
Efficient Optimistic Concurrency Control

Using Loosely Synchronized Clocks

Atul Adya Robert Gruber Barbara Liskov

Laboratory for Computer Science,
Massachusetts Institute of Technology,

545 Technology Square, Cambridge, MA 02139
{adya, gruber, liskov, umesh}@lcs .mit .edu

Umesh Maheshwari

Abstract

This paper describes an efficient optimistic concurrency control

scheme for use in distributed database systems in which objects are

cached and manipulated at client machines while persistent storage

and transactional support are provided by servers. The scheme

provides both serializability and external consistency for committed

transactions; it uses loosely synchronized clocks to achieve global

serialization. It stores only a single version of each object, and

avoids maintaining any concurrency control information on a per-

object basis; instead, it tracks recent invalidations on a per-client

basis, an approach that has low in-memory space overhead and no

per-object disk overhead. In addition to its low space overheads,

the scheme also performs well. The paper presents a simulation

study that compares the scheme to adaptive callback locking, the

best concurrency control scheme for client-server object-oriented

database systems studied to date. The study shows that our

scheme outperforms adaptive callback locking for low to moderate

contention workloads, and scales better with the number of clients.

For high contention workloads, optimism can result in a high abort

rate; the scheme presented here is a first step toward a hybrid scheme

that we expect to perform well across the full range of workloads.

1 Introduction

In a distributed object-oriented database system in which

persistent storage for objects is provided at server machines

and applications run at clients, client caching is needed

to provide good performance for applications. This paper

presents an efficient concurrency control scheme for use

in such a system. The scheme provides serializability

for transactions, and also external consistency [12] so that

transaction commit order as observed by clients is the

This research was supported in part by the Advanced Research Projects

Agency of the Department of Defense, monitored by the Office of Navat

Research under contract NOO014-91-J-4136, and in part by the National

Science Foundation under Grant CCR-88221 58,

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

?Machinery. o copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD’95,San Jose, CA USA
G 1995 ACM 0-89791-731 -6/95/0005..$3.50

same as the real time order. The scheme is an optimistic

algorithm [18] that uses backward validation [17]. It

performs better than other concurrency control algorithms

for an important class of workloads — when there is low to

moderate contention between user transactions.

The scheme uses timestamps generated from local clocks

to define the serial order of transactions; we assume clocks

are loosely synchronized, which is the case in networks

today [24]. This approach is simpler and cheaper than

previous techniques [2, 6, 14, 25]; other techniques are

discussed in Section 3.6. More importantly, timestamps

allow us to truncate transaction history and still avoid

spurious aborts. By reading its local clock, a server can

estimate the range of timestamps of transactions that are

likely to request a commit there; only information needed

for those transactions is retained. Our technique has the

desirable property that we depend on the assumption about

synchronization only for performance; if clocks get out

of synch we may abort some transactions that could have

committed but we will never commit transactions that should

have aborted. Our use of synchronized clocks here is similar

to their use in other distributed algorithms [20], but to our

knowledge this is the first time that they have been used in

this way in a concurrency control scheme.

The scheme has good performance in both space and

time. It maintains only a single persistent version per

object and requires no disk storage for concurrency control

information. Its primary memory requirements are low:

it only needs to retain information about objects that have

been modified recently, and about transactions that are in

the process of committing or that have committed recently.

Our storage requirements are roughly equivalent to those

of distributed pessimistic schemes; we compare them to

the storage requirements of other optimistic schemes in

Section 3.6.

The best concurrency control method proposed for client-

server object-oriented systems prior to our work is adaptive

callback locking [4]. Our technique outperforms adaptive

callback locking in workloads in which there is low to

moderate contention; we present the results of simulation

studies that show this in Section 4. The reason for

our good performance is that we send fewer concurrency

23

control messages than other schemes. Other than the

standard 2-phase commit messages required of all distributed

schemes, no messages are sent for concurrency control while

transactions are running or committing. After a transaction

commits, servers send invalidation messages to clients that

have obsolete copies of objects in their caches. However,

these messages are piggy-backed on other messages already

being sent.

Contention causes transactions to abort in our scheme (as

it does in all optimistic methods) whereas in a pessimistic

approach contention only causes delays (and occasional

deadlocks). Therefore, our approach is not appropriate when

there is high contention. We plan to address this failing

by using a hybrid scheme in which the system switches

dynamically to a pessimistic approach for high-contention

objects [15]. The design of the hybrid approach and its

performance analysis is ongoing [16].

The remainder of the paper is organized as follows.

Section 2 describes the environment for our work. Section 3

describes our algorithm and compares it to other work on

optimistic concurrency control. Section 4 compares our

performance to adaptive callback locking. We conclude with

a discussion of what we have accomplished.

2 The Environment

Our work has been done in the context of the Thor object-

oriented database [21, 22]. Thor allows user applications

to share a universe of persistent objects. Objects are

encapsulated for safe sharing, and applications access them

by invoking methods that observe or modify their object’s

state. Application computations occur within transactions so

that persistent objects can be maintained consistently despite

concurrent accesses from multiple applications and possible

failures. Each application runs a single transaction at a

time. It specifies when to commit the current transaction: the

transaction includes all methods invoked by the application

since the last commit point.

Applications run on client machines. Persistent objects,

however, are stored at servers (on the server disks). There

may be many servers; the server where an object resides

is referred to as its owner, New persistent objects may be

created as a result of the methods invoked by an application,

and objects can migrate between servers. Both object

creation and object migration require transaction support but

we ignore them in this paper; see [1] for a discussion of these

issues.

To improve performance, methods are executed on the

client machine using locally cached copies of objects.

Objects are fetched from their servers when needed, and
when an object is fetched, a number of related objects are

prefetched [7]. The server tracks the objects in the client

cache; for each client, it maintains a table called the cached

set that records this information. The cached sets are used as

part of transaction processing as discussed below; they are

also used for other purposes, such as garbage collection [23].

The code that manages the cache on the client machine is

part of Thor and is called a~ront end. Each server has a cache

of objects in main memory, which it uses to satisfy fetch

requests from clients. The organization is shown in Figure 1.

““E””-””Ap
ElServer

BDisk

ElServer

mDisk

..!

Figure 1: The client-server model of Thor.

The front end keeps track of objects read and written by the

current transaction T at its client. When the client requests a

commit, the front end gathers the data relevant to T

● validation information — identity of each object used by

T along with the type of access (read or write)

o installation information — modified copies of objects

This information is collected only for mutable objects

(objects whose state can change) since concurrency control

is not necessary for immutable objects. Thor makes this

optimization possible by distinguishing between the two

kinds of objects.

To commit a transaction, the front end sends its installation

and validation information to a server that is the owner of

some of the objects used by the transaction. This server

commits the transaction unilaterally if it owns all objects

used by the transaction. Otherwise, it acts as the coordinator

of a commit protocol with the other owners, called the

participants. We use a standard 2-phase protocol [13]. We

describe the protocol briefly here to provide a context for our

scheme.

In phase 1, the coordinator sends prepare messages

containing the validation and installation information to the

participants. Each participant tries to validate the transaction;

we will describe how validation works in Section 3. If

validation succeeds, the participant logs the installation

information on stable storage and sends a positive response
to the coordinator; otherwise it rejects the transaction. If all

participants respond positively, the coordinator commits the

transaction by logging a commit record on stable storage.
Then it notifies the client of its decision. Note that the delay

observed by the client before it can start the next transaction

is due to phase 1 only; phase 2 happens in the background.

Phase 1 includes two stable log updates, but the optimizations

suggested by Stamos [26] can reduce this to a single log

update.

24

In phase 2, the coordinator sends commit messages to the

participants. On receiving a commit message, a participant

installs new versions of its objects that were modified by

that transaction (so that future fetches see the updates),

logs a commit record on stable storage, and sends an

acknowledgement to the coordinator,

If a transaction has not modified any object at some

participant, we say it is read-only at the participant. Such a

participant has no installation information to log, and does not

need a commit message from the coordinator during phase 2.

If a transaction has not modified an object at any

participant, we say it is read-only. For such transactions,

no stable information needs to be logged and phase 2 is

not required. Some other concurrency control schemes

(e.g., callback locking and some multi-version schemes [2])

guarantee that all read-only transactions are serializable,

so committing such transactions does not require any

communication with the servers. Our scheme, however,

does require validation for read-only transactions, and

therefore phase 1 messages must be sent to the participants.

Fortunately, the coordinator of a read-only transaction does

not need to be reliable, and does not need to use stable

storage. Therefore, the front end can act as the coorchator:

it sends the prepare messages to the participants and collects

their responses. This saves a message round trip, reducing

the latency for committing read-only transactions to a single

message round trip (and no stable updates).

After a read-write transaction for some client C has

committed at a server, the server sends invalidation messages

to clients other than C that are caching objects installed by

that transaction; it determines what invalidation messages to

send by looking at the cached sets. These messages are not

required for correctness but they have two desirable effects:

1. If a front end receives an invalidation message for an

object x that has been read by the current transaction, it

simply evicts x, thus avoiding a potential abort that would

otherwise result from reading x later.

2. If the current transaction has already read x, the front end

aborts the transaction immediately, thus limiting wasted

work (since the transaction would abort later any way).

An additional benefit of this approach is that it offloads some

of the validation work from the server to the front ends.

Front ends send acknowledgements after processing

invalidation messages; when the server receives the ack, it

removes the information about the invalidated objects from

that client’s cached set. Both invalidation messages and

acks are piggy-backed on other messages being exchanged

between the client and server. There is always a certain

amount of such traffic: in addition to fetch and commit

requests and replies, servers and clients exchange “I’ m
alive” messages for failure detection purposes. Therefore,

our scheme does not cause extra message traffic, although

messages may be bigger.

Although the cached sets are maintained for each client,

their space overhead is not large because we store it at a coarse

granularity. Objects are clustered in groups; the cached

set contains the identifiers of the groups containing objects

cached at a client rather than individual object identifiers.

The client cache may not contain all objects in a group and

therefore some unnecessary invalidation messages may be

sent (piggy-backed on other messages). These messages

do not cause any spurious aborts at the client, however,

since an invalidation message causes an abort only if the

corresponding object is being used at the client.

3 An Efficient Validation Scheme

The purpose of validation is to prevent the commit of any

transaction that would violate the consistency requirements.

Two desirable consistency properties traditionally provided

by transactions are:

1. Serializability: The committed transactions can be placed

in a total order, called the serialization order, such that

the actual effect of running the transactions is the same

as running them one at a time in that order.

2. External consistency: The serialization order is such that,

if transaction S committed before T began (in real time),

S is ordered before T.

Our scheme uses backward validation [17] to preserve

consistency: a validating transaction T is checked against

all transactions that have already validated successfully.

This section describes how we perform validation. It

assumes the validation algorithm is embedded in the commit

protocol described in Section 2. It describes our algorithm

under the assumption that servers do not fail; we discuss

how to tolerate server crashes in Section 3.5. We describe a

sequential algorithm. As we discuss below, our validation

scheme uses only in-memory data structures; validation

can be performed quickly (e.g., without disk delays), and

therefore a parallel algorithm is not required.

3.1 Global Serialization

In a distributed system, transactions that have read and

modified objects at multiple servers must be serialized in

the same order at all servers. We order transactions in a

new way: we use timestamps taken from real clocks. (The

ordering techniques used by some other optimistic schemes

are discussed in Section 3.6.) Our scheme takes advantage

of the presence of loosely synchronized clocks in distributed

systems, Loose synchronization implies that the clocks at

different nodes in the network may differ by at most a small

skew (say, a few tens of milliseconds). The presence of

such clocks is a reasonable assumption for current systems;

protocols such as the Network Time Protocol [24] provide

such a facility. These clocks simplify our algorithm and,
since their values are close to real time, they allow us to

make time-dependent design decisions and to reason about

the performance of our scheme.

25

Each transaction T is assigned a timestamp T.ts by its

coordinator when the coordinator receives the commit request

from the client. The timestamp consists of the local time

at the coordinator augmented with the coordinator’s server

ID to make it globally unique: T.ts = (time, server-ID).

Timestamps are totally ordered by the time field, with ties

resolved using the server ID. Transactions are serialized in

timestamp order.

After assigning a timestamp to transaction T, the coor-

dinator sends a prepare message to each participant P; the

message includes the following validation information:

●

●

●

●

T.ts: the timestamp of T.

T.ReadSet: IDs of objects at P that were read by T.

T.WriteSet: IDs of objects at P that were modified by T.

The identity of the client where T ran.

Transactions S and T conflict if one has modified an object

that the other read or modified. Upon receiving the validation

information, each participant performs checks to ensure that

conflicting transactions can be serialized in timestamp order.

To simplify our algorithm, we arrange the read set to always

contain the write set, i.e., if a transaction modifies an object

but does not read it, we enter the object in the read set anyway.

This implies that some transactions might exhibit spurious

read-write conflicts, but aborts due to such spurious conflicts

are rare because it is unlikely that a transaction writes an

object without reading it.

Each participant uses the validation information sent by

the coordinator to validate the transaction locally. It records

the validation information of all successfully validated

transactions in a validation queue, or VQ. The validation

information of the validating transaction is compared with the

records in the VQ to detect conflicts and ensure serializability

and external consistency. For now, assume that validation

records are never removed from the VQ.

If an incoming transaction T fails a validation check against

a prepared transaction S, the participant aborts T by sending

a negative ack to the coordinator. It cannot abort S instead

of T because, in the 2-phase commit protocol, a participant

cannot unilaterally abort a prepared transaction. Thus, the

participant has to abort T even if it has an earlier timestamp

than S.

The rules for validation differ according to the timestamp

order between S and T. The next two sections describe these

checks.

3.2 Checks Against Later Transactions

In this section, we consider the checks performed by each

participant to validate a transaction T against a validated

transaction S that has a later timestamp.

Since different transactions may be timestamped at differ-

ent coordinators, and clocks are only loosely synchronized,

a transaction T that begins after some other transaction S

committed may actually receive a timestamp that is earlier

than that of S (although this situation is very unlikely). In

this case, T must not be committed if it read any object that

S modified, since that would violate external consistency.

We preserve external consistency by ensuring that T fails

validation if it conflicts with a validated transaction S that

has a later timestamp:

For each validated transaction S with timestamp later

than T, we check that T did not read any object that S

modified, and that T did not modify any object that S

read. We call this the later-conflict check.

Here is an informal argument why this check provides

external consistency while preserving serializability: If

S committed before T began, S must have validated

successfully at all its participants before T arrived for

validation at any of them. If S has a later timestamp than

T, the later-conflict check confirms that T does not conflict

with S at any common participant. In this case, it does not

matter whether T is serialized before or after S: both orders

are valid serial orders, but while one is consistent with the

timestamp order (T before S), it is the other that is externally

consistent (S before T). Thus, the existence of a serialization

order that is externally consistent is guaranteed, although it

may be different from the timestamp order.

The later-conflict check is actually stronger than would be

required for serializability alone: it might cause a transaction

to abort even if it is serializable. We expect such aborts to

be rare. They can happen only when the two conflicting

transactions start to commit within the same “time window.”

The size of this window depends on message delays and clock

skews. We conjecture that the window is usually very small

(in the absence of failures such as clocks out of synch or

network partitions), and therefore relatively few transactions

start committing within the same window. The probability

that some transactions within such a small group conflict in

their use of some object is very small, and spurious aborts

are possible only for those transactions and only if the one

that reads is given a lower timestamp than the one that writes

and their prepare messages arrive at some participant in the

wrong order,

3.3 Checks Against Earlier Transactions

Now we consider the checks performed by each participant

to validate a transaction against validated transactions that

have earlier timestamps. For each validated transaction S
with timestamp earlier than T

1. S read object x and T modified x: No check is necessary

because S could not have read the version of x written by

T, since T is not yet committed.

2. S modified object x and T read x: We ensure that T read

the version of x written by S or a later transaction. There

are two cases:

(a) If S is not committed, the check fails because T could

not have read the result of an uncommitted transaction.

26

(b) If S is committed, the outcome depends on the version

T read. We call this the version check.

The version check is the only check that depends on the

specific versions of objects used by the validating transaction.

Actually, we employ a simpler check, the current-version

check:

Check that T has read the latest installed version of x.

The current-version check is safe because it is at least as

strong as the version check. It might seem at first that

the current-version check is stronger than the version check

and would cause some transactions to fail validation that

might have succeeded with the version check, but this is

not so. Consider a transaction T that read x and has

passed the later-conflict check discussed in the previous

section, i.e., T has been validated successfully against all

validated transactions with later timestamps. This implies

that no validated transaction with a later timestamp could

have written x. Now, if T passes the version check, it must

have read a version at least as recent as that installed by any

committed transaction with an earlier timestamp. The above

two claims together imply that T must have read the latest

version, and therefore will pass the current-version check.

The current-version check could be performed by associat-

ing a version number (such as the timestamp of the installing

transaction) with each object, The version number of the

object read by T can then be checked against that installed by

S. However, storing a version number per object consumes

disk storage as well as space in the server cache.

Instead, we perform the current-version check without

using version numbers. Recall that the server maintains a

cached set for each client to keep track of the objects that a

client is caching; it uses the set to recognize when to send

invalidation messages. The server now also maintains an

invalid set for each client; the invalid set identifies those

objects in the cached set that have been invalidated. As part

of committing a transaction, the server adds the appropriate

object identifiers to the invalid sets of other clients. To check

whether a validating transaction read the latest version of

an object, the participant checks the invalid set of the client

where the transaction ran and rejects the transaction if it used

an object in that invalid set.

As mentioned earlier, when a front end receives an

invalidation message, it drops the listed objects from its

cache, aborts the current transaction if it used one of those

objects, and then sends an acknowledgement to the server.

On receiving the ack, the server removes the listed objects

from the invalid set of the client. Invalid sets will be small

(just a few entries) because of the acks (see Section 4 for

some data that confirm this expectation). The only time a

set might be large is if the client has failed or the server and

client cannot communicate. Failures are expected to be rare,
and furthermore if a server cannot communicate with a client

for some period of time (e.g., a few minutes), it shuts the

client down; our shut down protocol is discussed in [23].

Thus, the memory requirements for validation are quite

modest, modest enough that we can keep the needed

information in primary memory. We require cached sets,

invalid sets, and the VQ. We have already argued that the

cached sets and invalid sets are small. The next section

discusses how to keep the VQ small as well.

3.4 Truncation

In a practical implementation, the validation records for pre-

viously validated transactions cannot be retained indefinitely.

Old validation records need to be truncated from the VQ to

make space for new ones. Truncation is also necessary be-

cause otherwise transactions will need to be validated against

a growing number of validation records.

We truncate information as follows. We never remove

information about read-write transactions that have not yet

committed. We do remove information about committed

transactions, however, and also about read-only transactions.

The invalid sets provide a compact summary of the effect

of modifications of committed transactions on running

transactions. To capture the information about what was read

by removed transactions, we maintain a threshold timestamp.

This timestamp is guaranteed to be greater than or equal to

the timestamps of all transactions whose information has

been removed from the VQ. Thus, our scheme maintains the

following invariant:

The validation record is retained for all uncommitted

read-write transactions and for all transactions with

timestamps above the threshold.

Note that the VQ may contain records for transactions with

timestamps below the threshold.

A transaction T timestamped below the threshold fails

validation. This additional validation check is called the

threshold check. The check is required because information

necessary for the later-conflict check has been discarded from

the VQ. On the other hand, for a transaction that passes the

threshold check, the earlier checks are sufficient.

The choice of whereto maintain the threshold is important:

setting it too low would result in undue retention of validation

records (a long VQ), and setting it too high would cause

transactions to fail the threshold check (spurious aborts).

The threshold should be kept as high as possible, yet low

enough that most transactions arriving for validation are still

timestamped above it. We take advantage of the fact that

our timestamps are based on loosely synchronized clocks to

establish such a level.

Recall that a transaction is timestamped by the coordinator

based on its local clock, and then the coordinator sends

prepare messages to the participants. If msg-delay

is the estimated bound on message delays (including

retransmissions) and skew is the bound on clock skews, the
timestamp of the arriving transaction will almost always

be later than the local time at the participant minus

(msg-delay+skew). Thus, it is desirable for threshold to

27

lag behind the local time by (msg.delay+skew). We refer

to this interval as the Threshold Interval. We truncate the

VQ periodically; at that point we compute a new threshold,

and then remove validation records for transactions whose

timestamp is lower than the new threshold, provided they are

committed or are read-only at this participant,

A simple alternative to a threshold that lags behind the

local time is to remove transactions from the VQ at their

commit point and set the threshold to the timestamp of the

latest committed transaction [1]. Given that the commit of

a distributed transaction is preceded by phase one messages

and log forces, chances are that this threshold level would

be sufficiently behind the local time to allow transactions to

pass the threshold check. However, single-site transactions

commit much faster than distributed transactions; removing

their validation records at commit time would lead to a high

threshold, causing distributed transactions to fail validation.

In summary, our scheme allows the threshold to be set at

a level lower than the timestamp of the latest committed

transaction. This improves the chances of a transaction

passing the threshold check. In particular, the threshold can

lag behind the local time by an interval that can be tuned to

tradeoff speedy truncation of validation records against the

likelihood that a transaction will pass the threshold check.

We have now described all of the validation checks

performed at each participant to validate a given transaction

~ Figure 2 summarizes these checks.

Threshold Check

If T.ts < Threshold then
Send abort reply to coordinator

Checks Against Earlier llansactions

For each uncommitted transaction S in VQ

such that S.ts < T.ts
If (S.WriteSet fl T.ReadSet # ~) then

Send abort reply to coordinator

Current- Version Check

% T ran at client C

For each object x in T. ReadSet

If x c C’s invalid set then

Send abort reply to coordinator

Checks Against Later Transactions

L.uter-Conjlict Check

For each transaction S in VQ

such that T.ts < S.ts

If (T. ReadSet fl S.WriteSet # +)

or (T. WriteSet (1 S.ReadSet # @) then

Send abort reply to coordinator

Figure 2: Validation Checks for Transaction T

3.5 Crash Recovery

When a server recovers from a crash, it must ensure that

transactions it validates after the crash are serializable with

transactions it validated before crashing. The straightforward

way to ensure this would be to log the validation information

(VQ and threshold) on stable storage, so that it can be

recovered after a crash. For read-write transactions, the

validation record can be logged along with the installation

information without causing any significant increase in the

latency. Read-only transactions, however, do not have any

installation information, so logging validation information

for them would increase their latency. Therefore, we do not

log validation information for such transactions.

When the VQ is recovered from the log after a crash,

the records of read-only transactions are missing. We can

accommodate the missing information if we can preserve

the truncation invariant given in Section 3.4. We do this as

follows. We maintain a stable threshold, which is always later

than the timestamp of any transaction that has ever validated

at the server. On recovery, the threshold is set to the logged

value of the stable threshold. This technique is similar to that

used for at-most-once messages in [20].

The stable threshold must be increased whenever the

timestamp of a validating transaction is later than its current

value. We avoid frequent updates to the stable threshold by

increasing it in jumps, e.g., setting it to one second ahead of

the current clock time, so that it does not need to be increased

for a number of subsequent transactions. Thus, most read-

only transactions do not need to log any stable updates to

the stable threshold. In fact, the stable threshold can be

increased whenever there is an opportunity to do so without

delaying any client, e.g., when the installation information of

a read-write transaction is logged, or in the background,

It is desirable to keep the stable threshold close to local

time plus some suitably chosen interval 6. If J is too small,

the stable threshold will need to be updated frequently; if it is

too large it may cause unnecessary aborts of transactions

after recovery. However, no matter what d is chosen,

failures may cause some transaction aborts after recovery

because information is missing, and we must make worst-

case assumptions: we must assume that the incoming

transaction with a timestamp below the threshold conflicts

with some transaction that committed before the crash, even

though it might not. Note that these aborts happen only when

recovery is very fast; otherwise, transactions with timestamps

earlier than the stable threshold will have aborted long before
recovery occurs.

Use of the stable threshold implies that there is no need

to log any information about reads. In fact our log contains

only installation information, which is sufficient to recover

the write information in the VQ.

The cached sets are also not maintained on stable storage.

Instead, the server maintains the addresses of clients that have

cached its objects. After a crash, the server communicates

with the clients and rebuilds their cached sets. (If it is unable

28

to communicate with one of the clients for some period, it

shuts the client down as discussed earlier.)

Invalid sets are recovered from the combination of the

installation information in the log and the recovered cached

sets. The sets may contain unnecessary entries, due to lost

acks. However, a simple protocol allows us to recover

the information from these lost acks. When a transaction

commits that causes invalidations, the server generates an

invalidation number that is stored in the transaction’s commit

record; later invalidation numbers are always larger than

earlier ones. The invalidation number is included in the

invalidation message, and the front ends remember the

number of the last invalidation they have acknowledged for

that server. This information is sent to the server along with

the cached set; this allows the server to discard all entries

from the invalid set that have been acknowledged by the

front end.

3.6 Comparison with Other Optimistic Schemes

Eswaran et al. [8], and later Kung and Robinson [18],

suggested the idea of using optimism for concurrency control.

Since then a number of optimistic schemes have been

discussed in the literature.

Other distributed schemes achieve a global serialization

order using atomic multicast [25] or logical clocks [2, 14].

Atomic multicast adds additional per-message overhead,

while logical clocks must be explicitly managed as part of

the two-phase commit, complicating the algorithm. The

scheme described in [6] used the following approach: To

validate a transaction T, a participant computes the set of

other validating transactions that T conflicts with, waits

for these to commit or abort, and then makes its commit

decision. This process can lead to deadlocks, which are

resolved with timeouts and retries during phase 1. Our use

of loosely synchronized clocks avoids all these problems;

more importantly, it also allows us to make time-dependent

decisions (e.g., about what transactions to remove from the

transaction history).

Optimistic schemes can be classified [17] into forward

and backward validation schemes. Backward validation

algorithms such as our scheme and those proposed in [2, 3,6,

18, 19, 25] validate a transaction against already-committed

transactions, while forward validation algorithms such as

02PL [10] validate a transaction against currently executing

transactions. (Both approaches also validate against other

validating transactions.) In a client-server system, forward

validation requires a validating transaction to contact all

clients that are caching updated objects, to obtain latches

on the cached copies. If a latch cannot be obtained, the

transaction aborts, otherwise it commits and releases the

latches (updating or invalidating the client caches). This

approach adds an additional validation phase to all commits,

even when only a single server is involved; moreover, the
delay incurred is observed by the committing client. In
contrast, backward validation just uses the standard 1 or 2

phases required for a single-site or distributed commit, as we

described for our scheme, and is therefore a better choice for

a client-server system.

Previous optimistic schemes have largely ignored imple-

mentation issues regarding time and space overheads. Some

schemes [2, 6, 18, 19] validate a transaction against all trans-

actions serialized between its start and end times; a large

amount of validation information must be stored to validate a

long transaction. In our scheme, the invalid set summarizes

most information required for validation in a compact way,

while our VQ is truncated according to a bound on expected

message delay; the information we maintain is not propor-

tional to transaction length, but still allows us to correctly

validate long transactions.

Multi-version schemes [2, 3, 19] keep multiple versions

of objects to provide a consistent view of the database to all

active transactions, making validation unnecessary for read-

otdy transactions. However, this approach has very high

space overheads. It also still requires validation of read-write

transactions (where our efficient scheme could be usefully

applied).

Most optimistic schemes store some concurrency control

information per object (e.g., the scheme in [2] maintains two

timestamp values with each version); we call this the version

number approach. Space overhead for version numbers can

be significant for small objects; e.g., most objects in the 007

benchmark [5] are smaller than 100 bytes; an 8 byte version

number would add 8’%ooverhead. Another potential problem

with version numbers is that they are usually cached and

uncached with the rest of their object state; missing version

numbers would then require disk reads during validation. In

contrast, all of our validation information can be kept in main

memory.

4 Simulation Study

This section presents a simulation study to demonstrate that

our optimistic concurrency control (OCC) outperforms an

adaptive-granularity callback locking scheme that caches

read locks with data at the clients; we call this scheme

ACBL1 (adaptive callback locking). Carey, Franklin, and

Zaharioudakis [4] demonstrated through simulation that

ACBL outperforms non-adaptive callback schemes. Earlier,

Franklin and Carey [9, 10] used simulation to explore a

number of different schemes, and concluded that a non-

adaptive callback scheme was the best overall choice; since

ACBL is even better, we decided to compare OCC directly

with ACBL.

ACBL is a page-based scheme that normally does locking

and callbacks at the page level, but switches to object

level locking and callbacks for pages that exhibit read-write

sharing. This approach is better than a pure page-based

scheme because it avoids “false conflicts,” which lead to

unnecessary waiting or aborts. It is better than a pure object-
based scheme because it avoids sending multiple write lock

~ACBL is the “p.’+AA” scheme m [’$]

29

requests or multiple callbacks for objects in the same page

for those cases where a single page-level lock or callback can

be used.

To compare OCC to ACBL, we designed a page-based

variant of OCC that we call AOCC (adaptive OCC). Like

ACBL, page-based caching is used at the server and at clients

and pages are sent in fetch replies. Also like ACBL, clients

can mark objects within cached pages as being “unavailable,”

and the cached set for the client tracks which pages are cached

at the client and which objects have been marked unavailable.

Invalid sets record the identifiers of invalidated objects and

these identifiers are sent in the invalidation messages. In

response to an invalidation message, a client’s front end drops

the object’s page if the current transaction isn’t using any

objects in that page; otherwise it just marks the invalidated

object as unavailable. The front end informs the server

of new page drops and newly unavailable objects in its

acknowledgement message, allowing the server to update the

cached set appropriately (and to remove entries the invalid

set).

AOCC’S adaptive marlddrop strategy is similar to the way

ACBL handles a callback. (Note that AOCC uses object-

level conflict detection; it only makes an object/page tradeoff

with respect to invalidations.) While it is not clear that this

approach is an improvement over the simple object marking

scheme described in Section 3, it is the right choice for this

study: with respect to measures such as client and server hit

ratios, fetches per commit, and disk reads per commit, AOCC

and ACBL have similar behavior, allowing us to focus on the

different concurrency control costs for the two schemes.

The rest of this section briefly describes our simulator and

then presents two sets of experiments. We first examine a

low to moderate contention workload, and show that AOCC

outperforms ACBL. We also show that AOCC scales better

than ACBL with the number of clients. We then examine

the question of read-only commits: AOCC requires a round-

trip at commit time to validate the transaction’s read set,

while ACBL does not. We show that the percentage of read-

only transactions must be very high for ACBL to outperform

AOCC.

4.1 System Configuration

For simplicity, we model a single server system that

services multiple clients. With only one server, distributed

2-phase commit is not required, and the validation checks

for our scheme reduce to just the invalid set check. We
believe the relative performance of AOCC vs. ACBL would

not change if we were to model multiple servers and a 2-phase

commit. The main differences between the two schemes

involve the number of round-trip message delays incurred

during transaction execution (ACBL incurs more message

delays) and the number of aborts that can occur due to

contention (AOCC is more susceptible to aborts). Adding

a two-phase commit adds an additional round-trip delay for

both schemes; this should not have a significant impact on

the relative performance.

Parameter Setting
Number of clients 1-24

Object size 100 bytes

Page size 4 Kbytes

Objects per page 40
Database size 1300 pages

Server disks 2

Server cache size soy. of DB

Server commit log size 50% of DB

Client cache size 25% of DB

Server CPU speed 50 MIPS

Client CPU speed 25 MIPS

Disk setup cost 10000 cycles

Fetch disk access time 1600 psecs / Kbyte

Installation disk access time 1000 psecs I Kbyte

Fixed network cost 10000 cycles

Variable network cost 2500 cycles / Kbyte

Network bandwidth 80 Mbits/ sec

Cache lookup 300 cycles

Rrxister / Unrezister 300 cvcles
I .

Validation time per object 0-300 cycles

Deadlock detector freauencv 0.01 seconds I

I Cost of deadlock detection \ O cvcles I

Figure 3: System and Resource Parameters and Settings

Figure 3 shows the relevant system parameters for our

simulator. Initiating a disk or network access (send or

receive) has a fixed CPU overhead; the network has an

additional charge per Kbyte. For fetches that miss in the

server cache, a disk read is required; the throughput chosen

assumes clustered client access patterns, which results in a

good amortized read cost. Installation of committed updates

occurs out of a large in-memory commit log in our system,

and can be scheduled very efficiently. (For the details of the

in-memory log and the server’s use of the disk, see [1 l].)

The register/unregister cost is used to model the work done

at the server to update a client’s cached set; lock maintenance

is included in this registration cost for ACBL. To be

conservative in favor of ACBL, it is not charged any cycles for

deadlock detection, while we do charge AOCC for commit-

time validation of each identifier in the read set (the cost is

proportional to the actual size of the client’s invalid set).

As in the original ACBL study, we chose a relatively small

database size to allow us to simulate client and server caches

that are a large fraction of the total database size. It is the

relative sizes of the caches and the database, along with

the characteristics of the workload, that are important for
comparing the different schemes, and not the actual sizes

involved.

Figure 4 shows the relevant parameters for our workload

generator. The database is split into regions: there is a

special shared region containing objects used uniformly by

all clients, per-client private regions mostly used by the

“owning” client, and a final unclaimed area (the remainder

of the database). There are three kinds of accesses: private

accesses go to a client’s own private region, shared accesses

30

o~

Clients

Throughput

o-

Clients

Message Traffic

03

00
~.,,,.

— AOCC
-*-. ACBL

- ---=
5 10 20

Clien;

Abort Rate

Figure 5: SWHOTCOLD: Low To Moderate Contention Workload

I Parameter I Setting I

Pagesper private region 50

Pages in shared region 50

Private access mob. 70%

Shared access prob. 10%

Rest of db access prob. 20%

Private write prob. 5%

Shared write prob. 5%

Rest of db write prob. 5%

Average trans. size 200 objects

Cluster size 5-15 objects

Read accessthink time 50 cycles I byte

Write accessthink time 100 cycles / byte
Think time between trans. o

Percent forced read-onlv o% - 100%

Figure 4: Workload Parameters and Settings

go to the shared region, and rest-of-database accesses go

anywhere but the shared region or the client’s own private

region. Access and write probabilities are given for each

type of access. In addition, accesses can be clustered within

a page: once an appropriate page is chosen, a clustered set

of accesses within this page occurs. (For the settings given,

transactions average 200 object accesses total and 10 objects

per page; thus they access 20 pages on average.)

Clients execute transactions continuously, applying a

sequence of read and write accesses as determined by the

workload generator. If a transaction aborts it is restarted

immediately with the same sequence of accesses. In the case

of an abort in AOCC, for those objects that the client read

that are invalid, if the server is caching the current object state

or it is available in the in-memory log, then the new state is

sent with the abort reply and the object is removed from the

client’s invalid set; since the invalid set is also sent, all invalid

cached objects are either updated or removed from the cache
when the abort reply is received.

For each read or write access, some “think time” is charged

at the client; this models local computation performed as part

of the read or write. (The think times are per byte; multiply

by 100 for the object size used here.)

The workload settings shown are similar to the HOTCOLD

workload in [4], except for the addition of a 50 page shared

region; thus we call this the SIVHOTCOLD workload. We

added the shared region because we believe that both uniform

and biased page sharing is likely to occur in real workloads.

While conflicts can occur over private pages due to rest-of-

database accesses, these pages are almost always in use only

at their own client; in contrast, shared pages are accessed

uniformly, and are more likely to be used concurrently by

multiple clients. It is possible to specify a percentage of the

transactions to be forced read-only; this feature is used for

the second set of experiments.

A simulator run involves 50000 commits, with results

reported at 5000-commit intervals; all graphs have error bars

for the 95% confidence interval.

4.2 Low-To-Moderate Contention

Figure 5 present the results for the SH/HOTCOLD with a

70/10/20 access split (private/shared/rest-of-db) and a 5%

write probability for all accesses. First examine the left two

graphs, which show throughput in commits per second and

message traffic expressed as the number of messages per

commit. The number of messages sent is a good predictor

of the relative performance of the two schemes. AOCC and

ACBL both send fetch messages when an access misses in

the client cache; the two schemes have similar client cache

behavior, and perform roughly the same number of fetches.

These are the only messages AOCC uses prior to commit.

In contrast, for a write access ACBL requires at least one

message round-trip to acquire a write lock, plus callbacks to

other clients caching the object. If a page-level write lock is

acquired, further writes to other objects in the page do not

require messages, otherwise each new write access within the

page requires a new lock request (and new callbacks).

We find that AOCC outperforms ACBL across a range

of parameter settings, as long as contention remains in the

low to moderate region, with the amount of improvement

31

~

I
—AOCC

“$,0 -*-. ACBL

8

o~m o-l

Percent Read-Only Percent Read-Only

Throughput Message Traffic

Figure6: Effect of Read-Only Transactions

depending critically on the number of messages required. For

the 5% write probability shown here, AOCC betters ACBL

by between 14% and 36%. For a 10% write probability,

where more lock requests and callbacks are required, AOCC

shows up to a 5070 improvement.

The performance of both schemes levels off as clients

are added, but for different reasons. For ACBL, as more

messages are sent, the server becomes heavily utilized due

to message processing. At 24 clients, the server is 94%

utilized, of which 8’7% is due to message processing. For

AOCC, the disk bandwidth becomes a problem: AOCC uses

over 8090 of the full disk bandwidth at 12 clients, and reaches

9790 utilization at 24 clients. The callback scheme is also

affected by increased disk usage, but its disk utilization does

not increase as quickly as AOCC, due to the extra message

delays it incurs; it hits 70% utilization at 24 clients. AOCC is

able to fully saturate the disks because it can sustain a higher

commit rate.

Consider the number of messages sent per commit where

there are from 1 to 10 clients. In this region no system

resource is more than 75 percent utilized; thus it is useful

for examining issues of scalability. For AOCC, an average

of 0,5 additional messages is required per client added to

the system, while for ACBL, an average of 1.9 additional

messages is required. (This difference can be seen in the

initial slopes of the two curves.) This finding supports our

claim that AOCC scales better with the number of clients

caching shared data.

Finally, consider the right-most graph in Figure 5, which
shows the abort rate in aborts per commit. While ACBL’S

abort rate stays near zero, AOCC’S abort rate grows linearly

with the number of clients, and eventually becomes quite

Imge: 1 in 5 transaction executions aborts at 24 clients. Note

that AOCC outperforms ACBL by 36’%0at this point; the extra

messages due to the re-execution of aborted transactions are

still much lower than the messages required for locking. A

high abort rate is acceptable in some cases but not in others;

this issue is discussed in Section 5.

4.3 Read-Only lkansactions

Our conclusion from the SH/HOTCOLD workload is that

AOCC outperforms ACBL, even as contention becomes

reasonably high. However, this workload contains very few

read-only transactions. As stated earlier, locking performs

better than an optimistic scheme for such transactions, since

transactions can commit locally at the client. However, if

a transaction modifies even one object, more messages are

used by ACBL than AOCC.

We performed an experiment to compare ACBL with

AOCC as the percentage of read-only transactions is varied.

This experiment used the same SH/HOTCOLD workload,

with the following modification: to obtain a workload with

roughly X percent read-only transactions, each transaction

produced by the workload generator is forced to be read-only

X percent of the time, in uniform fashion. (The remainder of

the transactions are generated as before; almost all of these

are read-write.) The number of clients is fixed at 10.

Figure 6 shows the results. The graph of messages sent per

commit once again tells the story. AOCC uses roughly the

same number of messages regardless of how many read-only

transactions there are; it sends a few less messages as the abort

rate drops from 10910to 0910. In contrast, for the read-only

transactions ACBL does not use lock requests, callbacks, or

a commit request. Ultimately, at 95% read-only, the message

counts are the same. For the 100~0 read-only case, ACBL

is only sending fetch requests while AOCC is also sending

a commit request. Not surprisingly, the crossover on the

throughput graph also occurs at 95’ZOread-only. Note that at

100% read-only, ACBL outperforms AOCC by only 1.5%,
whereas even at a mix as high as 70% read-only, AOCC

outperforms ACBL by 11 ‘%o (it outperforms ACBL by 30%

for the O?10read-only case). Our conclusion is that for almost

all real-world workloads, AOCC is the better choice.

4.4 Discussion

It is important to note that the adaptive nature of ACBL is a

big help for the SH/HOTCOLD workload; had we compared

AOCC to a non-adaptive callback scheme, the differences

showrr would have been even larger. At 10 clients, 94% of

all lock requests result in page-level write locks: ACBL uses

many fewer messages than an object-based locking scheme

would. On the other hand, about 4% of all pages in the

system are using object-level locking. Note that the shared

pages constitute 3.8% of the total pages: these are the pages

most likely to exhibit false sharing, and using object-level

locking here makes ACBL perform better than a page-based

locking scheme.

We also used the simulator to measure the distribution

of invalid set sizes at validation time. For a 24 client

SI-UHOTCOLD workload with 10% write probability for

all accesses, 70% of the time the invalid set size was zero

(no validation required), and over 99% of the time the size

was less than 10; the maximum size was 24. This shows

three things: the invalid sets maintained by the servers are

small, the invalid set check can be performed quickly, and

piggy-backed invalidations do not add significant overhead

to message sizes.

5 Conclusions

This paper describes an efficient implementation of opti-

mistic concurrency control for client-server object-oriented

database systems. To provide reasonable performance to user

transactions, these systems cache copies of persistent objects

at client machines, run method calls at the clients, and provide

a concurrency control mechanism to ensure that transactions

are serializable.

Our scheme is simple to implement and provides external

consistency as well as serializability. It performs better than

other optimistic schemes with respect to both space and time,

It does not store any concurrency information in objects or on

the disk; instead it maintains just a small amount of validation

state in the primary memories of servers. It adds no new

messages over those required of any scheme for fetching

and commit processing (but message sizes can be larger). It

requires no disk I/O at commit time over what is ordinarily

needed for two-phase commit; in particular it does not need

to read concurrency control information from disk to validate

transactions.

The scheme uses loosely synchronized clocks to truncate

validation information. Sufficient information is maintained

to allow validation for all “recent” transactions, i.e., all

transactions for which prepare messages are likely. To our

knowledge, this is the first time loosely synchronized clocks

have been used in this way in a distributed concurrency

control scheme.

The paper presents results of simulation experiments

that compare the performance of an adaptive optimistic

scheme (AOCC) with adaptive callback locking (ACBL).

For low to moderate contention workloads, AOCC performs

substantially better than ACBL, and exhibits a lower growth
rate in the number of messages required per commit as clients

are added to the system.

As is the case for all optimistic methods, our scheme

can suffer from a large number of aborts when there is

high contention. This is not a problem for some kinds of

transactions, including transactions strictly under program

control, and also user-initiated requests that can be redone

on abort without further input (e.g., increment the salary of

each employee in set S by 10’%o). For transactions in this

class, aborts do not matter as long as the abort rate is not so

high that performance problems result. Indeed, we show in

Section 4 that even with an abort rate of 1 in 5 aborts, AOCC

outperforms ACBL by a significant margin.

However, there are also transactions where aborts do

matter, either because user intervention would be required or

because the abort rate is so high that locking is the prefemed

mechanism. We intend to support a hybrid concurrency

control scheme that uses optimism as the default but in

addition supports locking. Applications can use explicit

lock requests; this handles the user intervention case, In

addition, the system will automatically detect which objects

are under high contention and use locking for those objects,

retaining the low message overhead of our optimistic scheme

for all other accesses. The resulting system should have

better performance than a locking-only system, but with a

much lower abort rate than a pure optimistic scheme. Our

research into the design and performance evaluation of such

a hybrid scheme is ongoing [15, 16].

Acknowledgements

The authors are grateful to Dawson Engler, Wilson Hsieh,

James O’Toole and the referees for their helpful comments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Adya. Transaction Management for Mobile Objects using
Optimistic Concurrency Control. Tech. Report MIT/LCS/TR-
626, MIT Lab. for Computer Science, January 1994.

D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta.
Distributed Multi-version Optimistic Concurrency Control
with Reduced Rollback. Distributed Computing, 2(l), 1987.

P. Butterworth, A. Otis, and J. Stein. The Gemstone Database

Management System. CA(2M, 34(10), October 1991.

M. Carey, M. Franklin, and M. Zaharioudakis. Fine-Graned

Sharing in a Page Server 00DBMS. In Proceedings of the

1994 ACM SIGMOD, Minneapolis, MN, May 1994.

M. J. Carey, D. J. DeWitt, and J. F. Naughton. The 007

Benchmark. In Proceedings of ACM SIGMOD, May 1993.

S. Ceri and S. Owicki. On the Use of Optimistic Methods for

Concurrency Control in Distributed Databases. In Proceedings

of the 6th Berkeley Workshop, 1982.

M. S. Day. Client Cache Management in a Distributed Object

Database. PhD thesis, Massachusetts Institute of Technology,

February 1995.

K.P. Eswaran, J.N. Gray, R.A. Lorie, and LL. Traiger. The

Notion of Consistency and Predicate Locks in a Database

System. CACM, 19(1 1):624-633, November 1976.

33

[9] M. Franklin. Caching and Memory Management in Client-
Server Database Systems. Tech. Report (Ph.D.) 1168, Comp-
uter SciencesDept., Univ. of Wkconsin - Madison, July 1993.

[10] M. Franklin and M. Carey. Client-Server Caching Revisited.

In Proc. Int’1 Workshop on Distributed Object Management,

Edmonton, Canada, August 1992.

[11] S. Ghemawat. Main-Memoty Log: A Simple Solution to

the Disk Bottleneck. PhD thesis, Massachusetts Institute of

Technology, Forthcoming.

[12] D. K. Gifford. Information Storage in a Decentralized

Computer System. Tech. Report CSL-81-8, Xerox Pare, 1983.

[13] J. N. Gray. Notes on Database Operating Systems. In R. Bayer,

R. M. Graham, and G. Seegmuller, editors, Operating Systems:

An Advanced Course, pages 394-481. Springer-Verlag, 1979.

[14] R. E. Gruber. Optimistic Concurrency Control for Nested

Distributed Transactions. Tech. Report MIT/LCS/TR-453,

MIT Laboratory for Computer Science, June 1989.

[15] R. E. Gruber. Temperature-Based Concurrency Control. In

Third IWOOOS, pages 230-232, Asheville, December 1993.

[16] R. E. Gruber. Temperature-Based Concurrency Control. PhD

thesis, Massachusetts Institute of Technology, Forthcoming.

[17] T. Haerder. Observations on Optimistic Concurrency Control

Schemes. Information Systems, 9(2): 11 1–120, June 1984.

[18] H. T. Kung and J. T. Robinson. On Optimistic Methods for

Concurrency Control. ACM TODS, 6(2):213–226, June 1981.

[19] M. Y. Lai and W. K. Wilkinson. Distributed Transaction

Management in Jasmin. In Tenth VLDB Conf, August 1984.

[20] B. Liskov. Practical Uses of Synchronized Clocks in

Distributed Systems, In Tenth PODC Conf, August 1991.

[21] B. Liskov. Preliminary Design of the Thor Object-Oriented

Database System. Programming Methodology Memo 74, MIT

Lab. for Computer Science, March 1992.

[22] B. Liskov, R. Gruber, P. Johnson, and L. Shrira. A Highly-

Available Object Repository for use in a Heterogeneous

Distributed System. In Proc. of the 4th Int’1 Workshop on

Persistent Object Systems, pages 255–266, September 1990.

[23] U, Maheshwari and B. Liskov. Fault-Tolerant Distributed

Garbage Collection in a Client-Server, Object-Oriented

Database. In Third PDIS Conference, pages 239–248, Austin,

September 1994.

[24] D. L. Mills. Network Time Protocol: Specification and

Implementation. DARPA-Intemet Report RFC 1059, DARPA,

July 1988,

[25] E. Rahm and A. Thomasian. A New Distributed Optimistic

Concurrency Control Method and a Comparison of its

Performance with Two-Phase LockMg. In Proceedings of

Tenth ICDCS, 1990.

[26] J. W. Stamos. A Low-Cost Atomic Commit Protocol. Tech.

Report RJ7185, IBM Almaden, CA, December 1989.

34

