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General vector spaces

ä So far we have seen special spaces of vectors of n dimensions –
denoted by Rn.

ä It is possible to define more general vector spaces

A vector space V over R is a nonempty set with two operations:

• Addition denoted by ′+′. For two vectors x and y, x+ y is a
member of V

• Multiplication by a scalar For α ∈ R and x ∈ V , αx is a
member of V .

ä In addition for V to be a vector space the following 8 axioms
must be satisfied [note: order is different in text]
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1. Addition is commutative u+ v = v + u

2. Addition is associative u+ (v + w) = (u+ v) + w

3. ∃ zero vector denoted by 0 such that ∀u, 0 + u = u

4. Any u has an opposite −u such that u+ (−u) = 0

5. 1u = u for any u

6. (αβ)u = α(βu)

7. (α+ β)u = αu+ βu

8. α(u+ v) = αu+ αv

- Show that the zero vector in Axiom 3 is unique, and the vector
−u, (‘negative of u’), in Axiom 4 is unique for each u in V .
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ä For each u in V and scalar α we have

0u = 0 α0 = 0 ; −u = (−1)u .

Example: Let V be the set of all arrows (directed line segments)
in three-dimensional space, with two arrows regarded as equal if they
have the same length and point in the same direction. Define addition
by the parallelogram rule, and for each v in V , define cv to be the
arrow whose length is c times the length of v, pointing in the same
direction as v if c > 0 and otherwise pointing in the opposite
direction.

Note: The definition of V is geometric, using concepts of length
and direction. No xyz-coordinate system is involved. An arrow of
zero length is a single point and represents the zero vector. The
negative of v is (−1)v.

ä All axioms are verified
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More examples

ä Set of vectors in R4 with second component equal to zero.

ä Set of all poynomials of degree ≤ 3

ä Set of all m× n matrices

ä Set of all n× n upper triangular matrices

11-5 Text: 4.1 – Vspaces

11-5



Subspaces

ä A subset H of vectors of V is a subspace if it is a vector space
by itself. Formal definition:

ä A subset H of vectors of V is a subspace if

1.H is closed for the addition, which means:

x+ y ∈ H for any x ∈ H, y ∈ H

2.H is closed for the scalar multiplication, which means:

αx ∈ H for any α ∈ R, x ∈ H

ä Note: If H is a subspace then (1) 0 belongs to H and (2) For
any x ∈ H , the vector −x belongs to H
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ä Every vector space is a subspace (of itself and possibly of other
larger spaces).

ä The set consisting of only the zero vector of V is a subspace of
V , called the zero subspace. Notation: {0}.

Example: Polynomials of the form

p(t) = α2t
2 + α3t

3

form a subspace of the space of polynomials of degree ≤ 3

- Other examples: Examples 3 and 5 (sec. 4.1) from text

Example: Triangular matrices
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- Example 8 (sec. 4.1) in text is important

- Show that the set H of all vectors in R3 of the form {a +
b, a− b, b} is a subspace of R3. [Hint: see example 11 from Sec.
4.1 of text ]

ä Recall: the term linear combination refers to a sum of scalar
multiples of vectors, and span{v1, ..., vp} denotes the set of all
vectors that can be written as linear combinations of v1, · · · , vp.
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A subspace spanned by a set

Theorem: If v1, ..., vp are in a vector space V , then

span{v1, ..., vp}

is a subspace of V .

ä span{v1, ..., vp} is the subspace spanned (or generated) by
{v1, ..., vp}.

ä Given any subspace H of V , a spanning (or generating) set for
H is a set {v1, ..., vp} in H such that H = span{v1, ...vp}.

- Prove above theorem for p = 2, i.e., given v1 and v2 in a vector
space V , thenH = span{v1, v2} is a subspace of V . [Hint: show
that H is closed for ’+’ and for scalar multiplication]
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NULL SPACES AND COLUMN SPACES [4.2]
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Null space of a matrix

Definition: The null space of an m × n matrix A, written as
Nul(A), is the set of all solutions of the homogeneous equation
Ax = 0. In set notation,

Nul(A) = {x : x ∈ Rn and Ax = 0}.

Theorem: The null space of anm×n matrixA is a subspace
of Rn

ä Equivalently, the set of all solutions to a system Ax = 0 of m
homogeneous linear equations in n unknowns is a subspace of Rn

Proof: Nul(A) is by definition a subset of Rn. Must show: Nul(A) closed under
+ and multipl. by scalars.

ä Take u and v any two vectors in Nul(A). Then Au = 0 and Av = 0.
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ä Need to show that u + v is in Nul(A), i.e., that A(u + v) = 0. Using a
property of matrix multiplication, compute

A(u+ v) = Au+Av = 0 + 0 = 0

ä Thus u+ v ∈ Nul(A), and Nul(A) is closed under vector addition.

ä Finally, if α is any scalar, then A(αu) = α(Au) = α(0) = 0 which
shows that αu is in Nul(A).

ä Thus Nul(A) is a subspace of Rn.

- See Example 1 in Sect. 4.2 of text [determining if a given
vector belongs to Nul(A)

- See Example 2 in Sect. 4.2 of text [determining a subspace
by casting as a null space]

ä Next we will see how to determine Nul(A). See Example 3 of
Sec. 4.2 of text . Details next.
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ä There is no obvious relation between vectors in Nul(A) and the
entries in A.

ä We say that Nul(A) is defined implicitly, because it is defined
by a condition that must be checked.

ä No explicit list or description of the elements in Nul(A), so..

ä ... we need to solve the equation Ax = 0 to produce an explicit
description of Nul(A).

Example: Find the null space of the matrix

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4


ä We will find a spanning set for Nul(A).
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Solution: first step is to find the general solution of Ax = 0 in
terms of free variables. We know how to do this.

ä Get reduced echelon form of augmented matrix [A 0]:1 −2 0 −1 3 0
0 0 1 2 −2 0
0 0 0 0 0 0

 → x1 − 2x2 − x4 +3x5 = 0

x3 + 2x4 −2x5 = 0

0 = 0

ä x2, x4, x5 are free variables, x1, x3 basic variables.

ä For any selection of the free variables, can find a vector in Nul(A)
by computing x1, x3 in terms of these variables:

x1 = 2x2 + x4 − 3x5

x3 = −2x4 + 2x5
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ä OK - but how can we write these using spanning vectors (i.e. as
linear combinations of specific vectors?)

ä Solution - write x as:

x1 2x2 +x4 −3x5

x2 x2

x3 = −2x4 +2x5

x4 x4

x5 x5

= x2


2
1
0
0
0


︸︷︷︸
u

+x4


1
0
−2
1
0


︸ ︷︷ ︸

v

+x5


−3
0
2
0
1


︸ ︷︷ ︸

w

ä General solution is of the form x2u+ x4v + x5w.

ä Every linear combination of u, v, andw is an element of Nul(A).
Thus {u, v, w} is a spanning set for Nul(A), i.e.,

Nul(A) = span{u, v, w}
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- Obtain the vector x of Nul(A)corresponding to the choice: x2 =
1, x4 = −2, x5 = −1. Verify that indeed it is in the null space,
i.e., that Ax = 0

- For same example, find a vector in Nul(A)whose last two com-
ponents are zero and whose first component is 1. How many such
vectors are there (zero, one, or inifintely many?)

Notes:

ä 1. The spanning set produced by the method in the example is
guaranteed to be linearly independent

- Show this (proof by contradiction)

ä 2. When Nul(A)contains nonzero vectors, the number of vectors
in the spanning set for Nul(A) equals the number of free variables in
the equation Ax = 0 .
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Column Space of a matrix

Definition: The column space of an m × n matrix A, written
as Col(A) (or C(A)), is the set of all linear combinations of the
columns of A. If A = [a1 · · · an], then

Col(A) = span{a1, ..., an}

Theorem:
The column space of an m×n matrix A is a subspace
of Rm.

ä A vector in Col(A) can be written as Ax for some x [Recall
that Ax stands for a linear combination of the columns of A].

That is: Col(A) = {b : b = Ax for some x in Rn}
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ä The notation Ax for vectors in Col(A) also shows that Col(A)
is the range of the linear transformation x→ Ax.

ä The column space of an m × n matrix A is all of Rm if and
only if the equation Ax = b has a solution for each b in Rm

- Let

A =

 2 4 −2 1
−2 −5 7 3
3 7 −8 6

 , u =


3
−2
−1
0

 , v =

 3
−1
3


a. Determine if u is in Nul(A). Could u be in Col(A)?

b. Determine if v is in Col(A). Could v be in Nul(A) ?
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ä General remarks and hints:

1. Col(A) is a subspace of Rm [m = 3 in above example]

2. Nul(A) is a subspace of Rn [n = 4 in above example]

3. To verify that a given vector x belongs to Nul(A) all you need
to do is check if Ax = 0

4. To verify if b ∈ Col(A) all you need to do is check if the linear
system Ax = b has a solution.
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