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Much of this material can be found in books like Information Theory, Inference, and Learning

Algorithms by David J.C. MacKay, Cambridge Univ Press 2003, available at
http://www.inference.phy.cam.ac.uk/mackay/itila/ .
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Information

• Imagine 2 kinds of vehicles, cars and trucks,
and 2 countries of origin: foreign and domestic.

• basic probabalitities pc = pr(car), pc̄ = pr(truck), pf = pr(foreign), pf̄ = pr(domestic).

• joint probabilities, pfc = pr(foreign&car), etc.
such that (for example) pfc + pf̄ c = pc, etc.,

• conditional probabilities, q = pf |c = pr(foreign|car), r = pf |c̄ = pr(foreign|truck), etc.
• We have the relations pc + pc̄ = 1, pf + pf̄ = 1, pf |c + pf̄ |c = 1, pfc = pf |cpc = qpc, etc.
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Information

• I(p)
def
= the information obtained upon learning an event with probability p.

• Assumptions:

1. I(p) > 0 for all p: 0 < p < 1.

2. If p = 1, the event is absolutely certain, so I(1) = 0.

3. I(p) is a smooth function of only the numerical probability p.

4. If two events occur in sequence, then the amount of information is additive. If the first
event has probability p, and the second event has probability q assuming the first event
has occured, then the total information is the sum of the information learned from the
first event, plus the additional information learned from the second event once the first
event is known.

19108127 p3 of 18



Information – Car example

• Upon learning that a vehicle is a car,
we obtain I(pc) amount of information.

• Subsequently we learn that the car is foreign,
obtaining an additional I(q) amount of the information.

• Can learn same information in one step by
learning ”foreign car”, namely I(pfc) = I(pcpf |c) = I(pcq).

• Relation holds regardless of numerical values. So I(pq) = I(p) + I(q)∀p, q.
• Conclude: I(p) must be a logarithmic fcn

but base can be arbitrary.
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Entropy

• After seeing many vehicles, what’s the average information per vehicle?

• total information = npcI(pc) + npc̄I(pc̄).

• average information ≡ Hc
def
= entropy

= pcI(pc) + ptI(pc̄)
= −pc log pc − pc̄ log pc̄
= −pc log pc − (1− pc) log(1− pc)

• Therefore: entropy is an expectation: average value of information.
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Mutual Information

• We actually have three probability distributions in the current situation:

(A) the probability distribution of cars versus trucks ignoring the country of origin,

(B) the probability distribution of country of origin ignoring the type of vehicle,

(C) the probability distribution of 4 subcategories: foreign cars, domestic cars,
foreign trucks, domestic trucks.

• This leads to three different entropies:

cars vs trucks Hc = −pc log pc − pc̄ log pc̄
foreign vs domestic Hf = −pf log pf − pf̄ log pf̄
4 subcategories Hfc = −pfc log pfc − pf̄ c log pf̄ c − pf c̄ log pf c̄ − pf̄ c̄ log pf̄ c̄,

where Hfc is called the joint entropy.
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Mutual Information

• We learn Hc amount of information on average by distinguishing cars from trucks.

• Slowly learn to distinguish foreign from domestic, learning on the
average Hfc −Hc additional information.

• Additional information could be little if almost all the cars were
foreign and almost all the trucks were domestic.
We could almost just guess the country of origin just knowing the type of vehicle.

• Conditional Entropy = Hf |c

Hf |c
def
= conditional entropy

def
= Hfc −Hc

= [−pfc log pfc − pf̄ c log pf̄ c − pf c̄ log pf c̄ − pf̄ c̄ log pf̄ c̄]− [−pc log pc − pc̄ log pc̄]

= [−pfc log
pfc
pc

− pf̄ c log
pf̄ c
pc

− pf c̄ log
pf c̄
pc̄

− pf̄ c̄ log
pf̄ c̄
pc̄

]

= pc[−pf |c log pf |c − pf̄ |c log pf̄ |c] + pc̄[−pf |c̄ log pf |c̄ − pf̄ |c̄ log pf̄ |c̄]

= pcHf/c + pc̄Hf/c̄,

where Hf/c, Hf/c̄ denote the local entropies of “foreign-ness” local to cars and to trucks.
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Mutual Information

• How related are the two attributes?

• If car/truck were independent of foreign/domestic,
Then would expect Hf |c = Hf .

• If car/truck determined foreign/domestic almost completely,
Then would expect Hf |c to be very small, esp. compared to Hf .

• Difference measures how related they are:

Mfc
def
= Hf −Hf |c

= [−pf log pf − pf̄ log pf̄ ]− [−pfc log
pfc
pc

− pf̄ c log
pf̄ c
pc

− pf c̄ log
pf c̄
pc̄

− pf̄ c̄ log
pf̄ c̄
pc̄

]

= pfc log
pfc
pcpf

+ pf̄ c log
pf̄ c
pcpf̄

+ pf c̄ log
pf c̄
pc̄pf

+ pf̄ c̄ log
pf̄ c̄
pc̄pf̄

= Hf +Hc −Hfc = mutual information.
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Mutual Information – Properties

• Mfc is symmetric in the two probabilities of f , c.

• When f and c are independent, Mfc = 0.

• When f is completely determined by c (or viceversa),
then Hc|f = Hf |c = 0 and so Mfc = Hf = Hc.

• binary categories =⇒

entropy on cars . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ≤ Hc ≤ log 2
entropy on foreignness . . . . . . . . . . . . . . . . . . . . 0 ≤ Hf ≤ log 2
joint entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ≤ Hfc ≤ Hc +Hf

entropy on foreignness conditioned on cars 0 ≤ Hf |c ≤ Hf

entropy on cars conditioned on foreignness 0 ≤ Hc|f ≤ Hc

mutual information. . . . . . . . . . . . . . . . . . . . . . . 0 ≤ Mfc ≤ min{Hc, Hf}.
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Relative Entropy

• Imagine yesterday spent accumulating probabilities and computing entropies.

• Today we observe a vehicle, identify it as a car:
we should be getting I(pc) = − log pc amount of pseudo-information.

• But today is Sunday: there are fewer trucks.
So actual probability of “car” is qc.

• So average amount of pseudo-information per vehicle is
Eq(− log pc) = −qc log pc − qc̄ log pc̄.

• Average amount of actual information using true underlying probabilities:
Eq(− log qc) = −qc log qc − qc̄ log qc̄.

• The difference is the relative entropy or Kullback-Leibler “distance”:
Eq(− log p)−H(q)

def
= KL(q||p)

= qc log qc + qc̄ log qc̄ − qc log pc − qc̄ log pc̄

= qc log
qc
pc

+ qc̄ log
qc̄
pc̄
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Relative Entropy – Further Properties

• Let f(pc) = KL(q||p) using pc̄ ≡ 1− pc.

• Take derivative with respect to pc:

f ′(pc) =
d

dpc
f(pc) =

d

dpc
KL(q||p) = pc − qc

pc(1− pc)
.

• It is easily seen that
f ′(pc) > 0 if pc > qc
f ′(pc) = 0 if pc = qc
f ′(pc) < 0 if pc < qc

so the global minimum on [0, 1] is achieved at pc = qc.

• Likewise, d
dq
KL(q||p) = log q(1−p)

p(1−q)
: equals 0 when p = q.

• Furthermore, if pc = qc then KL(q||p) = f(pc) = 0,

• But KL(q||p) is not symmetric in its arguments:
If pc = 0 or 1 and 0 < qc < 1, then KL(q||p) = ∞,
If 0 < pc < 1 and qc = 0 or 1, then KL(q||p) = − log pc̄ or − log pc.
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Twenty Questions – Compression

Relation between information and compression: minimum description length.

• Have N possible items xk each with probability pk of occurence.
To identify an item, we ask a series of yes/no questions.

• Applications: compression, decision trees.

• The result is a binary tree T of outcomes.
The root corresponds to the first question.
The left child ⇐⇒ NO, the right child ⇐⇒ YES.
The tree has N leaves corresponding to each xk.

• Cost for each item is the number of questions needed to identify it.
Expected cost is

E(cost(T)) =
N
∑

k=1

pkcost(xk).

• Each item can be identified by the sequence of 1’s & 0’s: 1 = YES, 0 = NO.

• Want to prove a lower bound on the expected cost.
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A Functional

• Define q(xk) =
(

1
2

)cost(xk)

Define q(T) =
∑

xk∈T q(xk).

Want to prove q(T) = 1 for all binary trees, by induction.

◦ A single node has a q–value of
(

1
2

)0
= 1.

◦ If a tree T has subtrees L,R, Then costT(xk) = 1 + costL orR(xk).

So qT(xk) =
1
2
· qL orR(xk) =⇒ q(T) = 1

2
(q(L) + q(R)).

• So q(xk) > 0 and
∑

k q(xk) = 1.

• q looks like a probability distribution over items.
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Expected Cost

• Recall q(xk) > 0 and
∑

k q(xk) = 1.
That is: the qk’s behave like probabilities.

• The expected cost for all leaves in T is (for given probabilities pk)

E(cost(T)) =
N
∑

k=1

pkcost(xk) = −
N
∑

k=1

pk log2(qk)

• Extending previous argument on KL distance yields result that
this expected cost is minimized when pk = qk

• Costs − log2 qk must be integers, but when N is large,
individual pk’s are small and hence can find integers close to − log2 pk.

• Many algorithms exist to construct such a tree, e.g.:
◦ Huffman encoding (built bottom up starting with most rare items).
◦ Decision Trees (built top down).
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Typical set

Digression: prove properties over collections of items with a probability distribution.

• Each sample is a large collection of individual items.

• Want to prove some aggregate property holds with high probability:
◦ example: sum or average of individual items in a sample.
◦ example: expected cost to draw one sample collection.

• Typical set: show most samples would have aggregate property in a certain range.

• Show exceptional cases so rare they contribute little to the aggregate property.
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Typical set
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Typical Set Example

• Bit strings of length n = 50, with Pr(bit=1)=0.2 have 250 possibilities.

• Only .0013 = 0.13% of those bit strings have a sum between 6 and 14,
corresponding to an average bit value between 0.12 and 0.28.

• But the probability that the sum is in [6, 14] is about 0.9 = 90%.

• For bigger n, both bell curves become narrower (as 1/
√
n),

hence fraction of strings with average in [.12, .28] shrinks −→ 0,
while the probability mass of such strings grows −→ 1.

• As the probability Pr(bit=1) −→ 0.5, the size of the typical set grows toward
a fraction that shrinks much more slowly as n −→ ∞.
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Use of Typical Set

• Many bounds on expectations in information theory are proved by deriving
a bound for a typical set, and showing that all the other cases are so
so rare that they can be disregarded [their probability −→ 0].

• Example: Strings of n bits {Sn}, Pr(bit=1)= p < 1
2
.

• Ask: how many bits does it take to encode these strings, on the average?

• #{Sn : Aver(Sn) = p} =
(

n
np

)

= η
2nH(p)

√
npp̄

where .3392 ≤ η ≤ .4326 (from Stirling’s approximation to n!).

• So need at least O(nH(p)) bits to encode just these strings with exactly p one bits.

• #{Sn : Aver(Sn) ∈ [p− δ, p+ δ]} ≈ η · 2nδ · 2
nH(p)

√
npp̄

.

So O(nH(p)) bits sufficient to encode a random string with probability −→ 1.

Any other strings are so rare that even copying them in their entirety
won’t add much to the average number of bits needed overall.
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