
A Geometric Interpretation of ��SVMClassi�ersDavid J. CrispCentre for Sensor Signal andInformation Processing,Deptartment of Electrical Engineering,University of Adelaide, South Australiadcrisp@eleceng.adelaide.edu.au Christopher J.C. BurgesAdvanced Technologies,Bell Laboratories,Lucent TechnologiesHolmdel, New Jerseyburges@lucent.comAbstractWe show that the recently proposed variant of the Support Vectormachine (SVM) algorithm, known as �-SVM, can be interpretedas a maximal separation between subsets of the convex hulls of thedata, which we call soft convex hulls. The soft convex hulls arecontrolled by choice of the parameter �. If the intersection of theconvex hulls is empty, the hyperplane is positioned halfway betweenthem such that the distance between convex hulls, measured alongthe normal, is maximized; and if it is not, the hyperplane's normalis similarly determined by the soft convex hulls, but its position(perpendicular distance from the origin) is adjusted to minimizethe error sum. The proposed geometric interpretation of �-SVMalso leads to necessary and su�cient conditions for the existence ofa choice of � for which the �-SVM solution is nontrivial.1 IntroductionRecently, Sch�olkopf et al. [1] introduced a new class of SVM algorithms, called�-SVM, for both regression estimation and pattern recognition. The basic idea is toremove the user-chosen error penalty factor C that appears in SVM algorithms byintroducing a new variable � which, in the pattern recognition case, adds anotherdegree of freedom to the margin. For a given normal to the separating hyperplane,the size of the margin increases linearly with �. It turns out that by adding � tothe primal objective function with coe�cient ��; � � 0, the variable C can beabsorbed, and the behaviour of the resulting SVM - the number of margin errorsand number of support vectors - can to some extent be controlled by setting �.Moreover, the decision function produced by �-SVM can also be produced by theoriginal SVM algorithm with a suitable choice of C.In this paper we show that �-SVM, for the pattern recognition case, has a cleargeometric interpretation, which also leads to necessary and su�cient conditions forthe existence of a nontrivial solution to the �-SVM problem. All our considerationsapply to feature space, after the mapping of the data induced by some kernel. Weadopt the usual notation: w is the normal to the separating hyperplane, the mapped
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data is denoted by xi 2 <N ; i = 1; � � � ; l, with corresponding labels yi 2 f�1g, b, �are scalars, and �i; i = 1; � � � ; l are positive scalar slack variables.2 �-SVM Classi�ersThe �-SVM formulation, as given in [1], is as follows: minimizeF 0 = 12kw0k2 � ��0 + 1l Xi �0i (1)with respect to w0; b0; �0; �0i, subject to:yi(w0 � xi + b0) � �0 � �0i; �0i � 0; �0 � 0: (2)Here � is a user-chosen parameter between 0 and 1. The decision function (whosesign determines the label given to a test point x) is then:f 0(x) = w0 � x+ b0: (3)The Wolfe dual of this problem is: maximize F 0D = � 12Pij �i�jyiyjxi � xj subjectto 0 � �i � 1l ; Xi �iyi = 0; Xi �i � � (4)with w0 given by w0 = Pi �iyixi. Sch�olkopf et al. [1] show that � is an upperbound on the fraction of margin errors1, a lower bound on the fraction of supportvectors, and that both of these quantities approach � asymptotically.Note that the point w0 = b0 = � = �0i = 0 is feasible, and that at this point, F 0 = 0.Thus any solution of interest must have F 0 � 0. Furthermore, if ��0 = 0, theoptimal solution is at w0 = b0 = � = �0i = 02. Thus we can assume that ��0 > 0 (andtherefore � > 0) always. Given this, the constraint �0 � 0 is in fact redundant: anegative value of �0 cannot appear in a solution (to the problem with this constraintremoved) since the above (feasible) solution (with �0 = 0) gives a lower value forF 0. Thus below we replace the constraints (2) byyi(w0 � xi + b0) � �0 � �0i; �0i � 0: (5)2.1 A Reparameterization of ��SVMWe reparameterize the primal problem by dividing the objective function F 0 by�2=2, the constraints (5) by �, and by making the following substitutions:� = 2�l ; w = w0� ; b = b0� ; � = �0� ; �i = �0i� : (6)1A margin error xi is de�ned to be any point for which �i > 0 (see [1]).2In fact we can prove that, even if the optimal solution is not unique, the globalsolutions still all have w = 0: see Burges and Crisp, \Uniqueness of the SVM Solution" inthis volume.



This gives the equivalent formulation: minimizeF = kwk2 � 2�+ �Xi �i (7)with respect to w; b; �; �i, subject to:yi(w � xi + b) � �� �i; �i � 0: (8)If we use as decision function f(x) � f 0(x)=�, the formulation is exactly equivalent,although both primal and dual appear di�erent. The dual problem is now: minimizeFD = 14Xi;j �i�jyiyjxi � xj (9)with respect to the �i, subject to:Xi �iyi = 0; Xi �i = 2; 0 � �i � � (10)with w given by w = 12Pi �iyixi. In the following, we will refer to the reparam-eterized version of �-SVM given above as �-SVM, although we emphasize that itdescribes the same problem.3 A Geometric Interpretation of ��SVMIn the separable case, it is clear that the optimal separating hyperplane is just thathyperplane which bisects the shortest vector joining the convex hulls of the positiveand negative polarity points3. We now show that this geometric interpretation canbe extended to the case of ��SVM for both separable and nonseparable cases.3.1 The Separable CaseWe start by giving the analysis for the separable case. The convex hulls of the twoclasses are H+ = � Xi:yi=+1�ixi���� Xi:yi=+1�i = 1; �i � 0� (11)and H� = � Xi:yi=�1�ixi���� Xi:yi=�1�i = 1; �i � 0�: (12)Finding the two closest points can be written as the following optimization problem:min�  Xi:yi=+1�ixi � Xi:yi=�1�ixi2 (13)3See, for example, K. Bennett, 1997, in http://www.rpi.edu/~bennek/svmtalk.ps (also,to appear).



subject to: Xi:yi=+1�i = 1; Xi:yi=�1�i = 1; �i � 0 (14)Taking the decision boundary ~f(x) = w � x+~b = 0 to be the perpendicular bisectorof the line segment joining the two closest points means that at the solution,w = 12( Xi:yi=+1�ixi � Xi:yi=�1�ixi) (15)and ~b = �w � p, where p = 12( Xi:yi=+1�ixi + Xi:yi=�1�ixi): (16)Thus w lies along the line segment (and is half its size) and p is the midpoint of theline segment. By rescaling the objective function and using the class labels yi = �1we can rewrite this as4:min� kwk2 = 14Xij �i�jyiyjxi � xj (17)subject to Xi �iyi = 0; Xi �i = 2; �i � 0: (18)The associated decision function is ~f(x) = w � x+~b where w = 12Pi �iyixi,p = 12Pi �ixi and ~b = �w:p = � 14Pij �iyi�jxi � xj .3.2 The Connection with ��SVMConsider now the two sets of points de�ned by:H+� = � Xi:yi=+1�ixi���� Xi:yi=+1�i = 1; 0 � �i � �� (19)and H�� = � Xi:yi=�1�ixi���� Xi:yi=�1�i = 1; 0 � �i � ��: (20)We have the following simple proposition:Proposition 1: H+� � H+ and H�� � H�, and H+� and H�� are both convexsets. Furthermore, the positions of the points H+� and H�� with respect to the xido not depend on the choice of origin.Proof: Clearly, since the �i de�ned in H+� is a subset of the �i de�ned in H+,H+� � H+, similarly for H�. Now consider two points in H+� de�ned by �1; �2.Then all points on the line joining these two points can be written asPi:yi=+1((1��)�1i + ��2i)xi; 0 � � � 1. Since �1i and �2i both satisfy 0 � �i � �, so does(1��)�1i+��2i, and since alsoPi:yi=+1(1��)�1i+��2i = 1, the setH+� is convex.4That one can rescale the objective function without changing the constraints followsfrom uniqueness of the solution. See also Burges and Crisp, \Uniqueness of the SVMSolution" in this volume.



The argument for H�� is similar. Finally, suppose that every xi is translated byx0, i.e. xi ! xi + x0 8i. Then since Pi:yi=+1 �i = 1, every point in H+� is alsotranslated by the same amount, similarly for H��. 2The problem of �nding the optimal separating hyperplane between the convex setsH+� and H�� then becomes:min� kwk2 = 14Xij �i�jyiyjxi � xj (21)subject to Xi �iyi = 0; Xi �i = 2; 0 � �i � �: (22)Since Eqs. (21) and (22) are identical to (9) and (10), we see that the ��SVMalgorithm is in fact �nding the optimal separating hyperplane between the convexsets H+� and H��. We note that the convex sets H+� and H�� are not simplyuniformly scaled versions of H+ and H�. An example is shown in Figure 1.
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1/4Figure 1: The soft convex hull for the vertices of a right isosceles triangle, forvarious �. Note how the shape changes as the set grows and is constrained by theboundaries of the encapsulating convex hull. For � < 13 , the set is empty.Below, we will refer to the formulation given in this section as the soft convex hullformulation, and the sets of points de�ned in Eqs. (19) and (20) as soft convexhulls.3.3 Comparing the O�sets and Margin WidthsThe natural value of the o�set ~b in the soft convex hull approach, ~b = �w � p, aroseby asking that the separating hyperplane lie halfway between the closest extremitiesof the two soft convex hulls. Di�erent choices of b just amount to hyperplanes withthe same normal but at di�erent perpendicular distances from the origin. Thisvalue of b will not in general be the same as that for which the cost term in Eq. (7)is minimized. We can compare the two values as follows. The KKT conditions forthe �-SVM formulation are (�� �i)�i = 0 (23)�i(yi(w � xi + b)� �+ �i) = 0 (24)Multiplying (24) by yi, summing over i and using (23) gives



b = ~b� �2Xi yi�i: (25)Thus the separating hyperplane found in the �-SVM algorithm sits a perpendiculardistance j �2kwkPi yi�ij away from that found in the soft convex hull formulation.For the given w, this choice of b results in the lowest value of the cost, �Pi �i.The soft convex hull approach suggests taking ~� = w � w, since this is the valuej ~f j takes at the pointsPyi=+1 �ixi and Pyi=�1 �ixi. Again, we can use the KKTconditions to compare this with �. Summing (24) over i and using (23) gives� = ~�+ �2Xi �i: (26)Since ~� = w �w, this again shows that if � = 0 then w = �i = 0, and, by (25), b = 0.3.4 The Primal for the Soft Convex Hull FormulationBy substituting (25) and (26) into the �-SVM primal formulation (7) and (8) weobtain the primal formulation for the soft convex hull problem: minimize~F = kwk2 � 2~� (27)with respect to w;~b; ~�; �i, subject to:yi(w � xi +~b) � ~�� �i + �Xj 1 + yiyj2 �j ; �i � 0: (28)It is straightforward to check that the dual is exactly (9) and (10). Moreover, bysumming the relevant KKT conditions, as above, we see that ~b = �w�p and ~� = w�w.Note that in this formulation the variables �i retain their meaning according to (8).4 Choosing �In this section we establish some results on the choices for �, using the �-SVMformulation. First, note that Pi �iyi = 0 and Pi �i = 2 implies Pi:yi=+1 �i =Pi:yi=�1 �i = 1. Then �i � 0 gives �i � 1; 8i. Thus choosing � > 1, whichcorresponds to choosing � < 2=l, results in the same solution of the dual (and hencethe same normal w) as choosing � = 1. (Note that di�erent values of � > 1 canstill result in di�erent values of the other primal variables, e.g. b).The equalities Pi:yi=+1 �i = Pi:yi=�1 �i = 1 also show that if � < 2=l then thefeasible region for the dual is empty and hence the problem is insoluble. Thiscorresponds to the requirement � < 1. However, we can improve upon this. Let l+(l�) be the number of positive (negative) polarity points, so that l+ + l� = l. Letlmin � minfl+; l�g. Then the minimal value of � which still results in a nonemptyfeasible region is �min = 1=lmin. This gives the condition � � 2lmin=l.We de�ne a \nontrivial" solution of the problem to be any solution with w 6= 0.The following proposition gives conditions for the existence of nontrivial solutions.



Proposition 2: A value of � exists which will result in a nontrivial solution tothe ��SVM classi�cation problem if and only if fH+� : � = �ming \ fH�� : � =�ming = ;.Proof: Suppose that fH+� : � = �ming \ fH�� : � = �ming 6= ;. Then for allallowable values of � (and hence �), the two convex hulls will intersect, since fH+� :� = �ming � fH+� : � � �ming and fH�� : � = �ming � fH�� : � � �ming. Ifthe two convex hulls intersect, then the solution is trivial, since by de�nition therethen exist feasible points z such that z = Pi:yi=+1 �ixi and z = Pi:yi=�1 �ixi,and hence 2w = Pi �iyixi = Pi:yi=+1 �ixi �Pi:yi=�1 �ixi = 0 (cf. (21), (22).Now suppose that fH+� : � = �ming \ fH�� : � = �ming = ;. Then clearly anontrivial solution exists, since the shortest distance between the two convex setsfH+� : � = �ming and fH�� : � = �ming is not zero, hence the correspondingw 6= 0. 2Note that when l+ = l�, the condition amounts to the requirement that the centroidof the positive examples does not coincide with that of the negative examples. Notealso that this shows that, given a data set, one can �nd a lower bound on �, by�nding the largest � that satis�es H�� \H+� = ;.5 DiscussionThe soft convex hull interpretation suggests that an appropriate way to penalizepositive polarity errors di�erently from negative is to replace the sum �Pi �i in (7)with �+Pi:yi=+1 �i + ��Pi:yi=�1 �i. In fact one can go further and introduce a �for every train point. The �-SVM formulation makes this possibility explicit, whichit is not in original �-SVM formulation.Note also that the fact that �-SVM leads to values of b which di�er from that whichwould place the optimal hyperplane halfway between the soft convex hulls suggeststhat there may be principled methods for choosing the best b for a given problem,other than that dictated by minimizing the sum of the �i's. Indeed, originally, thesum of �i's term arose in an attempt to approximate the number of errors on thetrain set [2]. The above reasoning in a sense separates the justi�cation for w fromthat for b. For example, given w, a simple line search could be used to �nd thatvalue of b which actually does minimize the number of errors on the train set. Othermethods (for example, minimizing the estimated Bayes error [3]) may also proveuseful.AcknowledgmentsC. Burges wishes to thank W. Keasler, V. Lawrence and C. Nohl of Lucent Tech-nologies for their support.References[1] B. Sch�olkopf and A. Smola and R. Williamson and P. Bartlett. New support vectoralgorithms, neurocolt2 nc2-tr-1998-031. Technical report, GMD First and AustralianNational University, 1998.[2] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273{297,1995.[3] C. J. C. Burges and B. Sch�olkopf. Improving the accuracy and speed of support vectorlearning machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in NeuralInformation Processing Systems 9, pages 375{381, Cambridge, MA, 1997. MIT Press.


