
A Critique of ANSI SQL Isolation Levels

Hal Berenson Microsoft Corp. haroldb@mierosoft.com

Phil Bernstein Microsoft Corp. philbe@nierosoft.eom
Jim Gray U.C. Berkeley grayrikrl.eom
Jim Melton Sybase Corp. jim.melton@sybase. eom
Elizabetb O’Neil UMaw/Boston eoneil@cs.umb.edu

Patrick O’Neil UMasslBoston poneil@cs.umb.edu

Abstract: ANSI SQL-92 MS, ANSI] defines Isolation
Levels in terms of phenomena: Dirty Reads, Non-Re-
peatable Reads, and Phantoms. This paper shows that these
phenomena and the ANSI SQL definitions fail to properly
characterize several popular isolation levels, including the
standard Ioeking implementations of the levels covered.
Ambiguity in the statement of the phenomena is investi-
gated and a more formal statement is arrived at; in addition
new phenomena that better characterize isolation types are
introduced. Finally, an important multiversion isolation
type, called Snapshot Isolation, is defined.

1. Introduction

Running concurrent transactions at different isolation levels
allows application designers to trade off concurrency and
throughput for em-redness. Lower isolation levels increase
transaction concurrency at the risk of allowing transactions
to observe a fuzzy or incorrect database state. Surprisingly,
some transactions ean exeeute at the highest isolation level
(perfeet serializability) while concurrently executing transac-
tions nmning at a lower isolation level can access states
that are not yet committed or that postdate states the trans-
action read earlier [G LPT]. Of course, transactions running
at lower isolation levels can produce invalid data,
Application designers must guard against a later transaction
running at a higher isolation level accessing this invalid
data and propagating such errors.

The ANSMSO SQL-92 specifications [MS, ANSI] define four
isolation levels: (1) READ UNCOMMITTED, (2) READ
COMMITTED, (3) REPEATABLE READ, (4) SERIALIZABLE.
These levels are defined with the classical serializability def-
inition, plus three prohibited operation subsequences, called
phenomena: Dirty Read, Non-repeatable Read, and
Phantom. The concept of a phenomenon is not explicitly
defined in the ANSI specifications, but the specifications
suggest that phenomena are operation subsequences that
may lead to anomalous (perhaps non-serializable) behavior.
We refer to anomalies in what follows when making sug-
gested additions to the set of ANSI phenomena. As shown
later, there is a teehnieal distinction between anomalies and
phenomena, but this distinction is not crucial for a general
understanding.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear,, and notice is given
that copyin is by permission of the Association of Computing

YMachinery. o copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD ‘ 95,San Jose, CA USA
@ 1995 ACM 0-89791-731 -6/95/0005.. $3.50

The ANSI isolation levels are related to the behavior of leek
schedulers. Some leek schedulers allow transactions to
vary the scope and duration of their leek requests, thus de-
parting from pure two-phase locking. This idea was intro
dueed by [GLPT], which defined Degrees of Consistency in
three ways: locking, data-flow graphs, and anomalies.
Defining isolation levels by phenomena (anomalies) was
intended to allow non-lock-based implementations of the
SQL standard.

This paper shows a number of weaknesses in the anomaly
approach to defining isolation levels. The three ANSI phe-
nomena are ambiguous, and even in their loosest interpreta-
tions do not exclude some anomalous behavior that may
arise in execution histories. This leads to some counter-in-
tuitive results. In particular, lock-based isolation levels
have different characteristics than their ANSI equivalents.
This is disemeerting because commercial database systems
typically use locking implementations. Additionally, the
ANSI phenomena do not distinguish between a number of
types of isolation level behavior that are popular in com-
mercial systems. Additional phenomena to characterize
these isolation levels are suggested here.

Seetion 2 introduces the basic terminology of isolation lev-
els. It defines the ANSI SQL and locking isolation levels.

Section 3 examines some drawbacks of the ANSI isolation
levels and proposes anew phenomenon. Other popular iso-
lation levels are also defined. The various definitions map
between ANSI SQL isolation levels and the degrees of con-
sistency defined in 1977 in [G LPT]. They also eneompass
Chris Date’s definitions of Cursor Stability and Repeatable
Read [DAT]. Discussing the isolation levels in a uniform
framework reduees misunderstandings arising from indepen-
dent terminology.

Section 4 introduces a multiversion concurrency control
mechauism, called Snapshot Isolation, that avoids the ANSI
SQL phenomena, but is not serializable. Snapshot Isolation
is interesting in its own right, since it provides a reduced-
isolation level approach that lies between READ COM-
MITTED and REPEATABLE READ. A new formalism
(available in the longer version of this conference paper
[OOBBGMl) connects redueed isolation levels for multiver-
sioned data to the classical single-version locking serializ-
ability theory.

Section 5 explores some new anomalies to differentiate the
isolation levels introduced in Sections 3 and 4. The ex-
tended ANSI SQL phenomena proposed here lack the power
to characterize Snapshot isolation and Cursor Stability.
Section 6 presents a Summary and Conclusions.

1

2. Isolation Definitions

2.1 Serializability Concepts

Transactional and locking concepts are well documented in
the literature [BHG, PAP, PON, GR]. The next few para-
graphs review the terminology used here.

A transaction groups a set of operations that transform the
database from one consistent state to another. A history
models the interleaved execution of a set of transactions as a
linear ordering of their operations, such as Reads and Writes
(i.e., inserts, updates, and deletes) of specific data items.
Two operations in a history are said to conj7ict if they are
performed by distinct transactions on the same data item and
at least one of them Writes the data item. Following
[EGLT], this definition takes a broad interpretation of what
is meant by “data item”: it could be a table row, space on a
page, an entire table, or a communication object such as a

message on a queue. Conflicting operations can also occur
on a set of data items, covered by a predicate lock, as well
as on a single data item,

A particular history gives rise to a dependency graph defin-
ing the temporal data flow among transactions. The opera-
tions of committed transactions in the history are repre-
sented as graph nodes. If operation op 1 of transaction T 1
conflicts with and precedes operation op2 of transaction T2
in the history, then the pair copl, op2> becomes an edge in
the dependency graph. Two histories are equivalent if they
have the same committed transactions and the same depen-
dency graph. A history is serializable if it is equivalent to a
serial history — that is, if it has the same dependency graph
(inter-transaction temporal data flow) as some history that
executes transactions one at a time in sequence.

2.2 ANSI SQL Isolation Levels

ANSI SQL Isolation designers sought a definition that
would admit many different implementations, not just lock-
ing. They defined isolation with the following three phe-
nomena:

P 1 (Dirty Read): Transaction T 1 modifies a data item.
Another transaction T2 then reads that data item before T 1
performs a COMMIT or ROLLBACK. If T1 then performs a
ROLLBACK, T2 has read a data item that was never committed
and so never really existed.

P2 (Non-repeatable or Fuzzy Read): Transaction T 1
reads a data item. Another transaction T2 then modifies or
deletes that data item and commits. If T 1 then attempts to
reread the data item, it receives a modified value or discovers
that the data item has been deleted.

P3 (Phantom): Transaction T 1 reads a set of data items
satisfying some <search condi.t ion>. Transaction T2
then creates data items that satisfy T1’s <search condi-
t ion> and commits. If T1 then repeats its read with the
same <search condition>, it gets a set of data items dif-
ferent from the first read.

None of these phenomena could occur in a serial history.
Therefore by the Serializability Theorem they cannot occur
in a serializable history [EGLT, BHG Theorem 3.6, G R
Section 7.5.8.2, PON Theorem 9.4.2].

Histories consisting of reads, writes, commits, and aborts
can be written in a shorthand notation: “w 1[x]” means a
write by transaction 1 on data item x (which is how a data
item is “modified’), and “r2[x]” represents a read of x by
transaction 2. Transaction 1 reading and writing a set of
records satisfying predicate P is denoted by rl ~] and w 1~]
respectively, Transaction 1‘s commit and abort (ROLLBACK)

are written “cl” and “al”, respectively.

Phenomenon P1 might be restated as disallowing the fol-
lowing scenario:

(2.1) wl[x] . . . r2[x] . . . (al and C2 in either order)

The English statement of P1 is ambiguous. It does not ac-
tually insist that T1 abort; it simpl y states that if this hap-
pens something unfortunate might occur. Some people
reading P 1 interpret it to ma.

(2.2) w l[x]...r2[x((cl((cl or al) and (c2 or a2) in any order)

Forbidding the (2.2) variant of P1 disallows any history
where T 1 modifies a data item x, then T2 reads the data item
before T 1 commits or aborts. It does not insist that T 1
aborts or that T2 commits.

Definition (2.2) is a much looser interpretation of P1 than

(2. 1), since it prohibits all four possible commit-abort
pairs by transactions T 1 and T2, while (2.1) only prohibits
two of the four, Interpreting (2.2) as the meaning of P1
prohibits an execution sequence if something anomalous
might in the future. We call (2,2) the loose interpretation

of Pl, and (2.1) the strict interpretation of P1.
Interpretation (2.2) specifies a phenomenon that might lead
to an anomaly, while (2.1) specifies an actual anomaly,
Denote them as PI and Al respectively. Thus:

PI: wl[x]...r2[x((cl((cl or al) and (c2 or a2) in any order)
Al: wl[x]...r2[x(al. (al and C2 in any order)

Similarly, the English language phenomena P2 and P3
have strict and loose interpretations, and are denoted P2 and
P3 for loose, and A2 and A3 for strict:

P2: rl[x]...w2[x((cl((cl or al) and (c2 or a2) in any order)
A2: rl[x]...w2[xc2..c2 ..irclx]...cl
P3: rl~]...w2[y in P]...((cl or al) and (c2 or sZ) any order)
A3: rl~]...w2[y in P]... crl~]rcl]...cl

Section 3 analyzes the alternatives after more conceptual
machinery has been developed and argues that the loose in-
terpretation of the phenomena is required. Note that the
English statement of ANSI SQL P3 just prohibits inserts
to a predicate, but P3 above intentionally prohibits any
write (insert, update, delete) affecting a tuple satisfying the
predicate once the predicate has been read.

This paper deals later with the concept of a multi-valued
history (MV-history for short – see @HG], Chapter 5).
Without going into details now, multiple versions of a data
item may exist at one time in a multi-version system.
Any read must be explicit about which version is being
read. There have been attempts to relate AN-SI Isolation
definitions to multi-version systems as well as more
common single-version systems (SV-histories) of a
standard locking scheduler. Even so, the English language
statements of the phenomena PI, P2, and P3 imply single-
version histories. This is how we interpret them in the
next section.

ANSI SQL defines four levels of isolation by the matrix of
Table 1. Each isolation level is characterized by the phe-
nomena that a transaction is forbidden to experience (loose
or strict interpretations). However, the ANSI SQL specifics
tions do not define the SERIALIZABLE isolation level
solely in terms of these phenomena. Subclause 4.28,
“SQL-transactions”, in [ANS 1] notes that the
SERIAL IZA BL E isolation level must provide what is
“commonly known as fully serializable execution.” The
prominence of the table compared to this extra proviso
leads to a common misconception that disallowing the three
phenomena implies serializability. Histories that disallow
the three phenomena are called ANOMALY SERIALIZABLE
in Table 1.

Since a loose interpretation of a phenomenon occurs in a
larger set of histories than the strict interpretation, and the
isolation levels are defined by the phenomena they are for-
bidden to experience, the fact that we argue in Section 3 for
the loose interpretations means that we are arguing for
more restrictive isolation levels (more histories will be
disallowed). But Section 3 shows that even taking the
loose interpretations of P1, P2, and P3, forbidding these
phenomena does not guarantee true serializability. It would
have been simpler in [ANS 1] to drop P3 and just use
Subclause 4.28 to define ANSI SERIALIZABLE. Note that
Table 1 is not a final result; it will be superseded by Table
3.

2.3 Locking

Most S Q L products use lock-based isolation.
Consequently, it is useful to characterize the ANSI SQL
isolation levels in terms of locking, although certain
problemsarise.

Transactions executing under a locking scheduler request
Read (Share) and Write (Exclusive) locks on data items or
sets of data items they read and write, Two locks by differ-

ent transactions on the same item conffict if at leastone of
themis aWrite lock.

A Read (resp. Write) predicate lock on a set of data items
determined by a given <search condition> is effectively
a lock on all data items satisfying the <search condi-
t ion>. This maybe an intinite set, as it includes data pre-
sent in the database and also all phantom data items not
currently in the database but that would satisf y the predicate
if they were inserted or if cument data items were updated to
satisfy the <search condition>. In SQL terms, a pre&-
cate lock covers all data items that satisfy the predicate and
any that an INSERT, UPDATE, or DELE TE statement would
cause to satisfy the predicate. Two predicate locks by dif-
ferent transactions conjlict if one is a Write lock and if
there is a (possibly phantom) data item covered by both
locks. An item lock (record lock) is a predicate lock where
thepredicatenamesthespecificrecord.

A transactionhaswell-formed writes (reads) if it requests a
Write lock (Read lock) on each data item or predicate before
writing (reading) that data item, or set of data items defined

by a predicate. The transaction is well-formed if it has
well-formed writes and well-formed reads. A transaction
has two-phase writes (reads) if it does not set a new Write
(Read) lock on a data item after releasing a Write (Read)
lock. A transaction exhibits two-phase locking if it does
not request any new lock (either Read or Write) after releas-
ing some lock.

The locks requested by a transaction are of long duration if
they are held until after the transaction commits or aborts.
Otherwise, they are of short duration. In practice, short
locks are usually released immediate y after the operation
completes,

If a transaction holds a lock, and another transaction re-
quests a conflicting lock, then the new lock request is not
granted until the former transaction’s conflicting lock has
been released.

The fundamental serialization theorem is that well-formed
two-phase locking guarantees serializability — each his-
tory arising under two-phase locking is equivalent to some
serial history. Conversely, if a transaction is not well-
formed or two-phased then, except in degenerate cases, non-
serializable execution histories are possible [EGLT].

The [GLPT] paper defined four degrees of consistency, at-
tempting to show the equivalence of locking, dependency,
and anomaly-based characterizations, The anomrd y defini-
tions (see Definition 1) were too vague. The authors con-

3

Table 1. ANSI SQL Isolation Levels Defined in terms of the Three Original Phenomena

Isolation Level P1 (or Al) P2 (or A2) P3 (or A3)
Dirty Read Fuzzy Read Phantom

ANSI READ UNCOMMllTED Possible Possible Possible
ANSI READ COMMITTED Not Possible Possible Possible
ANSI REPEATABLE READ Not Possible Not Possible Possible
ANOMALY SERIALIZABLE Not Possible Not Possible Not Possible

tinue to get criticism for that aspect of the definitions (see
also [G R]). Only the more mathematical definitions in
terms of histories and dependency graphs or locking have
stood the test of time.

Table 2 defines a number of isolation types in terms of
lock scopes (items or predicates), modes (read or write), and
their durations (short or long). We believe the isolation
levels called Locking READ UNCOMMITTED, Locking READ
COMMITTED, Locking REPEATABLE READ, and Locking
SERIALIZABLE are the locking definitions intended by
ANSI SQL Isolation levels — but as shown next they are
quite different from those of Table 1. Consequently, it is

necessary to differentiate isolation levels defined in terms of
locks from the ANSI SQL phenomena-based isolation Iev-
els. To make this distinction, the levels in Table 2 are la-
beled with the “Locking” prefix, as opposed to the “ANSI”
prefix of Table 1.

[GLPT] defined Degree O consistency to allow both dirty
reads and writes: it onI y required operation atomicit y,
Degrees 1, 2, and 3 correspond to Locking READ UN-
COMMITTED, READ COMMITTED, and SERIALIZABLE, re-
spectively. No isolation degree matches the Locking
REPEATABLE READ isolation level.

Date and IBM originally used the name “Repeatable Reads”
[DAT, DB2] to mean serializable or Locking
SERIALIZABLE. This seemed like a more comprehensible
name than the [GLPT] term “Degree 3 isolation,” although
they were meant to be identical. The ANSI SQL meaning of
REPEATABLE READ is different from Date’s original
definition, and we feel the terminology is unfortunate.
Since anomaly F’3 is specifidy not ruled out by the ANSI
SQL REPEATABLE READ isolation level, it is clear from
the definition of P3 that reads are NOT repeatable! We
repeat this misuse of the term with Locking REPEATABLE
READ in Table 2, in order to parallel the ANSI definition.
Similarly, Date coined the term Cursor Stability as a more
comprehensible name for Degree 2 isolation augmented
with protection from lost cursor updates as explained in
Section 4.1 below.

Definition. Isolation level L 1 is weaker than isolation
level L2 (or L2 is stronger than Ll), denoted L1 <<L2, if all

non-serializable histories that obey the criteria of L2 also
satisfy L 1 and there is at least one non-serializable history
that can occur at level L1 but not at level L2. Two isola-
tion levels L1 and L2 are equivalent, denoted L 1 == L2,
when the sets of non-serializable histories satisf ying L1 and
L2 are identical. L1 is no szronger than L2, denoted LI ~ L2

if either L1 <<L2 or L1 == L2. Two isolation levels are

incomparable, denoted L 1 >><<L2, when each isolation level

allows a non-serializable history that is disallowed by the
other.

In comparing isolation levels we differentiate them only in
terms of the non-serializable histories that can occur in one
but not the other. Two isolation levels can also differ in
terms of the serializable histories they permit, but we say
Locking SERIALIZABLE == Serializable even though it is
well known that a locking scheduler does not admit all pos-
sible Serializable histories. It is possible for an isolation
level to be impractical because of disallowing too many se-
rializable histories, but we do not deal with this here.

These definitions and some simple examples to show that
the~ relation is proper yield the following remark.

Remark 1: Locking READ UNCOMMITTED
<<Locking READ COMMllTED

<<Locking REPEATABLE READ

a Locking SERIALIZABLE

In the following section, we’ll focus on comparing the

ANSI and Locking definitions.

3. Analyzing ANSI SQL Isolation Levels

To start on a positive note, the locking isolation levels
comply with the ANSI SQL requirements.

Remark 2. The locking protocols of Table 2 define lock-
ing isolation levels that are at least as strong as the corre-

ctable 2. Degrees of Consistency and Locking Isolation Levels defined in terms of locks.

Consistency Read Locks on Write Locks on
Level = Locking Data Items and Predicates Data Items and Predicates
Isolation Level (the same unless noted) (always the same)
Degree O none required Well-formed Writes
Degree 1 = Locking none required Well-formed Writes
READ UNCOMMllTED Long duration Write locks
Degree 2 = Locking Well-formed Reads Well-formed Writes,
READ COMMITTED Short duration Read locks (both) Long duration Write locks
Cursor Stability Well-formed Reads Well-formed Writes,

(see Section 4.1) Read locks held on current of cursor Long duration Write locks
Short duration Read Predicate locks

Locking Well-formed Reads Well-formed Writes,
REPEATABLE READ Long duration data-item Read locks Long duration Write locks

Short duration Read Predicate locks
Degree 3 = Locking Well-formed Reads Well-formed Writes,
SERIALIZABLE Long duration Read locks (both) Long duration Write locks

4

spending phenomena-based isolation levels of Table 1. See
[OOBBGM for proof.

Hence, locking isolation levels are at least as isolated as the

same-named ANSI levels. Are they more isolated? The an-
swer is yes, even at the lowest level. Locking R E A D
UNCOMMITTED provides long duration write locking to
avoid a phenomenon we call “Dirty Writes,” but ANSI
SQL does not exclude this anomalous behavior in its
anomaly-based definitions, below ANSI SERIALIZABLE.

PO (Dirty Write): Transaction T 1 modifies a data item.
Another transaction T2 then further modifies that data item
before T1 performs a COMMIT or ROLLBACK. If T1 orT2 then
performs a ROLLBACK, it is unclear what the correct data
value should be. The loose interpretation of this is:

PO: w1[x]...w2[x]...((c1 or al) and (c2 or a2) in any order)

One reason why Dirty Writes are bad is that they can vio-
late database consistency. Assume there is a constraint be-
tween x and y (e.g., x = y), and T1 and T2 each maintain the
consistency of the constraint if run alone. However, the
constraint can easily be violated if the two transactions
write x and y in different orders, which can only happen if
there are Dirty writes. E.g., if the history is w l[x] w2[x]
w2[y] C2 w 1[y] c 1 then the changes by T 1 to y and T2 to x
both “survive”, If T1 writes 1 in both x and y while T2
writes 2, the result will be x=2, y =1 violating x = y.

As discussed in [GLPT, BHG] and elsewhere, automatic
transaction rollback is another pressing reason why PO is
important. Without protection from PO, the system can’ t
undo up&tes by restoring before images. Consider the his-
tory: w 1[x] w2[x] al. You don’t want to undo w 1[x] by
restoring its before-image of x, because that would wipe
out w2’s update. But if you don’ t restore its before-image,
and transaction 2 later aborts, you can’t undo w2[x] by
restoring ils before-image either! That’s why even the
weakest locking systems hold long duration write locks.
Otherwise, their recovery systems would fail.

Remark 3: ANSI SQL isolation should be modified to re-

quire PO for all isolation levels.

We now argue that a loose interpretation of the three ANSI
phenomena is required. Recall the strict interpretations are

A 1: w 1[x]...r2[x(al.(al and C2 in either order) (Dirty Read)
A2: rl[x]...w2[xc2,.,rl[x]lcl]...cl (Fuzzy or

Non-Repeatable Read)
A3: rl~]...w2[y in P]...crl~].cl~] ...cl (Phantom)

By Table 1, histories under READ COMMITTED isolation
forbid anomaly Al, REPEATABLE READ isolation forbids
anomalies A 1 and A2, and SERIALIZABLE isolation for-
bids anomalies Al, A2, and A3. Consider history H1, in-
volving a $4.0 transfer between bank balance rows x and y:

HI is non-serializable, the classical inconsistent analysis
problem where transaction T1 is transferring a quantity 40
from x to y, maintaining a total balance of 100, but T2
reads an inconsistent state where the total balance is 60.

The history H1 does not violate any of the anomalies Al,
A2, or A3. In the case of Al, one of the two transactions
would have to abort; for A2, a data item would have to be
read by the same transaction for a second time; A3 requires
a relevant predicate evaluation to be changed. None of
these things happen in H1. Consider instead taking the
loose interpretation of Al, the phenomenon Pl:

PI: wl[x]...r2[x((cl((cl or al) and (c2 or a2) in any order)

H1 indeed violates P1. Thus, we should take the interpreta-
tion P1 for what was intended by ANSI rather than Al.
The Loose interpretation is the correct one.

Similar arguments show that P2 should be taken as the
ANSI intention rather than A2. A history that discrimi-
mtes these two interpretations is:

H2: rl[x=50]r2[x=50]w2[x= 10]r2~=50]w2[y=90]c2
rl ~=%l]cl

H2 is non-serializable — it is another inconsistent analy-
sis, where T2 sees a total balance of 140. This time nei-
ther transaction reads dirty (i.e. uncommitted) data. Thus
P1 is satisfied. Once again, no data item is read twice nor
is any relevant predicate evaluation changed. The problem
with H2 is that by the time T1 reads y, the value for x is
out of date. If T2 were to read x again, it would have been
changed; but since T2 doesn’t do that, A2 doesn’t apply.
Replacing A2 with P2, the looser interpretation, solves
this problem.

P2: rl[x]...w2[x((cl((cl or al) and (c2 or a2) any order)

H2 would now be disqualified when w2[x=20] occurs to
overwrite rl [x=50]. Finally, consider A3 and history H3:

A3: rl~]...w2[y in P]... crl~]rcl]...cl (Phantom)

H3: rl ~] w2[insert y to P] r2[z] w2[z] c2 rl[z] cl

Here T1 performs a <search condition> to find the list
of active employees. Then T2 performs an insert of a new
active employee and then updates z, the count of employees
in the company. Following this, T 1 reads the count of ac-
tive employees as a check and sees a discrepancy. This his-
tory is clearly not serializable, but is allowed by A3 since
no predicate is evaluated twice. Again, the Loose interpre-
tation solves the problem.

P3: rl~]..,w2[y in P].,.((cl or al) and (c2 or a2) any order)

If P3 is forbidden, history H3 is invalid. This is clearly
what ANSI intended. The foregoing discussion has served

to demonstrate the following results.
Hl: rl [x–30]wl [x=10]r2[x=10]r2 ~=50]c2rl @50]

w 1@90]cl

5

Remark 4. Strict interpretations Al, A2, and A3 have
unintended weaknesses. The correct interpretations are the
Loose ones. We assume in what follows that ANSI meant
to define PI, P2, and P3.

Remark 5. ANSI SQL isolation phenomena are incom-
plete. There are a number of anomalies that still can arise.
New phenomena must be defined to complete the definition
of locking. Also, P3 must be restated. In the folIowing
definitions, we drop references to (c2 or a2) that do not re
strict histories.

PO: w1[x]...w2[x]... (c1 or al) (Dirty Write)

PI: wl[x]...r2[x(cl. (cl or al) (Dirty Read)

P2: rl[x]...w2[x(cl. (cl or al) (Fuzzy or

Non-Repeatable Read)

P3: rlr]...w2[y in P]... (cl or al) (Phantom)

One important note here is that ANSI SQL P3 only pro-
hibits inserts (and updates, according to some interpreta-
tions) to a predicate whereas the definition of P3 above pro-
hibits any write satisfying the predicate once the predicate
has been read — the write could be an insert, update, or
delete.

The definition of proposed ANSI isolation levels in terms
of these phenomena is given in Table 3.

For single version histories, it turns out that the PO, Pl,
P2, P3 phenomena are disguised versions of locking. For
example, prohibiting PO precludes a second transaction
writing an item after the first transaction has written it,
equivalent to saying that long-term Write locks are held on
data items (and predicates). Thus Dirty Writes are impossi-
ble at all levels. Similarly, prohibiting P1 is equivalent to
having well-formed reads on data items. Prohibiting P2
means long-term Read locks on data items. Finally,
Prohibiting P3 means long-term Read predicate locks.
Thus the isolation levels of Table 3 defined by these phe-
nomena provide the same behavior as the Locking isola-
tion levels of Table 2.

Remark 6. The locking isolation levels of Table 2 and
the phenomenological definitions of Table 3 are equivalent.
Put another way, PO, PI, P2, and P3 are disguised redefini-
tion’s of Locking behavior.

In what follows, we will refer to the isolation levels listed
in Table 3 by the names in Table 3, equivalent to the
Locking versions of these isolation levels of Table 2.
When we refer to ANSI READ UNCOMMITTED, ANSI READ

COMMITTED, ANSI REPEATABLE READ, and ANOMALY
SERIALIZABLE, we are referring to the ANSI definition of
Table 1 (inadequate, sinm it did not include PO).

The next section shows that a number of comrnerciall y
available isolation implementations provide isolation levels
that fall between READ COMMITTED and REPEATABLE
READ. To achieve meaningful isolation levels that distin-
guish these implementations, we will assume PO and P1 as
a basis and then add distinguishing new phenomena.

4, Other Isolation Types

4.1 Cursor Stability

Cursor Stability is designed to prevent the lost update phe-
nomenon.

P4 (Lost Update): The lost update anomaly occurs when
transaction TI reads a data item and then T2 updates the data
item (possibly based on a previous read), then T1 (based on
its earlier read value) updates the data item and commits. In
terms of histories, this is:

P4: rl[x]...w2[xwl[x]lcl]...cl (Lost Update)

The problem, as illustrated in history H4, is that even if T2
commits, T2’s update will be lost.

H4 rl[x=100] r2[x=100] w2[x=120] C2 w1[x=130] cl

The final value of x contains only the increment of 30 added
by T1. P4 is possible at the READ COMMITTED isolation
level, since H4 is allowed when forbidding PO (a cormnit of
the transaction performing the first write operation precedes
the second write) or PI (which would require a read after a
write). However, forbidding P2 also precludes P4, since
w2[x] comes after rl [x] and before T 1 commits or aborts.
Therefore the anomaly P4 is useful in distinguishing isola-
tion levels intermediate in strength between R E A D
COMMITTED and REPEATABLE READ.

The Cursor Stability isolation level extends R E A D
COMMITTED locking behavior for SQL cursors by adding a
new read operation for Fetch from a cursor, rc (meaning read
cursor), and requiring that a lock be held on the current item
of the cursor. The lock is held until the cursor moves or is
closed, possibly by a commit. Naturally, the Fetching
transaction can update the row (wc), and in that case a write
lock will be held on the row until the transaction commits,

Table 3. ANSI SQL Isolation Levels Defined in terms of the four phenomena

Isolation Level
Po PI P2 P3

Dirty Write Dirty Read Fuzzy Read Phantom

READ UNCOMMITTED Not Possible Possible Possible Possible

READ COMMITTED Not Possible Not Possible Possible Possible

REPEATABLE READ Not Possible Not Possible Not Possible Possible

SERIALIZABLE Not Possible Not Possible Not Possible Not Possible

6

even after the cursor moves on with a subsequent Fetch. A
rcl [x] and later WC1[x] precludes an intervening w2[x].
Therefore phenomenon P4, renamed P4C, is prevented in

this case.

P4C: rcl[x]...w2[xwl[x]lcl]...cl (Lost Update)

Remark 7:
READ COMMllTED <<Cursor Stability<< REPEATABLE READ

Cursor Stability is widely implemented by SQL systems to
prevent lost updates for rows read via a cursor. READ
COMMITTED, in some systems, is actually the stronger
Cursor Stability. The ANSI standard allows this.

The technique of putting a cursor on an item to hold its
value stable can be used for multiple items, at the cost of

using multiple cursors. Thus the programmer can parlay
Cursor Stability to effective Locking REPEATABLE READ
isolation for any transaction accessing a small, fixed num-
ber of data items. However this method is inconvenient aud
not at all general. Thus there are always histories fitting
the P4 (and of course the more general P2) phenomenon
that are not precluded by Cursor Stability.

4.2 Snapshot Isolation

A transaction executing with Snapshot Isolation always
reads data from a snapshot of the (committed) data as of the
time the transaction started, called its Start -Timestamp.
This time may be any time before the transaction’s first
Read. A transaction running in Snapshot Isolation is never
blocked attempting a read as long as the snapshot data from
its Start-Timestamp can be maintained. The transaction’s
writes (updates, inserts, and deletes) will also be reflected in
this snapshot, to be read again if the transaction accesses
(i.e. reads or updates) the data a second time. Updates by
other transactions active after the transaction Start-
Timestamp are invisible to the transaction.

Snapshot Isolation is a type of muhiversion concurrency
control. It extends the Multiversion Mixed Method de-
scribed in [BHG], which allowed snapshot reads by read-
only transactions.

When the transaction T 1 is ready to commit, it gets a
Commit- Timestamp, which is larger than any existing
Start-Timestamp or Commit-Timestamp. The transaction
successfully commits only if no other transaction T2 with a
Commit-Timestamp in T 1‘s interval [Start-Timestamp,
Commit - Timest amp] wrote data that T 1 also wrote.
Otherwise, T1 will abort. This feature, called First-commit-
ter-wins prevents lost updates (phenomenon P4). When T 1
commits, its changes become visible to all transactions
whose Start-Timestamps are larger than T 1‘s Commit-
Timestamp.

Snapshot Isolation is a multi-version (MV) method, so sin-
gle-valued (SV) histories do not properly reflect the tempo-
ral operation sequences. At any time, each data item
might have multiple versions, created by active and

committed transactions. Reads by a transaction must
choose the appropriate version. Consider history HI at the
beginning of Section 3, which shows the need for P1 in a

single valued execution. Under Snapshot Isolation, the
same sequence of operations would lead to the multi-valued

history:

H1 .S1: rl [xO=50] w 1[x1=1O] r2[xO=50] r2[yO=50] C2
rl ~0=50] wl ~1=90] cl

But HI .S1 has the dataflows of a serializable execution. In
[OOBBGM], we show that all Snapshot Isolation histories
can be mapped to single-valued histories while preserving
dataflow dependencies (the MV histories are said to be View
Equivalent with the SV histories, an approach covered in
~HG], Chapter 5). For example the MV history H1.SI
would map to the serializable SV history:

H1.SI.SV: rl[x=50] rl~=50] r2[x=50] r2~=50] C2
Wl[x=lo] wl[y=90] cl

Mapping of MV histories to SV histories is the only rigor-
ous touchstone needed to place Snapshot Isolation in the
Isolation Hierarchy.

Snapshot Isolation is non-serializable because a transac-
tion’s Reads come at one instant and the Writes at another.
For example, consider the single-value history:

H5: rl[x=50] rl[y=50] r2[x=50] r2~=50] wl[y=-40]
w2[x=J1.0] cl C2

H5 is non-serializable and has the same inter-transactional
dataflows as could occur under Snapshot isolation (there is
no choice of versions read by the transactions). Here we as-
sume that each transaction that writes a new value for x and
y is expected to maintain the constraint that x + y should

be positive, and while T1 and T2 both act proped y in isola-
tion, the constraint fails to hold in H5.

Constraint violation is a generic and important type of con-
currency anomaly. Individual databases satisfy constraints
over multiple data items (e.g., uniqueness of keys, referen-
tial integrity, replication of rows in two tables, etc.).
Together they form the database invariant constraint predi-
cate, C(DB). The invariant is TRUE if the database state DB
is consistent with the constraints and is FALSE otherwi se.
Transactions must preserve the constraint predicate to main-
tain consistency: if the database is consistent when the
transaction starts, the database will be consistent when the
transaction commits. If a transaction reads a database state
that violates the constraint predicate, then the transaction
suffers from a constraint violation concurrency anomaly.
Such constraint violations are called inconsistent analysis
in [DAT].

A5 (Data Item Constraint Violation). Suppose C()
is a database constraint between two data items x and y in
the database. Here are two anomalies arising from con-
straint violation.

7

A5A Read Skew Suppose transaction T 1 reads x, and
then a second transaction T2 updates x and y to new values
and wrmnits. If now T1 reads y, it may see an inconsistent
state, and therefore produce an inconsistent state as output.
In terms of histories, we have the anomaly:

A5A: rl[x]...w2[xw2[y]2c2]...c2...rl [y]... (cl or al)
(F&id Skew)

A5B Write Skew Suppose T 1 reads x and y, which are
wnsistent with C(), and then a T2 reads x and y, writes x,
and commits. Then T 1 writes y. If there were a constraint
between x and y, it might be violated. In terms of hist~
ries:

A5B: rl[x]...r2[ywl[y]lw2[x].(clx]... (cl and C2 occur)
(Write Skew)

Fuzzy Reads (P2) is a degenerate form of Read Skew where
x=y, More typi~l y, a transaction reads two different but

related items (e.g., referential integrity). Write Skew (A5B)
could arise from a constraint at a bank, where account bal-
ances are allowed to go negative as long as the sum of
commonly held balances remains non-negative, with an
anomaly arising as in history H5.

Clearly neither A5A nor A5B could arise in histories where
P2 is precluded, since both A5A and A5B have T2 write a
data item that has been previously read by an uncommitted
T1. Thus, phenomena A5A and A5B are only useful for
distinguishing isolation levels that are below
REPEATABLE READ in strength.

The ANSI SQL definition of REPEATABLE READ, in its
strict interpretation, captures a degenerate form of row con-
straints, but misses the general concept. To be specific,
Locking REPEATABLE READ of Table 2 provides
protection from Row Constraint Violations but the ANSI
SQL definition of Table 1, forbidding anomalies Al and A2,
does not.

Returning now to Snapshot Isolation, it is surprisingly
strong, even stronga than READ COMMITTED.

Remark 8. READ COMMITTED<< Snapshot Isolation

Proof. In Snapshot Isolation, first-comrnitter-wins pre-
cludes PO (dirty writes), and the timestamp mechanism pre-
vents PI (dirty reads), so Snapshot Isolation is no weaker
than READ COMMITTED. In addition, A5A is possible
under READ COMMITTED, but not under the Snapshot

Isolation timestamp mechanism. Therefore READ
COMMITTED <<Snapshot Isolation.

Note that it is difficult to picture how Snapshot Isolation
histories can disobey phenomenon P2 in the single-valued
interpretation. Anomaly A2 cannot occur, since a transac-
tion under Snapshot Isolation will read the same value of a
data item even after a temporally intervening update by an-
other transaction. However, Write Skew (A5B) obviously
can occur in a Snapshot Isolation history (e.g., H5), and in

the Single Valued history interpretation we’ve been reason-
ing about, forbidding P2 also precludes A5B. Therefore
Snapshot Isolation admits history anomalies that
REPEATABLE READ does not.

Snapshot Isolation cannot experience the A3 anomaly. A
transaction rereading a predicate after an update by another
will always see the same old set of data items. But the

REPEATABLE READ isolation level can experience A3
anomalies. Snapshot Isolation histories prohibit histories
with anomaly A3, but allow A5B, while REPEATABLE
READ does the opposite. Therefore

Remark 9. REPEATABLE READ x< Snapshot Isolation.

However, Snapshot Isolation does not preclude P3.
Consider a constraint that says a set of job tasks determined
by a predicate cannot have a sum of hours greater than 8.
T1 reads this predicate, determines the sum is only 7 hours

and adds anew task of 1 hour duration, while a concurrent
transaction T2 does the same thing. Since the two transae
tions are inserting different data items (and different index
entries as well, if any), this scenario is not precluded by
First-Cormnitter-Wins and can occur in Snapshot Isolation.
But in any equivalent serial history, the phenomenon P3
would arise under this scenario.

Perhaps most remarkable of all, Snapshot Isolation has no
phantoms (in the strict sense of the ANSI definitions A3).
Each transaction never sees the updates of concurrent trans-
actions. So, one can state the following surprising result
(recall that section Table 1 defined ANOMALY SE-
RIALIZABLE m ANSI SQL definition of SERIALIZABLE)
without the extra restriction in Subclause 4.28 in [ANSI]:

Remark 10. Snapshot Isolation histories preclude
anomalies A 1, A2 and A3. Therefore, in the anomaly in-
terpretation of ANOMALY SERIALIZABLE of Table 1:

ANOMALY SERIALIZABLE <<SNAPSHOT ISOLATION.

Snapshot Isolation gives the freedom to run transactions
with very old timestamps, thereby allowing them to do
time travel — taking a historical perspective of the database
— while never blocking or being blocked by writes. Of
course, update transactions with very old timestamps would
abort if they tried to update any data item that had been up
dated by more recent transactions.

Snapshot Isolation admits a simple implementation mod-
eled on the work of Reed [RE E]. There are several commer-
cial implementations of such multi-version databases.
Borland’s InterBase 4 ~HA] and the engine underlying
Microsoft’s Exchange System both provide Snapshot
Isolation with the Firs t-committer-wins feature. First-
comrnitter-wins requires the system to remember all up-
dates (write locks) belonging to any transaction that
commits after the Start-Times tamp of each active transae
tion. It aborts the transaction if its updates conflict with
remembered updates by others.

Snapshot Isolation’s “optimistic” approach to concurrency
control has a clear concurrency advantage for read-only
transactions, but its benefits for update transactions is still
debated. It probably isn’t good for long-running update

transactions competing with high-contention short transac-
tions, since the long-running transactions are unlikely to be
the first writer of everything they write, and so will proba-
bly be aborted. (Note that this scenario would cause a real
problem in locking implementations as well, and if the so-
lution is to not allow long-running update transactions that
would hold up short transaction locks, Snapshot Isolation
would also be acceptable.) Certainly in cases where short
update transactions conflict minimally and long-running
transactions are likely to be read only, Snapshot Isolation
should give good results. In regimes where there is high
contention among transactions of comparable length,
Snapshot Isolation offers a classical optimistic approach,
and there are differences of opinion as to the value of this.

4.3 Other Multi-Version Systems

There are other models of muhiversioning. Some commer-
cial products maintain versions of objects but restrict
Snapshot Isolation to read-only transactions (e.g., SQL-92,
Rdb, and SET TRANSACTION READ ONLY in some other
databases MS, HOB, ORA]; Postgres and Illustra [STO,
ILL] maintain such versions long-term and provide time-
travel queries). Others allow update transactions but do not
provide first-committer-wins protection (e.g., Oracle Read
Consistency isolation [ORA]).

Oracle Read Consistency isolation gives each SQL state-
ment the most recent committed database value at the time
the statement began. It is as if the start-timestamp of the
transaction is advanced at each SQL statement. The
members of a cursor set are as of the time of the Open
Cursor, The underlying mechanism recomputes the ap-
propriate version of the row as of the statement timestamp,
Row inserts, updates, and deletes are covered by Write locks
to give a first-writer-wins rather than a first-committer-wins
policy. Read Consistency is stronger than READ
COMMITTED (it disallows cursor lost updates (P4C)) but
allows non-repeatable reads (P3), general lost updates (P4),
and read skew (A5A), Snapshot Isolation does not permit
P4 or A5A.

If one looks carefully at the SQL standard, it defines each
statement as atomic. It has a serializable sub-transaction
(or timestamp) at the start of each statement. One can
imagine a hierarchy of isolation levels defined by assigning
timestamps to statements in interesting ways (e.g., in
Oracle, a cursor fetch has the timestamp of the cursor
open).

5. Summary and Conclusions

In summary, there are serious problems with the original
ANSI SQL definition of isolation levels (as explained in
Section 3). The English language definitions are ambigu-
ous and incomplete. Dirt y Writes (PO) are not precluded.
Remark 5 is our recommendation for cleaning up the ANSI

Isolation levels to equate to the locking isolation levels of
[GLITj.

ANSI SQL intended to define REPEATABLE READ isolation
to exclude all anomalies except Phantom. The anomaly def-
inition of Table 1 does not achieve this goal, but the lock-
ing definition of Table 2 does. ANSI’s choice of the term
Repeatable Read is doubl y unfortunate (1) repeatable reads
do not give repeatable results, and (2) the industry had al-
ready used the term to mean exactly that: repeatable reads
mean serializable in several products. We recommend that
another term be found for this.

A number of commercially-popular isolation levels, falling
between the REPEATABLE READ and SERIALIZABLE
levels of Table 3 in strength, have been characterized with
some new phenomena and anomalies in Section 4. All the
isolation levels named here have been characterized as
shown in Figure 2 and Table 4, following. Isolation levels
at higher levels in Figure 2 are higher in strength (see the
Definition at the beginning of Section 4.1) and the connect-
ing lines are labeled with the phenomena and anomalies that
differentiate them.

On a positive note, reduced isolation levels for multi-ver-
sion systems have never been characterized before — despite
being implemented in several products. Many applications
avoid lock contention by using Cursor Stability or Oracle’s
Read Consistency isolation. Such applications will find
Snapshot Isolation better behaved than either it avoids the
lost update anomaly, some phantom anomalies (e.g., the

Serializable = Degree 3 = {Date, DB2} Repeatable Read

\
A5B

P3 A5B
~ Snap’hot

p2/Repeatab Ie Read ~ isolation

Oracle Pz

/

A3

Consistent Cursor Stability

\

Read Pc
P4C

A3, A5A, P4

Read Committed = Degreee 2

PI

Read Uncommitted - Degree 1

Po

Degree O

?igure 2 A diagram of the isolation levels and their rela-
tionships. It assume that the ANSI SQL isolation levels
lave been strengthened to match the recommendation of
<emark 5 and Table 3. The edges are annotated with the
]henomena that differentiate the isolation levels. Not
~hown is a potential multi-version hierarchy extending
Snapshot Isolation to lower degrees of isolation by
)icking read times tamps on a per-statement basis. Nor
low it show the original ANSI SQL isolation levels based
m the strict interpretation of the phenomenon P1, P2, and
‘3.

9

Tabla 4. I

I Po
Isolation Dirty
level I Wriie

READ UNCOMMITTED I Not
== Degree 1 Possible

READ COMMITTED Not
== Degree 2 Possible

Cursor Stability Not
Possible

REPEATABLE READ Not
Possible

Snapshot Not
Possible

ANSI SQL Not
SERIALIZABLE Possible
== Degree 3
== Repeatable Read

Date. IBM.

dation Types Characterized by Possible Anomalies Allowed.

P4C P4 P2 P3 A5A A5B
;;y Cursor Lost Lost Fuzzy Phantom Read Write
Read Update Update Read Skew Skew

Possible Possible Possible Possible Possible Possible Possible

Not Possible Possible Possible Possible Possible Possible
Possible

Not Not Sometimes Sometimes Possible Possible Sometime
Possible Possible Possible Possible Possible

Not Not Not Not Possible Not Not
Possible Possible Possible Possible Possible Possible

Not Not Not Not Sometimes Not Possible
Possible Possible Possible Possible Possible Possible

Not Not Not Not Not Not Not
Possible Possible Possible Possible Possible Possible Possible

one defined by ANSI SQL), it never blocks read-only transac-
tions, and readers do not block updates.

Acknowledgments.
We thank Chris Larson of Microsoft, Alan Reiter who
pointed out a number of the newer anomalies in Snapshot
Isolation, Franco Putzolu and And Nori of Oracle, Mike
Ubell of Illustra and the anonymous SIGMOD referees for
valuable suggestions that improved this paper. Sushil
Jajodia, V. Atluri, and E. Bertino generously provided us
with an early draft of their related work [ABJl on reduced
isolation levels for multi-valued histories.

References

[ANSI]

[AEul

[BHG]

[DAT]

[DB2]

[EGLT]

[GLPT]

ANSI X3. 135-1992, American Nalional Standard
for Information Systems – Database Language –
SQL, November, 1992
V. Atluri, E. Bertino, S. Jajodia, “A Theoretical
Formulation for Degrees of Isolation in Databases,”
Technical Report, George Mason University,
Fairfax, VA, 1995
P. A. Bernstein, V. Hadzilacos, N. Goodman,
“Concurrency Control and Recove?y in Database
Systems, ” Addison-Wesley 1987.
C. J. Date, “An Introduction to Database
Systems;’ Fifth Edition, Addison-Wesley, 1990
C. J. Date and C, J. White, “A Guide to DB2,”
Third Edition, Addison-Wesley, 1989.
K. P. Eswaran, J. Gray, R. Lorie, I. Traiger,
“The Notions of Consistency and Predicate Locks
in a Database System, ” CACM V 19.11, pp. 624-
633, NOV. 1978
J. Gray, R. Lorie, G. Putzolu and, I. Traiger,
“Granularity of Locks and Degrees of Consistency
in a Shared Data Base, ” in Readings in Database
Systems, Second Edition, Chapter 3, Michael
Stonebraker, Ed., Mo an Kaufmann 1994

?(originally published in 19 7).

‘,

I

[GR]

[HOB]

DJJl

[MS]

J. Gray and A. Reuter, “Transaction Processing:
Concepts and Techniques, ” Corrected Second
Printing, Morgan Kanfmann 1993, Seetion 7.6 and
following.
L. Hobbs and K. England, “Rdb/VMS, A
Comprehensive Guide, ” Digital Press, 1991.
Illustra Information Technologies, “Illustra User’s
Guide, ” , Illustra Information Technology es,
Oakland, CA. 1994.
J. Melton and A. R. Simon, “Understanding The
New SQL: A Complete Guide, ” Morgan
Kaufmrmn 1993.

[OOBBGM] P. O’Neil, E. O’Neil, H. Berenson, P,

[ORA]

[PAP]

[PON]

[REE]

[STO]

~HA]

Bernstein, J. Gray, J. Melton, “An Investigation of
Transactional Isolation Levels,” UMass/Boston
Dept. of Math & C.S. Preprint.
“PllSQL User’s Guide and Reference, Version
1.0, ” Part 800-V1.0, Oracle Corp., 1989.
C. Papadimitriou, “The Theory of Database
Concurrency Control, Computer Science Press,
1986.
P. O’Neil, “Database: Principles, Programming,
Performance, Morgan Kaufmaun 1994, Section 9.5.
D. Reed, “Implementing Atomic Actions On
Decentralized Data, ” ACM TOCS 1.1,1981, pp. 3-
23.
M. J. Stonebraker, “The Design of the
POSTGRES Storage System, ” 13th VLDB, 1987,
reprinted in Readings in Database Systems, Semnd
Edition, M, J. Stonebraker, Ed., Morgan Kaufmann
1994
M. Thakur, “Transaction Models in InterBase 4,”
Proceedings of the Borland International
Conference, June 1994.

10

