


for every city in the entire country of Sweden (24,978 cities) by proving no
shorter tour exists, this was in 2004. The record was smashed in 2006 for a
VLSI application with 85,900 locations using the Concorde codebase of 700
functions that were customized for this specific TSP, and has been used to
solve other TSPs.

Ant Colony/Swarm

Ant colony optimization (ACO) is a heuristic algorithm which has been
proven a successful technique and applied to a number of combinatorial op-
timization problems and is taken as one of the high performance computing
methods for Traveling salesman problem (Hlaing). Ant colony optimization
has downsides in that it can cost too much time to converge and gets trapped
in local optima, but remains a very good search for optimization problems
(Hlaing). An improved version of the ant colony optimization in Hlaing’s
paper improves both the convergence speed and improves the performance
by using a dynamic updating rule for heuristic parameter based on entropy
(Hlaing). Using swarm intelligence theory, researchers developed an opti-
mization algorithm called chaotic ant swarm to find global optimums in a
search space, although it could not solve TSP directly. Other researchers
used this to base a variant, chaotic ant swarm-traveling salesman problem.
This generates the optimal solution for TSP problems all the way up to
sizes of 150, making it a useful tool and a very competitive heuristic (Zhen).
The algorithm is inspired by the actual behavior of ants in nature and chaos
theory, each ant in the search hunts and interacts with neighbors using
pheromone trails to locate the global optimum (Zhen). The original method-
ology was implemented by Marco Dorigo and Luca Maria Gambardella, in
their paper they describe in detail the way nature was used to simulate ar-
tificial life to formulate the algorithms used in future ant colony research
projects (Dorigo).

Genetic Algorithms

This is the method I have chosen to analyze for solving the Traveling Sales-
man Problem. A genetic algorithm is a heuristic based on the natural process
of evolution. They depend on two main variation operators, crossover and
mutation (Contreras-Bolton). A modified genetic algorithm for solving the
traveling salesman problem utilizing multi-operators showed that synergy
between operators was mutually complementary (Contreras-Bolton). The

2



process for searching for good combinations and ultimately a good solution
candidate was shown to be more effective and better than using it than a
single operator or the operators mentioned earlier (Contreras-Bolton).

Bird Colony/Particle Swarm

Particle swarm optimizations are a type of algorithm that tries to improve
a candidate solution with regards to a heuristic where a pool of candidates
(particles) are moving around in the search-space, under mathematical po-
sition/velocity formulas (Yan). Each particle moves towards its own best
known position but is also guided by the surrounding particles, and the
swarm as a whole moves towards the optimal solution. Unlike genetic algo-
rithms, particle swarm doesn’t rely on selection operators, crossovers, mu-
tations, and other genetic operators. The population is optimized directly
through information exchanged between individuals (Yan).

As you can see from the previous sections, solutions to the Traveling
Salesman Problem are heavily influenced by nature. From the ant colony,
bird colony, and evolutionary algorithms, all pose solutions with different
benefits and drawbacks. Selecting a methodology is dependent on the size
of your data and the resources you have allocated to solving it; and even
within the individual methodologies are hybrid and modified algorithms, as
the Traveling Salesman Problem continues to be researched and explored.

Genetic Algorithm Implementation

This section will go more in depth into the actual genetic algorithm that
will be analyzed for solving the traveling salesman problem. Although some
powerful algorithms like the swarm are quite good at finding a near-optimal
solution, the genetic algorithm will be easier to understand and analyze here.
For solving the TSP via genetic algorithm, a few special considerations need
to be made. The first caveat being that a solution can only represent a
path that goes through every location a single time, any more or less and
it unqualified. This means that the mutation and crossover methods in the
genetic algorithm must be modified. First of all the mutation should not
be able to add or remove locations, creating an unqualified route. It should
only be able to shuffle around the order of the locations toured without
modifying the places involved. This means a swap mutation would be used,
simply swapping cities around with some random variation; and this will
never create an invalid route. The second consideration is using a method

3



of crossover that won’t produce invalid solutions. The method used in this
genetic algorithm is selecting a sublist of the first parent and adding it to
the offspring, then any missing values are added to the offspring from the
second parent so that the number of locations is preserved.

Experimental Design/Results

The genetic algorithm could be manipulated in a variety of ways to deter-
mine its effectiveness and observe exactly how it works. For testing purposes
twenty cities will be used and represented via two coordinates so that it is
easy to calculate their relative distances from each other. After the ini-
tial populations (list of routes) are randomly produced, the cheapest one is
printed out as the Initial distance. For table 1 you can see the algorithm run
on twenty cities with the following default settings: Population of 50, 100
evolutions, and a mutation rate of 0.015. The variation between different
runs is accounted for by the randomness inherent within genetic algorithms,
since the cities and their relative distances were all kept constant. Three
separate modifications were made: In table 2 the evolutions were increased
to 200, in table 3 the population was dropped to only 5 individuals, and in
table 4 the mutation rate was increased to 0.05.

4



Table 1: Default Settings
Trial Initial Distance Final Distance

1 1616 1155

2 1930 1228

3 1873 994

4 2009 1177

5 1780 998

6 1905 958

7 1940 925

8 1782 984

9 1905 935

10 2031 1020

AVG 1877.1 1037.4

Table 2: 200 evolutions
Trial Initial Distance Final Distance

1 1822 923

2 1688 1008

3 1885 980

4 1912 1084

5 1909 1054

6 1929 903

7 1683 956

8 1942 1064

9 1991 998

10 793 984

AVG 1855.4 995.4

5



Table 3: Population 5
Trial Initial Distance Final Distance

1 2084 1270

2 2123 1549

3 2210 1518

4 1907 1366

5 2299 1344

6 2270 1479

7 2130 1308

8 2088 1414

9 1991 1325

10 1758 1432

AVG 2086 1400.5

Table 4: Mutation rate .05
Trial Initial Distance Final Distance

1 1831 941

2 1852 932

3 1898 1107

4 1914 1053

5 1931 1011

6 1940 1031

7 1797 1020

8 1792 1000

9 1880 906

10 1682 873

AVG 1851.7 987.4

6



Analysis of Results

The genetic algorithm was run on the TSP ten times for each variation of
the algorithm and the results were averaged. From the first table we can
see the average initial distance is 1877.1. From this we can only expect the
genetic algorithm to go through its evolutions slowly lowering the number as
it finds more and more optimal routes. The average final distance is 1037.4,
a great improvement on the original route.

For Table 2, the number of evolutions was doubled from 100 to 200.
If you look at only the initial distance values, nothing has changed as is
expected. The average initial distance was only twenty less than for the
default settings. The best initial route is still calculated the same way,
the algorithm is simply run more times so that can be accounted from the
variation due to randomness inherent in the algorithm. From this we could
expect the average final distance to be slightly lower, as 100 evolutions was
already on the high end. The average found for when 200 evolutions is used
was 995.4, which is less than 50 better. This means that either 100 evolutions
is enough to reach a near optimal route and that 200 only marginally selects
a more optimal route (not worth it for doubling the computation time), or
that the result is not statistically significant considering there were only ten
trials run.

For Table 3 the population was reduced from 50 all the way to only 5
individuals. The expected effect is that the initial distance is drastically
higher as only 5 routes can be randomly generated and the chances of any
good routes appearing in only 5 individuals is extraordinarily low. The
average initial distance was found to be 2086, confirming this prediction.
After 100 evolutions the average final distance was found to be 1400, much
higher than the 1037.4 and 995.4 of previous experiments. This can be
explained by the fact that even though there are still 100 evolutions and the
mutation rate is still at the default .015, there are only 5 individuals that
can crossover between each other so the final distance is heavily dependent
on those five routes initially created. The mutation rate is not high enough
and the population far too low to produce a route even close to approaching
1000, even through sheer randomness. On the other hand the computation
time was lower; this is the tradeoff that is made. Ideally if you ran this
experiment with a population of ten thousand, the final distances found
would be lower but the computation would take far longer due to the space
and time complexity of the genetic algorithm.

For Table 4 the mutation rate was increased from .015 to .05. This
increases the amount of shuffling during the mutation phase of the algorithm,

7



adding some random variation to the routes in between evolutions. My
prediction was that increasing the mutation rate would help finding a more
optimal route but only to a certain point; at some point the mutation rate
is too great and would interfere with almost optimal routes. 0.05 seemed
like a reasonable rate to experiment with; the average initial distance was
unsurprising at 1851.7 as the mutation rate did not affect this (as with
increasing the number of evolutions). The average final distance was 987.4,
lower than the 1037.4 with a .015 mutation rate, but not significantly so.
Without attempting more trials this would fall in line with my prediction
that the final distance improved as we are still in the safe zone of mutation
rates, but increasing it to 0.1 or higher could possibly have detrimental
effects.

Conclusion

In conclusion, a genetic algorithm is an effective way of finding a good route
for a Traveling Salesman Problem. Increasing the number of evolutions un-
dertaken by the algorithm also improves the final optimal route discovered
but only marginally so after 100 evolutions; disproportionately increasing
the computation size. Decreasing the population has the opposite effect,
drastically increasing the cost of the final optimal route discovered. Increas-
ing the mutation rate also benefits the algorithm but only within a certain
range. The range was not found in this experiment and cannot be extrap-
olated without further work. In terms of future work, more trials would
absolutely be necessary to be able to ascertain whether the differences be-
tween 100 and 200 evolutions is statistically significant. I would encourage
100 trial runs per modification. For the mutation rate I would do 100 trial
runs each of .010, .050, .01, .02, and .03 to try and find the sweet spot of
mutation rate to promote the most optimal routes.

8



References

[1] Rego, Csar ; Gamboa, Dorabela ; Glover, Fred ; Osterman, Colin. Eu-
ropean Journal of Operational Research, 2011, Vol.211(3), pp.427-441

[2] Wei, Zhen ; Ge, Fangzhen ; Lu, Yang ; Li, Lixiang ; Yang, Yixian.
Nonlinear Dynamics, 2011, Vol.65(3), pp.271-281

[3] Zar Chi Su Su Hlaing and May Aye Khine, ”Solving Traveling Sales-
man Problem by Using Improved Ant Colony Optimization Algo-
rithm,”International Journal of Information and Education Technolo-
gyvol. 1, no. 5, pp. 404-409, 2011

[4] M. Dorigo and L. M. Gambardella. Ant colonies for the traveling sales-
man problem. BioSystems, 43:7381, 1997

[5] Xuesong Yan, International Journal of Computer Science Issues, 01
November 2012, Vol.9(6), pp.264-2717

[6] Contreras-Bolton, Carlos ; Parada, Victor. PloS one, 2015, Vol.10(9),
pp.e0137724

[7] Karapetyan, D. ; Gutin, G. European Journal of Operational Research,
2011, Vol.208(3), pp.221-232

[8] Erdoan, Gne ; Cordeau, Jean-Franois ; Laporte, Gilbert. European Jour-
nal of Operational Research, 2010, Vol.203(1), pp.59-69

[9] Jacobson, Lee. The Project Spot, 2012.
http://www.theprojectspot.com/tutorial-post/applying-a-genetic-
algorithm-to-the-travelling-salesman-problem/5

9


