
etc.

Good to understand it, but rarely sensible to
reimplement it

You’ll probably miss at least one of decades’ worth
of attacks

Outline
Block cipher modes of operation, cont’d

Hash functions and MACs

Announcements intermission

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Cryptographic protocols, pt. 1

Pre-history of public-key crypto

First invented in secret at GCHQ

Proposed by Ralph Merkle for UC Berkeley grad.
security class project

First attempt only barely practical
Professor didn’t like it

Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

Alice wants to send Bob a gift in a locked box
They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by Bob, or
vice-versa

Box and locks analogy

Alice wants to send Bob a gift in a locked box
They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by Bob, or
vice-versa

Math perspective: physical locks commute

Protocol with clip art



Protocol with clip art Protocol with clip art

Protocol with clip art Public key primitives

Public-key encryption (generalizes block cipher)
Separate encryption key EK (public) and decryption key
DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and verification key VK
(public)

Modular arithmetic

Fix modulus n, keep only remainders mod n
mod 12: clock face; mod 232: unsigned int

+, -, and � work mostly the same

Division: see Exercise Set 1

Exponentiation: efficient by square and multiply

Generators and discrete log

Modulo a prime p, non-zero values and � have a
nice (“group”) structure

g is a generator if g0; g; g2; g3; : : : cover all
elements

Easy to compute x 7! gx

Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

Goal: anonymous key exchange

Public parameters p, g; Alice and Bob have resp.
secrets a, b

Alice!Bob: A = ga (mod p)

Bob!Alice: B = gb (mod p)

Alice computes Ba = gba = k

Bob computes Ab = gab = k

Relationship to a hard problem

We’re not sure discrete log is hard (likely not even
NP-complete), but it’s been unsolved for a long time

If discrete log is easy (e.g., in P), DH is insecure

Converse might not be true: DH might have other
problems



Categorizing assumptions

Math assumptions unavoidable, but can categorize

E.g., build more complex scheme, shows it’s “as
secure” as DH because it has the same underlying
assumption

Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

Need key sizes �10 times larger then security level
Attacks shown up to about 768 bits

Elliptic curves: objects from higher math with
analogous group structure

(Only tenuously connected to ellipses)

Elliptic curve algorithms have smaller keys, about 2�
security level

Outline
Block cipher modes of operation, cont’d

Hash functions and MACs

Announcements intermission

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Cryptographic protocols, pt. 1

General description

Public-key encryption (generalizes block cipher)
Separate encryption key EK (public) and decryption key
DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and verification key VK
(public)

RSA setup

Choose n = pq, product of two large primes, as
modulus

n is public, but p and q are secret

Compute encryption and decryption exponents e
and d such that

Med =M (mod n)

RSA encryption

Public key is (n; e)

Encryption of M is C =Me (mod n)

Private key is (n; d)

Decryption of C is Cd =Med =M (mod n)

RSA signature

Signing key is (n; d)

Signature of M is S =Md (mod n)

Verification key is (n; e)

Check signature by Se =Mde =M (mod n)

Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

We’re not sure factoring is hard (likely not even
NP-complete), but it’s been unsolved for a long time

If factoring is easy (e.g., in P), RSA is insecure

Converse might not be true: RSA might have other
problems



Homomorphism

Multiply RSA ciphertexts ) multiply plaintexts

This homomorphism is useful for some interesting
applications
Even more powerful: fully homomorphic encryption
(e.g., both + and �)

First demonstrated in 2009; still very inefficient

Problems with vanilla RSA

Homomorphism leads to chosen-ciphertext attacks

If message and e are both small compared to n, can
compute M1=e over the integers

Many more complex attacks too

Hybrid encryption

Public-key operations are slow

In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time

- Breaks at either level are fatal

Padding, try #1

Need to expand message (e.g., AES key) size to
match modulus

PKCS#1 v. 1.5 scheme: prepend 00 01 FF FF .. FF

Surprising discovery (Bleichenbacher’98): allows
adaptive chosen ciphertext attacks on SSL

Variants recurred later (c.f. “ROBOT” 2018)

Modern “padding”

Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

Common examples: OAEP for encryption, PSS for
signing

Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

“Key encapsulation mechanism” (KEM)

For common case of public-key crypto used for
symmetric-key setup

Also applies to DH

Choose RSA message r at random mod n,
symmetric key is H(r)

- Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

One thing quantum computers would be good for is
breaking crypto
Square root speedup of general search

Countermeasure: double symmetric security level

Factoring and discrete log become poly-time
DH, RSA, DSA, elliptic curves totally broken
Totally new primitives needed (lattices, etc.)

Not a problem yet, but getting ready

Box and locks revisited

Alice and Bob’s box scheme fails if an intermediary
can set up two sets of boxes

Compare middleperson attack

Real world analogue: challenges of protocol design
and public key distribution



Outline
Block cipher modes of operation, cont’d

Hash functions and MACs

Announcements intermission

Building a secure channel

Public-key crypto basics

Public key encryption and signatures

Cryptographic protocols, pt. 1

A couple more security goals

Non-repudiation: principal cannot later deny having
made a commitment

I.e., consider proving fact to a third party

Forward secrecy: recovering later information does
not reveal past information

Motivates using Diffie-Hellman to generate fresh keys for
each session

Abstract protocols

Outline of what information is communicated in
messages

Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

Describes honest operation
But must be secure against adversarial participants

Seemingly simple, but many subtle problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K

Example: simple authentication

A! B : A; fA;NgKA
E.g., Alice is key fob, Bob is garage door

Alice proves she possesses the pre-shared key KA

Without revealing it directly

Using encryption for authenticity and binding, not
secrecy

Nonce

A! B : A; fA;NgKA
N is a nonce: a value chosen to make a message
unique

Best practice: pseudorandom

In constrained systems, might be a counter or
device-unique serial number

Replay attacks

A nonce is needed to prevent a verbatim replay of a
previous message
Garage door difficulty: remembering previous nonces

Particularly: lunchtime/roommate/valet scenario

Or, door chooses the nonce: challenge-response
authentication

Middleperson attacks

Older name: man-in-the-middle attack, MITM

Adversary impersonates Alice to Bob and
vice-versa, relays messages

Powerful position for both eavesdropping and
modification

No easy fix if Alice and Bob aren’t already related



Chess grandmaster problem

Variant or dual of middleperson

Adversary forwards messages to simulate
capabilities with his own identity

How to win at correspondence chess

Anderson’s MiG-in-the-middle

Anti-pattern: “oracle”

Any way a legitimate protocol service can give a
capability to an adversary

Can exist whenever a party decrypts, signs, etc.

“Padding oracle” was an instance of this at the
implementation level


