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We sketch the Expectation Maximization Algorithm. This is an unsupervised algorithm that

tries to learn a model to represent some given data. The input consists of some set of data samples
x1, . . . ,xn in d-dimensional space. We also start with a supposition that the data comes from
k classes and that the distribution of data within each class follows a probability distribution
of known form. What is not known are the specific parameters for those within-class probability
distributions, the class priors, or anything that indicates membership of each sample in a particular
class. Since the classes are unknown, they should really be called clusters.

In this writeup, we discuss the specific example where we have k = 2 classes A and B with
unknown priors, and we assume the distribution of data within each class is gaussian with spherical
covariances∗ but with unknown means and variances. So the unknown parameters we must learn
are, for each class C = A,B: the class prior PC, the within-class mean µ

C
, and the variance σ2

C
.

In effect, we believe the data comes from two different classes or sources, and we would like
to identify the properties of the individual classes (µ

C
, σ2

C
), and the “prevalence” PC for each class

C = A,B. For each sample datum xi, we would like to compute the relative “affiliation” of this
datum to one class or the other. This takes the form of a “posterior” probability Pr(A|xi), Pr(B|xi).

The K-means algorithm can be considered a special case where the ‘affiliations’ of a datum is
‘hard’: either 1 or 0, the variance is fixed at 1 and the priors are equal. Only the class means float
to maximize the ‘probabilities’.

The difference with previous Bayes estimate of an unknown probability distribution/density is
that we start with a fixed sample set which is re-used over and over. We also have a “multilayered”
probability distribution in which we pretend that each data sample has been drawn by first selecting
the class C = A or B with probability PC and then selecting a point according to the within-class
probability density P (x|C).

The expectation maximization Algorithm is a general paradigm which cycles between two steps:
the E step and the M step. In the E step, we compute for each sample datum the probability of
being generated by the current probability distributions PC,µC

, σ2
C
, and infer posterior probabilities

for the datum’s class membership Pr(C|xi). In the M step, we adjust the probability parameters
to maximize the total probability of sample set given the class membership probabilities.

Problem Setup

1. x1, · · · ,xn set of d-dimensional sample training data drawn independently and identically by
first choosing a class A and B at random, then drawing a point according to that class’s
probability density. The probability distribution for points in class A is p(x|A) and the prior
for A is PA. The numerical parameters defining these distributions are denoted collectively
by Θ. If the distributions are gaussian (with circular covariances), then the parameters are
Θ = {µA, σA, PA,µB, σB, [PB]}, where PA + PB = 1.

The goal is to find the values of the parameters Θ that best explain the data. As a by-product,
we would also like to learn the likely affiliation of each sample: which samples likely come from
class A as opposed to B.

Preliminaries – Compute Probability of Observing Training Set Given Θ.

2. The total probability that all the points x1, · · · ,xn could have been generated from these two Total

Probability
∗by spherical gaussian, we mean that the covariance matrix is a multiple of the identity: Σ = σ

2
I.
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classes A B is

Pr(X|Θ)
def

= Pr(x1, · · · ,xn|Θ) = Pr(x1|Θ) · Pr(x2|Θ) · . . . · Pr(xn|Θ) (1)

because we assume the points were drawn independently. We expand each factor:

Pr(xi|Θ) = [Pr(xi & A) + Pr(xi & B)] = [Pr(xi|A) · PA + Pr(xi|B) · PB]

=

[

PA
1

σd
A(2π)

(d/2)
exp

(

‖xi − µA‖
2

−2σ2
A

)

+ PB
1

σd
B(2π)

(d/2)
exp

(

‖xi − µB‖
2

−2σ2
B

)]

(2)

where we omit the “|Θ” on the right since everything here depends on the given values Θ. Here
we have used the assumption that the conditional probability within each class is a gaussian:

Pr(xi|A) =
1

σd
A(2π)

(d/2)
exp

(

‖xi − µA‖
2

−2σ2
A

)

, (3)

(and similarly for B).

3. In the following, we will need the derivatives of the total probability (1) with respect to each Derivative

parameter θj in Θ. We include here the formulas with short derivations.

∂Pr(X|Θ)

∂θj
=

∂

∂θj
(Pr(x1|Θ) · Pr(x2|Θ) · . . . · Pr(xn|Θ))

= Pr(X|Θ) ·

(

∂/∂θjPr(x1|Θ)

Pr(x1|Θ)
+

∂/∂θjPr(x2|Θ)

Pr(x2|Θ)
+ . . .+

∂/∂θjPr(xn|Θ)

Pr(xn|Θ)

) (4)

where the parameter θj is one of µA, σA, PA,µB, σB. Here we show the derivatives of each
factor wrt each parameter, where we omit the (|Θ) throughout to save clutter. The derivative
(gradient) of the i-th factor wrt the mean is itself a vector of derivatives:

∂/∂µA
Pr(xi) = ∂/∂µA

[Pr(xi|A) · PA + Pr(xi|B) · PB] = PA
∂/∂µA

Pr(xi|A)

= PAPr(xi|A)(xi − µA)
1
σ2

A

,
(5)

where the last equality comes from the gaussian distribution assumption.

∂/∂σa
Pr(xi) = ∂/∂σA

[Pr(xi|A) · PA + Pr(xi|B) · PB] = PA
∂/∂σA

Pr(xi|A)

= PAPr(xi|A)

[

‖xi − µA‖
2

σ3
A

−
d

σA

]

=
PAPr(xi|A)

σ3
A

[

‖xi − µA‖
2 − dσ2

A

]

(6)

The derivative wrt the prior is

∂/∂PA

∑

i Pr(xi) = ∂/∂pA [Pr(xi|A) · PA + Pr(xi|B) · PB]

= Pr(xi|A)− Pr(xi|B),
(7)

where we have used PB = 1− PA.
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4. When we plug the individual derivatives (5) (6) into the derivative of the total probability (4),
we have factors PAPr(xi|A) in the numerator in each term of (4) and Pr(xi) in the denominator. total

derivativeThese combine to form the posterior probability

Pr(A|xi) =
PAPr(xi|A)

Pr(xi)
, and

Pr(A|xi)

PA
=

Pr(xi|A)

Pr(xi)
, (8)

so that the derivatives of the total probability become

∂/∂µA
Pr(X) = Pr(X) ·

∑

i

Pr(A|xi)(xi − µA) / σ
2
A, (9)

∂/∂σA
Pr(X) = Pr(X) ·

∑

i

Pr(A|xi)
[

‖xi − µA‖
2 − dσ2

A

]

/ σ3
A. (10)

We have similar formulas for the derivative wrt µB, σB. Regarding the prior, we have

∂/∂PA
Pr(X) = Pr(X) ·

∑

i

Pr(xi|A)− Pr(xi|B)

Pr(xi)

= Pr(X) ·
∑

i

Pr(A|xi)

PA
−

Pr(B|xi)

1− PA

= Pr(X) ·
∑

i

Pr(A|xi)− PA

PA(1− PA)

(11)

E Step – Affiliations – Posterior Probabilities.

5. Given numerical values for the parameters Θ = {µA, σA, PA,µB, σB, [PB]}, compute the poste- E

Steprior probabilities (8):

P (A|xi) =
PA

Pr(xi)
Pr(xi|A) =

PA

Pr(xi)
·

1

σd
A(2π)

(d/2)
exp

(

‖xi − µA‖
2

−2σ2
A

)

P (B|xi) =
PB

Pr(xi)
Pr(xi|B) =

PB

Pr(xi)
·

1

σd
B(2π)

(d/2)
exp

(

‖xi − µB‖
2

−2σ2
B

)
(12)

Again, the “|Θ” is omitted but should be in every item above. The quantity P (A|xi) can be
interpreted as a soft membership function, giving a measure of affinity of the point xi to the
class A. The requirement that P (A|xi) + P (B|xi) = 1 determines the scaling (denominator:
Pr(xi)).

M Step – Find Maximum Likelihood Estimates of Parameters Θ.

6. Given the membership affinities in the form of the posterior probabilities, find the values of the M

Stepparameters Θ = {µA, σA, PA,µB, σB} that would maximize the total probability Pr(X). We
can find these by setting the derivatives (9), (10), (11) to zero. The results are

∑

i

xiPr(A|xi) = µA

∑

i

Pr(A|xi) (13)

∑

i

‖xi − µA‖
2Pr(A|xi) = dσ2

A

∑

i

Pr(A|xi) (14)
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∑

i

Pr(A|xi) = nPA (15)

We have analogous formulas for class B.

7. So we now have an iterative procedure. Each iteration starts with values for the parameters Procedure

Θ = {µA, σA, PA,µB, σB, PB}, as well as the induced class probability distributions Pr(x|A),
Pr(x|B).

K0. In the special case of K-means, the priors are fixed to PA = PB = 1/2, the variances are fixed
to σA = σB = 1. The within-class probability distributions become inversely proportional
to just a measure of distance to the respective means: Pr(x|A) = exp(−‖x − µA‖

2/2),
Pr(x|B) = exp(−‖x − µB‖

2/2). Hence computing the hardened posteriors is the same as
simply assigning each datum to the nearest mean. Adjusting the means to maximize the
probability is the same as computing the center separately for each class, since each datum
is affiliated with exactly one class.

E. Compute the expectation: the new values of the joint probabilities using (2), and then the
posteriors (“affiliations”) Pr(A|xi), Pr(B|xi) using

P (A|xi) =
Pr(xi|A) · PA

Pr(xi)
, P (B|xi) =

Pr(xi|B) · PB

Pr(xi)
. (16)

K1. In the case of K-means, these affiliations are “hardened” to 1 or 0 depending on which is
bigger, turning them into membership flags, or “indicator functions.” In effect, each point
xi is assigned to the cluster represented by its closest center.

M. Given the new values for the posteriors, compute new values for the parameters Θ =
{µA, σA, PA,µB, σB, PB} to maximize the probability of the observed data. Define the
quantities representing the total number of points in each cluster weighted by their degree
of membership:

nA =
∑

i

Pr(A|xi) nB =
∑

i

Pr(B|xi) (17)

Note that
nA + nB =

∑

i

(Pr(A|xi) + Pr(B|xi)) =
∑

i

(1) = n, (18)

since xi must come from cluster A or B. Then the update formulas derived from (13), (14),
(15), respectively, are as follows:

µA =
1

nA

∑

i

Pr(A|xi)xi, µB =
1

nB

∑

i

Pr(B|xi)xi, (19)

σ2
A =

1

nAd

∑

i

Pr(A|xi) · ‖xi − µA‖
2, σ2

B =
1

nBd

∑

i

Pr(B|xi) · ‖xi − µB‖
2, (20)

PA = nA / n PB = nB / n (21)

Note: (19) (20) are just the Maximum Likelihood Estimates for the parameters of a gaus-
sian, where each datum is weighted by its class affiliation. If the within-class distributions
were something other than gaussian, we would obtain the analogous weighted MLE pa-
rameter estimates. The estimated priors (21) are the same regardless of the within-class
distributions.
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K2. In the case of K-means, only the means are updated by (19). Because of the hardening of
cluster affiliations in step K1, this yields just the ordinary cluster centers.

Addendum - Update Priors with Multiple Clusters Update of

Priors

• If there are more than two distributions, the handling of the derivatives wrt the priors becomes
more complicated, but the end result is the same update (21). The construction goes as follows.
Let p = (PA, PB)

T be the vector of priors. The gradient of Pr(xi) wrt the vector p is

∇p

∑

i Pr(xi) = ∇p[Pr(xi|A) · PA + Pr(xi|B) · PB]

=

[

Pr(xi|A)
Pr(xi|B)

]

.
(22)

The gradient of the total probability is then also a vector:

∇pPr(X) = Pr(X) ·
∑

i

1

Pr(xi)

[

Pr(xi|A)
Pr(xi|B)

]

= Pr(X) ·
∑

i











Pr(A|xi)

PA

Pr(B|xi)

PB











= Pr(X) ·





nA /PA

nB /PB



 .

(23)

Unfortunately we cannot simply set this to zero, but must incorporate the constraint g(p) =
PA+PB = 1 by using a Lagrange multiplier λ. The Kuhn-Tucker first order conditions are that
the gradient of the objective must line up with the gradient of the constraint:

∇pPr(X) = Pr(X)

[

nA /PA

nB /PB

]

= λ∇pg(p) = λ

[

1
1

]

We combine this with the constraint itself to yield the system of equations in the unknowns
PA, PB, λ̃:

nA /PA = λ̃

nB /PB = λ̃
PA + PB = 1,

where λ̃ = λ /Pr(X). The solution of this system is

PA = nA / λ̃

PB = nB / λ̃

λ̃ = nA + nB = n,

yielding the update (21). This construction can easily be extended to any number of clusters.
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