

or spam based on the message received. This is typically done by iterating through the email’s body and/or
subject line to gather the textual content in an email. After the information is collected from the email, one
of many different algorithms is run on the data to determine likelihood of that given email to be spam.

In this paper, we focus on the algorithms and techniques for spam filtering of the Naive Bayesian variety.
Naive Bayes classifiers are probabilistic classifiers that apply Bayes’ theorem to separate inputs into two
different categories. In our case, we seek to separate email inputs into one of two categories: ham (legitimate
emails), and spam (non-legitimate emails). We work with three types of Naive Bayes classifiers which
are Multinomial Naive Bayes with Term Frequency Attributes, Multinomial Naive Bayes with Boolean
Attributes, and Multi-variate Bernoulli Naive Bayes. Based on these methods of classifying emails, an email
user’s inbox could be organized by having ham emails and spam emails divided into separate collections.
Although these algorithms can fail to accurately classify emails as seen by our experiments, classifying emails
in this manner can be very beneficial to an individual email user.

We conducted our experiments using the dataset provided by Metsis et al. [11]. This dataset includes
emails gathered from the mailboxes of employees who worked at Enron, which were released following the
Enron investigation in 2001. These emails are stored in the form of text files where both the subject line
and the body of the emails are written in plain text. We trained our filters on the approximately 30000 ham
and spam emails that were provided by Enron. We then ran tests on 1500 ham mails and 4500 spam mails
that were removed from the original dataset. For each test we used one of the three types of Naive Bayes
filters mentioned earlier.

In the following sections, we describe what other researchers have done in regards to spam filtering, which
can include Naive Bayesian and other text based spam filtering as well as non-textual based methods. Then,
we explain our approach and discuss our results after running three types of Naive Bayesian filters on sample
ham and spam emails. Finally, we analyze our results and explore potential work for the future.

2 Related Work

According to Garcia et al. [4], approaches to countering spam can be divided into two distinct groups.
The first method attempts to curb the total number of spam emails sent by either blocking or limiting access
to mail servers for spammers. This can be done in a few different ways.

The most straightforward way to prevent spam is to close all open relays on the Internet and to strengthen
the SMTP (Simple Mail Transfer Protocol) to block fake headers and require sender authentication. This
would force spammers to send their spam through their ISP and relies on the ISPs to block those accounts.
However, this approach attacks the openness of the Internet and threatens Internet privacy. This approach
may not even work for very long, as spammers can simply shift to using proxies or botnets.

Another method is to use money or computation time as a price for sending emails [7]. This approach
may disinsentivize spammers from sending large amounts of spam. Forcing senders of email to pay a small
fee in order to send an email could make the cost of sending thousands of spam emails prohibitive, while
keeping the cost reasonable for the average user. There could also be methods in place that allow whitelisting
contacts so that correspondence doesn’t require payment. This could be thought of as a ”electronic postage”
approach.

However, this approach would require many sacrifices to be made by Internet users. There could be
substantial overhead costs to implement while centralizing the Internet to some degree, and success would
require widespread adoption by many users and ISPs. It would likely have a large opposition, as it would
require people to give up their free communication and could threaten privacy as well. Finally, to maintain
privacy, some sort of anonymous electronic cash would need to be used, and widespread adoption of this
system is unlikely.

The alternative form of ”pricing” email would be to force the sender of emails to compute expensive
functions in order to send the email. [3] For normal users, the extra time required to send an email would
be nearly unnoticeable, but for spammers, the extra time added to each of the thousands or hundreds of
thousands of sent emails would make the calculations prohibitively long. This would allow email to still be

2

free, would not require centralization, and could allow whitelisting so that senders could send to contacts
who whitelisted them without ”paying.”

The downside to this approach is the difference in computing power between systems. In order to combat
spammers with modern hardware, the computation time required to solve the ”pricing function” would need
to be calculated for modern machines. However, this means that normal users with old hardware may not
be able to solve the function in a reasonable amount of time.

Both of these methods would require instant global adoption to be effective and to prevent people from
losing correspondence if one of them does not update to the new method. Modern physical junk mail
also shows that most spammers and advertisers would also still be willing to pay to send their messages
regardless. All in all, these approaches seem difficult to implement and unlikely to come about without
massive cooperation. Therefore, we should turn our focus toward spam filtering.

The second basic approach to countering spam is to use a spam filter. This approach attempts to detect
and remove spam once it is sent by applying different filtering techniques to received messages. These
techniques can be divided into two major categories: cooperative filtering and heuristic filtering.

Cooperative filtering includes a few separate approaches [7]. The first method exploits the fact that spam
messages are by nature very similar. Messages marked a spam are hashed and sent to a database such as
Vipul’s Razor [14] or the Distributed Checksum Clearinghouse (DCC) [19]. Then, users can hash messages
sent against those in these databases and delete those that match known spam messages. This system,
however, can be abused by submitting hashes of legitimate messages, either deliberately or accidentally.
This method can also be circumvented by adding unique tags to each individual message, giving them
different hash values.

A second approach would consist of opt-in and opt-out lists, where spam generators would cooperate with
users and not send spam to those on opt-out lists. However, since most spammers ignore existing opt-out
lists, this approach cannot be seriously considered. Since cooperative filtering seems to be easily exploitable,
we must focus on heuristic filtering.

Heuristic-based filters assume that spam emails are fundamentally different than legitimate emails, and
can thus be identified by the application of certain heuristics. These heuristics can be divided into three
major types: origin-based, traffic analysis-based, and content-based filtering.

Origin based filtering is done by filtering emails before they fully arrive at the computer of the user, which
can help reduce the costs commonly attributed to spam emails. There are a few ways of doing this. The first
is to use blacklists, which are lists containing addresses of known spam producers, to automatically refuse
connections with addresses on the blacklist. This is somewhat effective at blocking known spammers, but
can be circumvented by sending mail to servers not on the blacklist, which can then pass the messages on.
Another approach is to use whitelists instead. These whitelists contain addresses from which connections are
automatically accepted, while the server refuses all other mail. The biggest disadvantage with this, however,
is the large false positive rate - many legitimate messages are blocked by the filter.

Traffic analysis-based filtering is done by using the log files of the mail server to detect spam senders by
analyzing a number of qualities. These include differences in connection time, amount of mail coming from
a host, the number of recipients sent to from a host, and whether or not the message is relayed.

Finally, content-based filtering happens after the message has been received by the user. Once this
happens, the content of the message is analyzed to determine whether or not the email is spam. This
filtering can be done based on the words in the header, subject, and body of the message, checking known
keywords and common features of spam. Multiple algorithms can be used to detect spam in this way,
including Naive Bayesian filters, genetic algorithms [10], and neural networks [2]. Our work focuses on Naive
Bayes filters, which can be implemented with a number of different modifications.

Naive Bayesian filters work by calculating the probability that a given email is spam based on the
probability of the words in the message occurring in spam messages individually. This is done by training
the filter on a test set of spam and legitimate (ham) email to determine the probability of any word in the
training set occurring in a spam or ham email. Paul Graham [6] does this using the following method:

1. Create a hash map to contain every token in the ham training set, using words as tokens. This hash
map will map each token to the number of times they occur in the ham emails.

3

2. Do the same for every token in the spam training set.

3. Using these hash maps, map each token to the probability that an email containing it is a spam email
in a new hash map. This value is calculated using the following equation, where S(w) = the number
of occurrences of token w in the spam set, H(w) = the number of occurrences of token w in the ham
set, and NS and NH are the size of the spam and ham sets, respectively.

P (W = w|C = S) =

S(w)
NS

S(w)
NS

+ H(w)
NH

Once the probabilities for each word are calculated, the filter can then be used to calculate the probability
of a given email being spam, based on the probabilities of each word previously calculated. In general, an
email can be treated as a vector ~x = (x1, x2, ..., xn), where (x1, x2, ..., xn) represent the words present in
the email. We can categorize this email into category c ∈ {spam, ham} based on this vector using Bayes’
Theorem, which gives us the following function [1] [4] [12] [16] [17].

P (C = c| ~X = ~x) =
P (~X = ~x|C = c) ∗ P (C = c)

P (~X = ~x)

However, calculating P (~X = ~x|C = c) is difficult and impractical. [1] [4] By making the Naive Bayesian
assumption that each feature xi is independent of every other feature, we find the following equation, which
is far easier to calculate.

P (~X = ~x|C = c) =

n∏
i=1

P (Xi = xi|C = c)

By replacing the original quantity with this new quantity, we gain a final equation for a Naive Bayes
approximation of the probability of the email being spam.

P (C = c| ~X = ~x) =

∏n
i=1 P (Xi = xi|C = c) ∗ P (C = c)

P (~X = ~x)

However, doing this for every word in the test email can be both overly complex and misleading. There-
fore, we should only pay attention to the most ”interesting” tokens. Tokens become interesting if they reach
a certain frequency and have probabilities near 1 or 0 of being in a spam email. The filter does this by
trimming ~x into the n most interesting tokens and call this set ~m = (m1, ...,mn) and using this in the
following equation, where S=spam and H=Ham.

P (C = S| ~X = ~m) =

∏n
i=1 P (Xi = mi|C = S) ∗ P (C = S)∑

k∈{S,H} P (C = k) ∗
∏n

i=1 P (Xi = mi|C = k)

Now that we have a probability for the given email of being spam, we can deal with it in two different ways.
Because mislabeling a legitimate email as spam (false positive) is much more undesirable than classifying
a spam email as legitimate (false negative) [1] [4] [6] [7] [8] [9] [12] [13] [17], we must be err on the side
of caution. A message is marked as spam if this probability exceeds a certain threshold T [4] [12] [13].
This threshold can either be a constant or calculated individually for each email. Androutsopolous et
al. [1] calculate this threshold by finding the ratio of the probabilities of the message being spam and
ham and define λ as the relative cost of false positives to false negatives. Then, if this ratio exceeds
lambda, we classify it as spam. However, since we know that according to the Theorem of Total Probability,
P (C = H| ~X = ~m) = 1− P (C = S| ~X = ~m). Therefore, the threshold T can be found while only calculating
one of these probabilities. This allows us to classify an email as spam if the following equation is true.

4

P (C = S| ~X = ~m) > T,where T =
λ

1 + λ

This threshold can be set anywhere from λ = 1 to λ = 999 [1] [16], where higher values of lambda are
much less likely to provide false positives.

Now that the basics of Naive Bayesian filters have been explored, we can look at the variations done in
previous work.

Metsis et al.[12] look at and compare five different types of Naive Bayes filters. The first type of Naive
Bayes, known as Multinomial Naive Bayes is the type discussed above. However, they split this type into
two different types: one which counts frequency, Term Frequency; and one which simply checks the presence
or absence of tokens, Boolean.

The next type of filter is the Multi-variate Bernoulli Naive Bayes filter. This filter works by treating
each message m as a set of tokens, similar to the above approach. However, the main difference is that the
probability P (~x|C = c)is calculated using a Bernoulli distribution, rather than a Multinomial one. This
function can be seen below.

P (~x | C = c) =

n∏
i=1

P (ti | C = c)xi ∗ (1− P (ti | C = c))1−xi

Substituting this into the Naive Bayes equation gives us the following equation.

P (C = S) ∗
∏n

i=1 P (ti | C = S)xi ∗ (1− P (ti | C = S))1−xi∑
k∈{S,H} P (C = k) ∗

∏n
i=1 P (ti | C = k)xi ∗ (1− P (ti | C = k))1−xi

> T

The third type of Naive Bayes is Multi-variate Gauss Naive Bayes. By assuming that each token of the
message follows the normal distribution g(xi, µi,c, σi,c) for each category c, where

g(xi, µi,c, σi,c) =
1

σi,c
√

2π
e
−

(xi−µi,c)
2

2σ2
i,c

and the mean µi,c and standard deviation σi,c are estimated from the training data. If we again assume
that the values of the tokens are independent, we find the following equation for P (~x|C = c).

P (~x|C = c) =

n∏
i=1

g(xi;µi,c, σi,C=s)

This gives us the final equation for determining if a message is spam as below.

P (C = s) ∗
∏n

i=1 g(xi;µi,c, σi,C=s)∑
k∈{S,H} P (C = k) ∗

∏n
i=1 g(xi;µi,c, σi,C=s)

> T

The final type of Naive Bayes is Flexible Bayes. This type allows us to model P (Xi = xi|C = c) as the
average of Li,c normal distributions with different means but the same standard deviation, which gives us
the following equation.

p(xi | c) =
1

Li,c
∗

Li,c∑
i=1

g(xi, µi,c, σi,c)

where Li,c is the number of different values of Xi in the training data for each, which is used as the mean
of a normal distribution of that category. Each of these distributions is assumed to have the same standard

5

deviation σc = 1√
Mc

, where Mc is the number of training messages in c. A more in-depth description can be

found in [12].
When dealing with word frequency, Metsis et al.[12] finds that it can be an effective addition to the

filtering process, but makes no distinction in the type of email that is being received. For example, a more
formal email may have different frequencies of a specific word over an informal one. A Boolean classification
of spam tokens in an email can help to avoid this problem. The article notes that the Boolean Naive Bayes
approach performs slightly better than the Term Frequency approach, which tracks the frequency of the
token appearing. This seems counter-intuitive, as one would think that providing more information about
spam keywords would increase the chances of determining whether or not an email is spam.

O’Brien et al.[13] discuss Naive Bayesian probability method and the Chi by degrees of Freedom method.
An interesting variation of the Naive Bayesian method uses characters as tokens instead of using single or
multiple words like our approach. Using characters as tokens showed to be very effective, for when characters
were used in the Bayesian algorithm the error rate dropped to 0 percent, compared to 13 percent when words
as tokens[13]. However, the dataset used for testing by O’Brien consisted of fewer than 500 emails for training
and fewer than 50 for testing, where a larger test set would be more conclusive.

The other method of classifying emails discussed by O’Brien et al. is the Chi by degrees of Freedom
method. The vast majority of the tens of millions of spam emails are created by as many as only 150 authors
[13], so this method seeks to find similarities in spam emails written by the same author. This is calculated
by using n-grams which are either characters or words of length n. New emails are compared based on the
number of n-gram frequencies that correspond to the new email. The chi by degrees of freedom method
when using characters had an error rate of 0.015 when using characters as tokens[13]. This test had only one
email that was marked as spam even though it was a legitimate email (a false positive). Chi by degrees of
freedom method seemed to perform better than Naive Bayesian method when using words but the opposite
trend was shown when the tokens being used where characters for each method. This research shows that
the chi by degrees of freedom is an effective approach in dealing with spam filtering as is the Naive Bayesian
probability method that our work focuses on.

As stated above, Naive Bayes filtering examines the probability of certain tokens being used in spam
emails in order to classify an email as being spam. However, the tokens do not have to be individual words,
as seen by multiple authors who utilize phrases of length n, called n-grams, as tokens[5] [8] [9] [17]. When
using individual words as tokens, one must assume that the words are independent from each other. This is
a naive approach as combinations of words may be more useful in categorizing emails as spam. For example,
the phrase ”buy now” would probably be more useful in determining that a given email is spam as opposed
to using the individual words ”buy” and ”now” as separate tokens. Most of the experiments conducted are
done using n-grams of length 2 and 3, whereas Kanaris et al. uses longer n-grams of length 4 and 5[9]. When
using binary methods of Naive Bayes, 4-grams appeared to be the most effective n-gram length. For Term
Frequency methods of Naive Bayes probability, there did not appear to be a best n-gram length. This may
explain why n-gram lengths of 2 and 3 are more typically used rather than lengths of 4 and 5, since 4 and 5
n-grams suffer from a higher space complexity while only providing marginally improved performance.

Hovold [8] in his work uses Naive Bayes filtering to classify spam emails similar to the others above, but
also considers the position of the word in addition to the likelihood that the word belongs to a spam message.
His algorithm combines these two characteristics for each word to calculate the probability that an email
should be classified as spam as opposed to a legitimate email. It should be noted that the probability for a
given word to be at a given location is assumed to be uniform. This means that even though most words
may have certain patterns for where they appear in a text, Hovold assumes that they have an equal chance
of being at any location. The number of word positions in a document and the number of words kept in the
word vocabulary are used to calculate the probability a word has of appearing in a certain type of email.
In this case, the two types of email are spam and ham emails. Hovold also explores using n-grams like the
others above, but Hovold similarly finds only a minor improvement in performance even with word position.

Our work modifies the previous work done by Metsis et al. [12] by adding the capability of using n-grams
as tokens for each of the different types of Naive Bayesian approaches. In doing so, we will be able to
determine which type of Naive Bayes works best for the n-grams approach.

6

3 Approach

To create the training set for the spam filters used in this experiment, we found the frequency of each
word in the ham and spam datasets, which was used to estimate P (w|S) for each word. However, words
were only included if they exceeded a certain frequency in order to prevent statistical outliers from clouding
the filter’s judgment. At this step, we also calculated P (c) for both spam and ham. Once these probabilities
was calculated, we could use a Niave Bayes method to estimate P (C = S|Xi = xi, or the probability that c
is spam given that it contains the vector of words Xi.

We decided to implement three different Naive Bayesian classifiers. The first type we implemented
was Multinomial Naive Bayes with Term Frequency Attributes, which utilizes how many times a word is
used in the test email to calculate the probability of the test email being spam using the Multinomial
Naive Bayes event model. The second type we implemented was Multinomial Naive Bayes with Boolean
Attributes. This version also utilizes the Multinomial Naive Bayes event model to calculate the probability,
but does not account for the number of times a word is present. The third and final Naive Bayes classifier
we implemented was the Multi-variate Naive Bayes classifier. This classifier, like Multinomial Naive Bayes
with Term Frequency Attributes, also keeps track of how many times a word is used in the test email to
calculate the probability of the test email being spam. However, it uses a different method of calculating the
probability itself - Bernoulli Naive Bayes, as opposed to Multinomial.

In addition to having three different types of Naive Bayes filters, we also calculated the probabilities
using different lengths of word n-grams. An n-grams is a contiguous sequence of n words that can be used
instead of singular words when defining tokens. In our approach, we tried using singular words, 2-grams,
and 3-grams as tokens for all three of our different Naive Bayesian classifiers.

For our filter, we chose to use Python as our programming language. We created a few python files in
order to both parse through the email data sets and to calculate the ham and spam probabilities of new
emails. Python was used because it is a straightforward programming language for reading the email text
files.

To test our filter, we used the dataset provided by Metsis et al. [11]. This dataset contains 17171 spam
and 16545 ham emails collected from several email users who worked at Enron after the Enron investigation.
More information on the origin of these emails can be found here [12]. These emails are stored as text files
and are separated based on email type. They are also ”preprocessed,” meaning that they only contain the
subject line and the body of the emails. 1500 of the ham mails and 4500 of the spam mails were used to test
the filters, with the rest used as the training set.

This dataset has a collection of separated ham and spam emails in the form of text files. We created
a python program that would parse through all of the directories and files to find individual words and/or
word sequences depending on the the size of the n-grams. In short, each text file email is read line by line
and in each line, the line is separated by white space to create an array of word strings. Then each string
was stripped of undesired characters and the count for that word was increased by one. If the word did not
already exist in the dictionary, it was added to it instead. A similar tactic is used for n-grams where words
were combined together to form n length phrases which were also added to the dictionary of the respective
email type. Two dictionaries were created: one ham dictionary and one spam dictionary. Using these two
dictionaries, we created ham and spam output files containing one word and its frequency per line in order to
pass the data to the next python file. This next file then processed these output text files when determining
the likelihood of a given email being ham or spam. We separated these processes so that the dictionaries
would not have to be re-created every time the filter was run.

To test an email, the dictionaries were first loaded in from the previously created files and used to
calculate P (c) for both spam and ham and P (W = w|C = S for each word, as described above. This was
done using the function outlined in the Related Work section. The code for this function appears in the
appendix, section 8.2. However, for words that only appeared in the ham or spam set, a value of .01 and
.99 were used, respectively. This kept values of 1 and 0 from overpowering the rest of the words during
calculation.

Once these probabilities were calculated, each type of Naive Bayes classifier was run on the test set.
This entailed finding the most interesting tokens in the test message and using the Naive Bayes classifiers

7

outlined above. These tokens could be either single words or n-grams. To find these tokens, the test message
was parsed using the same procedure used for the training set. To find which tokens were most interesting,
P (W = w|C = S for each token in the test email was retrieved, and these tokens were sorted from largest
to smallest by the absolute value of their respective probability - .5. This would allow us to find the tokens
with probabilities closest to 1 and 0. Of these tokens, the top 20% were used in our calculation.

Each Naive Bayes classifier used a different formula to estimate P (C = S|Xi = xi. These formulas can be
found in the Related Work section, while the code used can be found in the appendix, sections 8.3 through
8.5. Once this probability was found, the algorithm marked the message as spam if the probability exceeded
.95 (T = .95). This was loose enough to get much of the less suspicious spam messages, but still strict
enough not to mark many ham messages as spam.

4 Experiment Design and Results

To train the filter, we used a training set containing 12671 spam emails and 15045 ham emails from the
Enron dataset [11]. The exact emails used were the spam and ham collections within enron1 to enron5.
These files were parsed and tokens were found, treating tokens as n-grams of length 1, 2, and 3 as required.
These tokens were added into a dictionary along with their frequency of occurrence among all the messages
for each category of message. The full code for parsing the training set can be found in the appendix, section
8.1.

With the frequency of each token in each category of message in hand, we could then test the filter. To
do this, we ran each type of Naive Bayes algorithm while varying the n-gram length between 1, 2, and 3
on a set of emails containing 4500 spam emails and 1500 ham emails (enron6). The false positive and false
negative rates of each type of filter were found and can be shown in table 1.

Trial Number Algorithm ngrams False Positives False Negatives

1 Multinomial Naive 1 53 (3.53%) 132 (2.93%)
2 Bayes, Term 2 38 (2.53%) 70 (1.56%)
3 Frequency Attributes 3 42 (2.80%) 76 (1.69%)
4 Multinomial Naive 1 45 (3.00%) 140 (3.11%)
5 Bayes, Boolean 2 28 (1.87%) 72 (1.60%)
6 Attributes 3 34 (2.27%) 81 (1.80%)
7 Multi-variate 1 123 (8.20%) 274 (6.09%)
8 Bernoulli 2 46 (3.06%) 119 (2.64%)
9 Naive Bayes 3 44 (2.93%) 126 (2.80%)

Table 1: Performance of the three Naive Bayesian spam filters with varying n-gram lengths

In total, we ran nine tests, comparing false negative and false positive rates between filters. A result was
considered a false positive when a ham message was misclassified as a spam message, and a false negative
occurred when a spam messages was misclassified as ham. Because false positives are much worse than false
negatives, performance is mostly measured by false positive rate. Multinomial Naive Bayes with Boolean
Attributes using n-gram lengths of two (Trial 5) had the lowest false positive rate of 1.87%, while Multi-
variate Bernoulli Naive Bayes using n-gram lengths of one (Trial 7) had the highest rate of 8.2%. In terms
of false negative rates, Multinomial Naive Bayes with Term Frequency Attributes using n-gram lengths of 2
(Trial 2) had the lowest rate of 1.56%, followed closely by Multinomial Naive Bayes with Boolean Attributes
using n-gram lengths of two (Trial 5). The highest rate of false negatives was found when using Multi-variate
Bernoulli Naive Bayes using n-gram lengths of one (Trial 7), at a rate of 6.09%.

8

Figure 1: False Positive Rate for Filters

Figure 2: False Negative Rate for Filters

5 Analysis

Table 1 shows the results of each of the three types of Naive Bayes classifiers using different lengths of
n-grams. All of the trials were run using the same training set and test set. A value of .95 was used for T,

9

the threshold at which a message would be marked as spam. Based on our results, Multinomial Naive Bayes
with Boolean Attributes using an n-gram length of 2 (Trial 5) had the best performance among the 9 filters.
It had the lowest false positive rate of 1.87% (28 of 1500 emails), and the second lowest false negative rate of
1.60% (72 of 4500 emails). The filter with the worst performance was Multi-variate Bernoulli Naive Bayes
using n-gram lengths of one (Trial 7), which had the highest rate for both false positives and false negatives.

For the filters that used the Multinomial Naive Bayes classifier, using Boolean attributes rather than Term
Frequency improved the performance of the filter. This fact was also noted by Metsis et al.[12], who point
out that Boolean attributes may give better performance if the attributes do not follow Poisson distributions.
Both of these filters also performed better than Multi-variate Bernoulli Naive Bayes, suggesting that the
Multinomial Naive Bayes performs better in general when categorizing messages in this way.

In terms of general trends, using n-gram lengths of two (2-grams) seemed to give the best results for
Multinomial Naive Bayes. It is intuitive that the addition of 2-grams would give the filter a performance
increase, since the filter would have twice as much information to use when determining the most interesting
tokens. However, it can be seen that for Multinomial Naive Bayes, the addition of 3-grams when finding
these tokens reduces the performance of the filter. This seems counter-intuitive, given that doing so adds
the same amount of information as adding 2-grams. This may be because the same three-word phrases
might be repeated more often in ham emails, while spam emails contain more variation on what three word
phrases they contain. This would make the frequency of 3-gram tokens in the spam set too low to be
meaningful to the filter. For Multi-variate Bernoulli Naive Bayes, however, the addition of 3-grams improves
the performance of the filter with regards to false positives. This would imply that the cause lies in the
algorithm rather than trends in the datasets. More work is needed to determine the exact cause of this
behavior. But, it must be noted that even though adding 3-grams reduces the performance of the filter when
compared to 2-grams, it is still a net performance increase when compared to single-word tokens for all three
types of Naive Bayes filters. This shows that the addition of n-grams gives better performance and should
be implemented, despite the additional space and processing required.

Compared to the results of Paul Graham [6], our results fall somewhat short. In his article, he reports a
false positive rate of 0% and a false negative rate of .5%. However, these results are lacking in both size and
scope; Graham only runs his filter on his own mailbox and does not release the number of test and training
messages used. He does mention that a lot of his emails have programming examples in it which could help to
explain his improved performance. In our dataset, we use emails that are preprocessed meaning that we only
use text that is found in the email body or the subject line of the email. Graham utilizes the javascript and
html tags in an email when he creates his word and n-gram tokens. This could be another explanation for
his improved performance in comparision to our test results. Compared to other research groups, however,
such as Metsis et al.[12] and Hovold [8], similar rates of false positives and negatives were found. It seems
that more effective filters must include more filtering techniques than exclusively Naive Bayesian filtering,
such as whitelists and blacklists.

6 Conclusion and Future Work

In this paper we have described several procedures using different Naive Bayes classifiers for filtering
spam emails from legitimate emails. We also explored using n-grams with these different types of Naive
Bayes spam filters. Our goal was to ultimately to find the spam filter that classifies ham and spam emails
with the fewest false negatives and with the fewest false positives. Our results indicate that the addition
of n-grams of length 2 and 3 improve performance noticably, with an n-gram length of 2 being the most
effective. Of the Naive Bayes classifiers we tested, Multinomial Naive Bayes with Boolean Attributes was
found to be the most effective. These results agree with those of Metsis et al.[12].

It might be beneficial to experiment with n-gram lengths greater than 3 in the future for better results.
Word sequences longer than 3 words could provide useful phrases that would easily distinguish an email as
either ham or spam. Another technique to improve our Naive Bayes filters would be to introduce whitelists
and blacklists. These lists could reduce our false positive rates by always classifying emails from reliable
email users as ham and false negative rates by always classifying emails from untrustworthy email users as

10

[6] Graham, P. A plan for spam, 2002.

[7] Hird, S. Technical solutions for controlling spam. proceedings of AUUG2002 (2002).

[8] Hovold, J. Naive bayes spam filtering using word-position-based attributes. In CEAS (2005), pp. 41–
48.

[9] Kanaris, I., Kanaris, K., Houvardas, I., and Stamatatos, E. Words versus character n-grams
for anti-spam filtering. International Journal on Artificial Intelligence Tools 16, 06 (2007), 1047–1067.

[10] Katirai, H. Filtering junk e-mail: a performance comparison between genetic programming and näıve
bayes. Unpublished manuscript: citeseer. nj. nec. com/katirai99filtering. html 10 (1999).

[11] Metsis, V., Androutsopoulos, I., and Paliouras, G. The enron-spam datasets.

[12] Metsis, V., Androutsopoulos, I., and Paliouras, G. Spam filtering with naive bayes-which naive
bayes? In CEAS (2006), pp. 27–28.

[13] O’Brien, C., and Vogel, C. Spam filters: bayes vs. chi-squared; letters vs. words. In Proceedings of
the 1st international symposium on Information and communication technologies (2003), Trinity College
Dublin, pp. 291–296.

[14] Prakash, V. V. Vipul’s razor. URL: http://razor. sourceforge. net (2007).

[15] Rao, J. M., and Reiley, D. H. The economics of spam. The Journal of Economic Perspectives 26,
3 (2012), 87–110.

[16] Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. A bayesian approach to filtering junk
e-mail. In Learning for Text Categorization: Papers from the 1998 workshop (1998), vol. 62, pp. 98–105.

[17] Schneider, K.-M. A comparison of event models for naive bayes anti-spam e-mail filtering. In Pro-
ceedings of the tenth conference on European chapter of the Association for Computational Linguistics-
Volume 1 (2003), Association for Computational Linguistics, pp. 307–314.

[18] Tatyana Shcherbakova, Maria Vergelis, N. D. Spam and phishing in q3 2015, 2015. Accessed:
2016-04-23.

[19] Vixie, P., and Rhyolite, L. Distributed checksum clearinghouse, 2007.

8 Appendix

8.1 Training set Parse Function

#de f ine d i c t i ona ry as a new d i c t i ona ry which w i l l contain a l l tokens
#de f ine ntokens as an in t e g e r from 1 to 3 repre s en t ing n−gram l eng t h

for each t r a i n i n g emai l :
i f (ntokens >= 1) : #for n−grams of l eng t h 1

for l i n e in f i l eOb j e c t :
tokens = l i n e . s p l i t ()
for token in tokens :

token = token . r s t r i p (’) ? : . , −∗ ; ”\ ’\n ’) #remove punctuat ion
token = token . l s t r i p (’ (.@, −? ; :∗”\ ’\n ’) #charac t e r s and
token = token . r ep l a c e (’ \0 ’ , ””) #in v a l i d charac t e r s
i f token == ”” :

continue
e l i f token in d i c t i ona ry :

d i c t i ona ry [token] += 1
else :

12

d i c t i ona ry [token] = 1

i f (ntokens >= 2) : #for n−grams of l eng t h 2
f i l eOb j e c t . seek (0)
prevToken = ”” #va r i a b l e to ho ld l a s t v a l i d word
for l i n e in f i l eOb j e c t :

tokens = l i n e . s p l i t ()
for token in tokens :

token = token . r s t r i p (’) ? : . , −∗ ; ”\ ’\n ’) #remove punctuat ion
token = token . l s t r i p (’ (.@, −? ; :∗”\ ’\n ’) #charac t e r s and
token = token . r ep l a c e (’ \0 ’ , ””) #in v a l i d charac t e r s
i f token == ”” :

continue
e l i f prevToken == ”” :

prevToken = token
e l i f (prevToken + ” ” + token) in d i c t i ona ry :

twoToken = prevToken + ” ” + token
d i c t i ona ry [twoToken] += 1
prevToken = token

else :
twoToken = prevToken + ” ” + token
d i c t i ona ry [twoToken] = 1
prevToken = token

i f (ntokens >= 3) : #for n−grams of l eng t h 3
f i l eOb j e c t . seek (0)
prevToken1 = ”” #va r i a b l e s to ho ld prev ious words
prevToken2 = ””
for l i n e in f i l eOb j e c t :

tokens = l i n e . s p l i t ()
for token in tokens :

token = token . r s t r i p (’) ? : . , −∗ ; ”\ ’\n ’) #remove punctuat ion
token = token . l s t r i p (’ (.@, −? ; :∗”\ ’\n ’) #charac t e r s and
token = token . r ep l a c e (’ \0 ’ , ””) #in v a l i d charac t e r s
i f token == ”” :

continue
e l i f prevToken2 == ”” :

prevToken2 = token
e l i f prevToken1 == ”” :

prevToken1 = prevToken2
prevToken2 = token

e l i f (prevToken1 + ” ” + prevToken2 + ” ” + token) in d i c t i ona ry :
i f prevToken1 == ”” :

prevToken1 = prevToken2
e l i f prevToken2 == ”” :

prevToken2 = token
else :

threeToken = prevToken1 + ” ” + prevToken2 + ” ” + token
d i c t i ona ry [threeToken] += 1
prevToken1 = prevToken2
prevToken2 = token

else :
i f prevToken1 == ”” :

prevToken1 = prevToken2
e l i f prevToken2 == ”” :

prevToken2 = token
else :

threeToken = prevToken1 + ” ” + prevToken2 + ” ” + token
d i c t i ona ry [threeToken] = 1
prevToken1 = prevToken2
prevToken2 = token

8.2 Finding P (W = w|C = S for Each Token in Training Set

#de f ine wordsSpam as the d i c t i ona ry conta in ing P(W=w |C=S) fo r each word

13

#spam i s the d i c t i ona ry conat in ing token : f requency pa i r s f o r the spam se t
#ham i s the d i c t i ona ry conat in ing token : f requency pa i r s f o r the ham se t

spamLength = len (spam)
hamLength = len (ham)

sumSpam = 0
for key in spam :

sumSpam += spam [key]

sumHam = 0
for key in ham:

sumHam += ham[key]

for key in spam :
n = 0
inHam = False

i f key in ham:
n = spam [key] + ham[key]
inHam = True

else :
n = spam [key]

i f n > 5 : #only count words t ha t occur more than 5 times t o t a l
i f inHam :

top = f loat (1+spam [key]) / f loat (spamLength+sumSpam)
bottom = f loat (1+spam [key]) / f loat (spamLength+sumSpam)

+ f loat (1+ham[key]) / f loat (hamLength+sumHam)
wordsSpam [key] = top / bottom

else :
wordsSpam [key]=.99 #value f o r words only in spam

for key in ham:
i f key not in wordsSpam and ham[key] > 5 :

wordsSpam [key] = 0 .01 #value f o r words only in ham

8.3 Multinomial Naive Bayes with Term Frequency Attributes code

#miw i s an array conta in ing the most i n t e r e s t i n g words o f the t e s t email
#dup l i c a t e s i s a d i c t i ona ry conta in ing word : f requency pa i r s f o r each token
pcs = f loat (numSpam)/ f loat (numSpam+numHam)
pch = f loat (numHam)/ f loat (numSpam+numHam)
productSpam = 1.0
productHam = 1.0
for word in miw :

productSpam ∗= (wordsSpam [word [0]] ∗∗ dup l i c a t e s [word [0]])
productHam ∗= ((1−wordsSpam [word [0]]) ∗∗ dup l i c a t e s [word [0]])

p = pcs ∗ productSpam / (pcs ∗ productSpam + pch ∗ productHam)
i f p > . 9 5 : #T=.95

print ”spam”
else :

print ”ham”

8.4 Multinomial Naive Bayes with Boolean Attributes code

#miw i s an array conta in ing the most i n t e r e s t i n g words o f the t e s t email
pcs = f loat (numSpam)/ f loat (numSpam+numHam)
pch = f loat (numHam)/ f loat (numSpam+numHam)
productSpam = 1.0
productHam = 1.0
for word in miw :

productSpam ∗= wordsSpam [word [0]]
productHam ∗= (1−wordsSpam [word [0]])

p = pcs ∗ productSpam / (pcs ∗ productSpam + pch ∗ productHam)
i f p > . 9 5 : #T=.95

14

print ”spam”
else :

print ”ham”

8.5 Multi-variate Bernoulli Naive Bayes code

#miw i s an array conta in ing the most i n t e r e s t i n g words o f the t e s t email
#dup l i c a t e s i s a d i c t i ona ry conta in ing word : f requency pa i r s f o r each token
pcs = f loat (numSpam)/ f loat (numSpam+numHam)
pch = f loat (numHam)/ f loat (numSpam+numHam)
productSpam = 1.0
productHam = 1.0
for word in miw :

productSpam ∗= (wordsSpam [word [0]] ∗∗ (dup l i c a t e s [word [0]]\%2)) ∗
((1 − wordsSpam [word [0]]) ∗∗ (1 − (dup l i c a t e s [word [0]] \%2)))

productHam ∗= ((1−wordsSpam [word [0]]) ∗∗ (dup l i c a t e s [word [0]]\%2)) ∗
(wordsSpam [word [0]] ∗∗ (1 − (dup l i c a t e s [word [0]] \%2)))

p = pcs ∗ productSpam / (pcs ∗ productSpam + pch ∗ productHam)
i f p > . 9 5 : #T=.95

print ”spam”
else :

print ”ham”

15

