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Abstract
This paper describesa new schemefor guaranteeing that transactions
in a client/server system observe consistent state while they
are running. The scheme is presented in conjunction with an
optimistic concurrency control algorithm, but could also be used
to prevent read-only transactions from conflicting with read/write
transactions in a multi-version system. The scheme is lazy about the
consistency it provides for running transactions and also in the way
it generates the consistency information. The paper presents results
of simulation experiments showing that the cost of the scheme is
negligible.

The scheme uses multipart timestamps to inform nodes about
information they need to know. Today the utility of such schemes
is limited because timestamp size is proportional to system size
and therefore the schemes don’t scale to very large systems. We
show how to solve this problem. Our multipart timestamps are
based on real rather than logical clocks; we assume clocks in the
system are loosely synchronized. Clocks allow us to keep multipart
timestamps small with minimal impact on performance: we remove
old information that is likely to be known while retaining recent
information. Only performance and not correctness is affected if
clocks get out of synch.

1 Introduction
This paper describes a new algorithm that insures transactions
running at clients in a client/server system always view a
consistent state as they run. The algorithm is useful in
conjunction with optimistic concurrency control mechanisms
(e.g., [1]), and also for ensuring that read-only transactions
can commit without interfering with read/write transactions
in a multi-version system (e.g., [2, 7, 30]).

The algorithm is intended for use in a distributed
environment in which servers provide reliable persistent
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storage for online information (e.g., a database or objects).
Applications run at client machines that are distinct from
the servers. Clients maintain caches that store copies of
persistent objects; clients run application transactions locally
on cached copies of persistent objects and send modifications
to the servers when transactions commit. The scheme
is designed to work in a very large system, e.g., tens of
thousands of servers and hundreds of thousands of clients.

The new algorithm propagates information about consis-
tency using multipart timestamps or multistamps. Today the
utility of multistamps is limited because their size is propor-
tional to system size and therefore they don’t scale to very
large systems. We show how to reduce the size of multi-
stamps. Unlike other multistamp (or vector clock) schemes,
e.g., [4, 17, 25, 8, 15], our scheme is based on time rather
than on logical clocks: each entry in a multistamp contains
a timestamp representing the clock time at some server in
the system. Using time rather than logical clocks allows us
to keep multistamps small by removing old information. As
a result, multistamps need little storage at nodes and little
space in messages. Furthermore, because we prune based on
time, the discarded information is likely to already be known
to interested parties; therefore discarding it has little impact
on system performance. We assume that clocks are loosely
synchronized; such an assumption is realistic in today’s envi-
ronment [23]. The correctness of the scheme is not affected
if information of interest is pruned too early or clocks get out
of synch (although performance may be).

This paper describes the new scheme in conjunction
with an optimistic concurrency control algorithm, AOCC,
which was developed for use in a distributed client/server
environment. AOCC has been shown to outperform other
concurrency control mechanisms for all common workloads
and realistic system assumptions [1, 13]. In particular, AOCC
outperforms the best locking approach, adaptive callback
locking [6]. One reason for AOCC’s good performance is
that it allows transactions to use cached information without
communication with servers; locking mechanisms require
such communication at least when objects are modified.
However, the reduced communication comes at a cost:
unlike with locking, with AOCC transactions can view
an inconsistent state while they run. Such transactions
cannot harm the persistent state since they will abort, but
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it is nevertheless desirable to provide transactions with a
consistent view, which allows application programmers to
depend on invariants. This means code need not check
whether invariants hold (as it would need to do if it could
not depend on invariants) and it can display consistent
information to users.

The paper describes how to augment AOCC to provide
running transactions with consistent views. The consistency
provided by our scheme is weaker than serializability; we
discuss this point further in Section 3. We call it “lazy”
consistency because it is what we can provide with very
little work. We believe lazy consistency is appropriate
for our system since we commit in the standard way (by
communicating with the server); a transaction may still abort
even though it viewed a consistent state.

The consistency mechanism uses multistamps to warn
clients of potential violations of consistency. Multistamps
are sent to clients on messages that are already flowing in
the system. We guarantee they arrive at clients before a
transaction might observe an inconsistency. Clients are also
lazy; they act on the multistamp information only if it might
affect the current transaction. Being lazy buys time so that the
needed consistency information is highly likely to be present
by the time it is needed.

The paper presents results of simulation experiments to
evaluate the cost of the lazy scheme. Our results show that
this cost is very small. The cost is manifested by “fetch stalls”
in running transactions; these are events where a fetch done
by a client because of a cache miss causes it to communicate
with another server before continuing to run the transaction,
where the communication would not have been required in the
basic AOCC scheme. Our results show that when contention
is low, fewer than one in a thousand fetches lead to stalls; even
in stressful workloads, less than one in one hundred fetches
lead to stalls. Therefore we believe the cost of the scheme
is negligible. The studies also evaluate the effectiveness of
pruning multistamps and show that small multistamps are as
effective as larger ones in preventing stalls.

Thus the paper makes three contributions:

1. It presents a new efficient scheme that provides consis-
tency for running transactions.

2. It presents a new way of implementing multistamps that
allows them to be pruned safely and effectively. This
keeps multistamps small so that they can be used even
in very large systems where otherwise they would not be
practical.

3. It presents the results of simulation studies that show the
scheme provides consistency with almost no impact on
system performance.

The remainder of the paper is organized as follows.
Section 2 describes related work. Section 3 defines lazy
consistency and discusses how it relates to serializability
and causality. Section 4 describes our system and how

AOCC works; Section 5 describes our implementation of
lazy consistency; and Section 6 presents our performance
results. We conclude with a summary of our results.

2 Related Work
Lazy consistency is similar to “degree-2 isolation”; using the
terminology of Gray and Reuter [12], our system provides
degree-3 isolation for all committed transactions and degree-
2 isolation for running transactions.

Earlier research has investigated ways of providing con-
sistency for read-only transactions [3, 30] using serializabil-
ity or weaker notions of consistency that are different from
lazy consistency. For example, some schemes ensure that a
read-only transaction is serializable with all read-write trans-
actions but the whole system may not be serializable when
all read-only transactions are taken into account.

Chan and Gray [7] propose lazy consistency as a
correctness criterion but their work is concerned with
committing read-only transactions more cheaply as opposed
to providing consistency for transactions that abort. They
also propose an implementation technique for a distributed
client/server system using a kind of multistamp scheme but
ignore all details that would make it a practical scheme.

Our work is related to orphan detection schemes [20].
Such schemes abort transactions before they can observe
an inconsistency; they guarantee a stronger property than
lazy consistency since they detect anti-dependencies also
(discussed in Section 3).

3 Lazy Consistency
This section defines the kind of consistency our new
mechanism provides.

We refer to the i version of object x as x . If a transaction
creates a version x , we assume that it read x 1. Transaction
T is said to directly depend on transaction U if it read x
and U created version x ; we also say that T has read from
U. We say that T depends on U if there exist transactions
V1, V2, V , where U is V1 and T is V and V2 directly
depends on V1, V3 directly depends on V2, and so on.

A running transaction Q will view a consistent state if the
following condition is satisfied:

If Q depends on T, it must observe the complete effects
of T.

For example, suppose that T creates x and y . If Q reads
x and also reads y, it must read y or a version of y that is
later than y .

The same condition is used for providing consistent views
for read-only transactions by Chan and Gray [7]; that paper
proves that if the condition is satisfied, Q will observe a
consistent snapshot of the database. Here we present a brief
synopsis of the proof. Assume T1, T2, T is a prefix
of the serialization history of the system, where T is the
latest transaction whose updates have been observed by Q.
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Suppose Q only depends on transactions T 1 , T 2 , T
and has missed the updates of transaction T . Since we
are ensuring that the above condition is satisfied for Q,
T ’s updates have no impact on T 1 , T 2 , T (they do
not depend on T ). If we consider a history in which we
remove (all such) T from the set of committed transactions,
there will be no change in the database state observed by
Q. Since a transaction transforms the database from one
consistent state to another and the output of each transaction
in T 1 , T 2 , T is unaffected by the presence or absence
of T , their combination must yield a consistent database
state.

A transaction Q that views a consistent state is not
necessarily serializable with all the committed transactions
in the system. For example, suppose there are two objects x
and y stored at servers X and Y respectively and suppose that
transactions U and T run in parallel and commit and then Q
reads x0 and y2:

U: Read(x0) Read(y1) Write(x1)
T: Read(y1) Write(y2)
Q: Read(x0) Read(y2)

In this scenario, Q has observed the effects of T but missed
the effects of U. To commit Q, we would need to serialize it
both before U and after T, but since U is already serialized
before T, this is impossible. The intuition why Q does not
observe inconsistencies is that since T does not depend on U,
its modifications must preserve system invariants regardless
of what U does. A possible invariant that might be preserved
is , where U stores the value of in and T increases

.
This problem of transaction Q not being serializable can

occur only when there is an anti-dependency: A transaction
A anti-depends on B if A overwrites an object version that B
has read. In this case, T anti-depends on U. Figure 1 shows
a cycle that is formed in the dependency graph [3] for this
schedule due to anti-dependencies.

Anti-Dependency

QTU Dependency

x

y y

Figure 1: A non-serializable transaction that has observed a
consistent database state.

Lazy consistency is independent of causality [18]: a
transaction Q might observe the effects of T2 while missing
the effects of T1, where both T1 and T2 ran at the same client
in order T1; T2. Our implementation guarantees causality for
individual clients, which ensures that a client always observes
the effects of all its previous committed transactions and
the transactions they depended on. We believe such local
causality is good since it means code within a transaction
can depend on invariants holding between objects observed
directly and also results computed by its earlier transactions

and stored in local variables. Causality is discussed further in
Section 6.3, where we show the additional cost incurred over
lazy consistency to support local causality. We also show
what it would cost to support global causality, in which a
client that observes the effects of transaction T of some other
client also observes effects of all earlier transactions of that
client (and the transactions they depended on). Note that
locking ensures global causality for active transactions.

4 Base Algorithm
This section provides an overview of our system and AOCC.
More information can be found in [1, 10, 13, 19].

Servers store the database objects in pages on disk;
objects are typically smaller than pages. Clients maintain
a page cache; they fetch missing pages from servers and
use approximate LRU for cache management. Clients and
servers rely on ordered communication, e.g., TCP.

Transactions run entirely at clients; clients communicate
with servers only when there is a miss in the cache, and
to commit transactions. The system serializes transactions
using AOCC [1, 13] and two-phase commit [11]. (Two-phase
commit is avoided for transactions that use objects at only
one server.)

AOCC works as follows: While a transaction T is running,
client C keeps track of the objects it used and objects
it modified. When T is ready to commit, C sends this
information together with the new states of modified objects
to a server at which some objects used by this transaction
reside. This server acts as the coordinator for the commit;
other servers where objects used by the transaction reside act
as participants.

The participants validate T to ensure that it used only up-
to-date versions of all objects and that it has not modified any
objects used by other prepared or committed transactions,
i.e., we use backward validation [14]. Validation uses a
validation queue or VQ to track read/write sets of prepared
and committed transactions; details can be found in [1].

Each participant sends its validation results to the
coordinator who commits the transaction iff all participants
voted positively. The coordinator sends its decision to client
C and the participants. The delay observed by the client is
due to phase 1 only; phase 2 happens in the background.
In phase two, a participant installs T’s updates (makes them
available to other transactions).

When updates of a transaction run by client C1 modify
objects in the cache of client C2, this causes C2’s cache to
contain out-of-date information. Furthermore, if C2 then
runs a transaction that observes this out-of-date information,
that transaction will be forced to abort. To avoid such aborts
and keep client caches relatively up to date, servers send
invalidation messages. The server maintains a per-client
directory that lists pages cached at the client (the directory
may list pages no longer at the client since the server has not
yet been informed that they were dropped). The server uses
the directories to determine what invalidations to generate;
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each invalidation identifies an object that may be out of date
at a particular client.

An invalidation message to a client contains all invalida-
tions for that client. When a client receives an invalidation
message it discards invalid objects (but not the containing
page) and aborts the current transaction if it used them. In
addition to keeping caches almost up-to-date, which reduces
the number of aborts, invalidation messages also cause trans-
actions that must abort to abort sooner.

Invalidation messages are piggy-backedon other messages
that the server sends to the client; the client acks these
messages (acks are also piggybacked), which allows the
server to discard pending invalidations for the client.
However, invalidations are not allowed to remain pending
indefinitely. Instead there is a timeout period (half a second
in our current implementation). If a server has pending
invalidations for the client, and if some of these invalidations
are “old”, i.e., they were generated nearly a timeout period
ago, the server sends invalidations to the client on its own
account (piggybacked on “I’m alive” messages). Thus
invalidations are highly likely to arrive within half a second
of their generation.

Although our scheme keeps caches almost up to date,
it does not guarantee that they are up to date. When
transactions run they can observe old information, and in fact
if a transaction T modified objects at two different servers,
a transaction running at some other client might observe the
new state of one object and the old state of the other. Thus,
it is possible for a transaction in our system to observe an
inconsistent state. Our new algorithm prevents this situation
from happening.

5 The Lazy Scheme

We now present our lazy scheme for providing consistent
views for running transactions. Our scheme assumes that
server clocks never run backwards, and advance rapidly
enough that each transaction can be assigned a distinct
timestamp; these assumptions are easy to guarantee (see for
example, the discussion in [21]).

The basis of the scheme is the invalidations generated when
transactions commit. The fundamental idea is this: if a
client running transaction U observes a modification made
by transaction T, then it must already have received all the
invalidations of T and any transactions T depended on.

The information about invalidations is conveyed to clients
using multistamps. Each committed transaction has a
multistamp that indicates its invalidations and those of all
transactions it depends on. A multistamp is a set of tuples

client, server, timestamp ; each tuple C, S, ts means
that an invalidation was generated for client C at server S at
time ts. The timestamp ts is the value of S’s clock at the time
it prepared a transaction that caused invalidations for C.

We assume the obvious merge operation on multistamps:
if the two input multistamps contain a tuple for the same

client/server pair, the merge retains the larger timestamp
value for that pair.

The next two subsections describe the processing at the
server and the client, ignoring size issues: multistamps are
allowed to grow without bound and so are local tables at the
server. Section 5.3 describes how we solve the size problems.
Section 5.4 gives an informal argument that the scheme is
correct.

5.1 Processing at the Server
Servers have two responsibilities: they must compute
multistamps, and they must send them to clients in fetch
responses. A fetch response sends a page containing
modifications of transactions; at that point we also send the
merge of the multistamps of those transactions.

The server maintains the following data structures. The
PSTAMP table maps pages to multistamps: the multistamp of
a page is the merge of the multistamps of all transactions that
modified that page. The ILIST maps clients to invalidation
information. Each element of ILIST[C] is a timestamp ts
and a list of object ids, indicating that these objects were
invalidated for C at time ts. The VQ records multistamps of
committed transactions (along with information about reads
and writes of prepared and committed transactions).

Commit Processing. In the prepare phase, if validation of
transaction T succeeds, participant S computes multistamp
m as follows:

1. S initializes m to be empty.

2. If the commit of T would cause invalidations for any other
clients, S sets ts to the current time of its clock. Then for
each potentially invalidated client C:

(a) S adds tuple C, S, ts to m.

(b) S adds ts, olist to the ILIST for C, where olist
contains ids of all objects modified by T that are in
pages listed in S’s directory for C.

3. For each transaction U that T depends on, S merges
VQ[U].mstamp with m. The dependencies are deter-
mined using S’s VQ.

Then S sends m in the vote message to the coordinator. If
the coordinator decides to commit T, it merges multistamps
received from participants to obtain T’s multistamp. This
multistamp is sent to participants in the commit messages.
The participants store it in VQ[T].mstamp. Furthermore,
for each page P modified by T, the participant merges this
multistamp into PSTAMP[P].

If the coordinator decides to abort, it sends this information
to the participants. The participant then removes information
about T from the ILIST.

Fetch Processing. When a server receives a fetch message
for object x on page P, if there is a prepared transaction that
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modified x, it waits for it to complete. Then it sends the fetch
reply, which contains P and also PSTAMP[P]. (Our base
system never delays a fetch reply. However, the probability
of a delay is very small since the prepare window is very
small.)

Invalidations. To produce an invalidation message, the
server goes through the ILIST in timestamp order from
smallest to largest, stopping when it has processed the
entire list, or it reaches an entry for a prepared (but not
yet committed) transaction. The ids of all objects in the
processed entries are sent in the message along with the
largest timestamp contained in the processed entries.

As mentioned, invalidation messages are piggybacked
on every message sent to a client and clients acknowledge
invalidations. The acknowledgement contains the timestamp
ts of the associated invalidation message. The server then
removes all entries whose timestamps are less than or equal
to ts from the ILIST.

A client may also request invalidation information. Such
a request contains a timestamp ts. The server responds by
sending back an invalidation message as above except that
the timestamp in the message must be greater than or equal to
ts. It is possible that some entry in the table with a timestamp
less than or equal to ts exists for a transaction that has not yet
committed (it is still prepared); in this case, the server delays
the response until the outcome for that transaction is known.
Such delays are unlikely because the coordinator sends the
phase-two message to participants promptly.

5.2 Processing at the Client

A client C is responsible for using multistamps to ensure that
it receives invalidations before their absence could lead to the
current transaction viewing an inconsistency.

C maintains two tables that store information about servers
it is connected to. LATEST[S] stores the timestamp of the
latest invalidation message it has received from server S and
REQ[S] is the largest timestamp for S that C is required to
hear about. If REQ[S] LATEST[S], this means S has
invalidations for C that C has not yet heard about.

The client also maintains a set CURR that identifies
all servers used by the currently running transaction.
For each such server S in CURR, it guarantees that
LATEST[S] REQ[S]. In other words, for all servers used
by the current transaction, the invalidation information is as
recent as is required.

When the client receives an invalidation message from
server S, it stores the timestamp in the message in
LATEST[S].

Client C does the following when a transaction first uses
object x:

1. Adds x’s server S to CURR.

2. Fetches x if necessary. When the fetch reply arrives it
processes the invalidations as described above. Then it

updates the information in REQ to reflect the multistamp
in the fetch response: for each multistamp entry

such that ts is larger than REQ[R], it stores
ts in REQ[R].

3. If LATEST[R] REQ[R] for some server R in CURR,
it sends an invalidation request to R (requesting R to
reply with a message timestamped same as or later than
REQ[R]), waits for the response, and then processes it.

Note that invalidation processing in steps 2 and 3 can cause
the transaction to abort (if the transaction had already used
an invalidated object).

The main point to notice here is that the processing over-
heads associated with multistamps are minimal (assuming
multistamps are small). The main impact on system perfor-
mance is in step 3 when an invalidation request is sent. When
this happens there is an extra message compared to AOCC,
and the current transaction is delayed, i.e., there is a stall.
A stall can occur when a fetch completes or when a server
is accessed for the first time in a transaction; note that the
latter type of stall can be attributed to a fetch that occurred
previously at that client. In Section 6, we evaluate the cost in
terms of the stall rate, i.e., percentage of fetches that resulted
in stalls.

5.3 Truncation

Now we discuss how to keep multistamps small and also
how to keep the VQ and PSTAMP tables small. All of our
optimizations rely on time: we remove “old” tuples from
multistamps. To account for removed tuples, a multistamp m
also contains a timestamp m.threshold; m.threshold is greater
than or equal to timestamps of all tuples that have been
removed from m. The threshold allows us to compute an
effective multistamp EFF(m) containing a tuple
for every client/server pair, where ts is the timestamp in
the tuple for C/S in m if one exists and otherwise, ts is
m.threshold.

As mentioned in Section 4, clients receive invalidation
information from servers within the timeout period of when
it was generated. This communication implies that tuples
containing a timestamp ts that is older than a server’s
current time by more than this period are not useful, since
by now those old invalidations will almost certainly have
been propagated. Therefore, such old entries are aged, i.e.,
automatically removed from multistamps.

Simple aging of tuples may not be enough to keep
multistamps small, so we also prune the multistamp by
removing tuples that are not old. The system bounds the
size of multistamps: whenever a multistamp m exceeding this
size is generated, it is immediately pruned by removing some
tuples. Pruning occurs in two steps: First, if there is more
than some number of tuples concerning a particular server,
these tuples are removed and replaced by a server stamp.
Then, if the multistamp is still too large, the oldest entries
are removed and the threshold is updated. A server stamp is
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a pair server, timestamp ; EFF(m) expands a server stamp
into a tuple for each client for that server and timestamp.

The VQ and PSTAMP are also truncated. Retaining
information in the VQ about transactions that committed
longer ago than the timeout period is also not useful.
Whenever the multistamp of a transaction contains no tuples
(i.e., it consists only of a threshold), it is dropped from the VQ.
The VQ has an associated multistamp VQ.m that is greater
than or equal to the (effective) multistamps of all transactions
dropped from VQ. Information is dropped from PSTAMP in
the same way, with information about multistamps of dropped
entries merged into PSTAMP.m, a multistamp associated with
PSTAMP. Note that for both the VQ and PSTAMP, we can
remove entries earlier if we want; all that is needed is to
update the associated multistamp properly. Thus, a server
only maintains entries for recently committed transactions in
the VQ and only information about recently modified pages
in PSTAMP.

A server initializes the multistamp m for a transaction
to VQ.m. When a fetch request for page P arrives and
PSTAMP contains no entry for P, the fetch response contains
PSTAMP.m.

When a client receives a multistamp m, it computes EFF(m)
and proceeds as described in Section 5.2.

The result of these optimizations is a loss of precision in
multistamps, which may in turn lead to more fetch stalls. For
example, in pruning the multistamp, the server may have
removed an entry D, S, ts concerning some client D
different from C. When that multistamp arrives at C, C may
block while waiting for invalidation information from S even
though S has no invalidations for it.

When an invalidation request arrives at a server it might
contain a timestamp ts that is larger than what is stored in any
entry in the ILIST for that client. To handle such a situation,
the timestamp in the invalidation response will be the value
of the server’s current clock. If the current value of the clock
is less than ts, the server will wait for it to advance. This
situation is extremely unlikely, since it occurs only if clocks
are out of synch.

Every message sent to the client contains a piggybacked
invalidation message. This message is as described earlier
except that if the whole ILIST is being sent, or if the ILIST is
empty, the current clock value is sent as the timestamp. This
timestamp allows the clients to avoid stalls.

5.4 Correctness

The correctness of our scheme depends on two properties: (i)
multistamps reflect dependencies properly; (ii) multistamps
flow and are acted upon in a timely way.

Step (2a) of commit processing in Section 5.1 ensures
that the multistamp for a transaction T contains tuples for
all invalidations caused by it and step (3) ensures that T’s
multistamp contains all tuples in multistamps of transactions
T depends on. The fact that we delay a client that
fetches an object modified by T while T is prepared and

the fact that the coordinator sends the merged multistamp
in its commit decision ensures that all of T’s read-write
participants have the complete invalidation information for
T and the transactions it depends on. By induction on the
dependency relation we know that T’s multistamp contains
tuples reflecting all invalidations of T or any transaction it
depends on. Truncation preserves dependencies because,
for m’, the truncated form of m, the timestamp for any
client/server pair in EFF(m’) is greater than or equal to the
timestamp for the pair in EFF(m).

Multistamps flow in a timely way. The only way a
transaction U comes to depend on some other transaction T is
by reading a modification of T. This can occur only if its client
fetches a page modified by T. But when such a fetch occurs,
the multistamp of T is sent to the client (in the multistamp
of the returned page); the client records this information (in
REQ). The REQ and LATEST data structures are used by a
client to maintain the invariant that its cache is up-to-date with
respect to all servers in the current transaction. Whenever the
cache gets new information (i.e. a page is fetched) or a server
is accessed for the first time in the current transaction, the
client ensures that REQ[S] LATEST[S] for all servers S
used by the current transaction.

6 Performance Evaluation

It would be nice to determine stall rates and the effects of
truncation analytically, but these effects are dependent on
workloads and also connectivity among clients and servers,
and are not amenable to analysis. Instead, we study the
effects via simulation. This section describes the simulation
experiments and results. The results show that the stall rate is
low even in workloads that stress the system, that truncation
keeps multistamps small with little impact on stall rate, and
that aging alone is not sufficient for truncation in these
workloads. The section also discusses the cost of supporting
causality and presents an optimization that further reduces
stalls.

6.1 Simulator Model

The simulator allows us to control the number of clients and
servers, their connectivity, and also workload issues such as
how the database is distributed among the servers,how clients
share, and what transactions are like. The details of the
algorithm are simulated precisely; we replaced client-server
tuples in multistamps with server stamps when there were
at least 10 entries for the same server. We constructed the
simulator and workloads starting from earlier concurrency
control studies [13, 6]. These studies were performed
for a single-server, multi-client system; we extended them
to a distributed database with multiple servers. We ran
experiments with varying values of simulator parameters;
we present results for a particular setup and mention results
of other experiments along the way. Figure 2 describes the
parameters of the study.
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Connectivity Parameters
Servers in cluster 2
Client in cluster 20
Total clusters in system 10
Client connections with servers 4
Preferred servers for each client 2

Network Parameters
Network Bandwidth 155 Mbps
Fixed network cost 6000 instr.
Variable network cost 7168 instr./KB

Client/Server Parameters
Client CPU speed 200 MIPS
Server CPU speed 300 MIPS
Client cache size 50% of IUP
Server cache hit ratio 50%
Disk read time 16 msec

Database and Transaction Parameters
Object size 64 bytes
Page size 4 KB
Objects per page 64
In-use pages or IUP 1250
Single server transactions 80%
Read think time 64 sec/object
Write think time 128 sec/object
Access per transaction 200 objects
Write accesses 20%
Timeout period 0.5 sec

Figure 2: Summary of Parameter Settings

6.1.1 Connectivity Model

We divided clients and servers into clusters each containing
2 servers and 20 clients. There are 10 clusters in the
system. Each client is connected to 4 servers of which 2
are “preferred”: most accesses by this client go to these
servers. A client’s preferred servers are in its cluster; the
non-preferred servers are chosen randomly from all the
clusters. Thus, each server has 20 clients that prefer it and
20 (on average) other clients. In our experiments each server
receives about 1 transaction from a non-preferred client for
every 5 transactions received from preferred clients; thus
non-preferred clients are not very idle from a server’s point
of view. Figure 3 shows a typical setup.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 10

Client A Client B

Preferred connection
Non-preferred
connection

Figure 3: Client connections in a simulator run.

This setup models a realistic situation where clients mostly
access their local server (e.g., on their LAN). To stress our
scheme, we used 2 preferred servers per client instead of
one: as a client switches between the 2 preferred servers,
the likelihood of stalls increases due to inter-transaction
dependencies created for the client by local causality.
Furthermore, the connectivity of the system is high; each
client has two random connections to non-preferred servers
in other clusters. Thus, a client can “spread” the multistamp
from its clusters to other clusters and vice-versa. Increase
in multistamp propagation can lead to eager truncation and
unnecessary stalls. We chose 10 clusters to model a system
in which multistamps must be truncated; otherwise, they
would contain 800 entries (since there are 800 client-server
connections in the setup).

6.1.2 Network Model
We used an abstract model of the network as in [13]. Apart
from time spent on the wire, each message has a fixed and
variable processor cost for sending/receiving the message.
Our network parameters were obtained from the experimental
results reported for U-Net [29] running over a 155 Mbps
ATM.

6.1.3 Client/Server Parameters
Client processors run at 200 MIPS and the server CPU at 300
MIPS; these values reflect typical processor speeds expected
in the near future. Disks are not modeled explicitly but
we assume a server cache hit ratio of 50%. This value is
much higher than hit ratios observed in real systems [5, 24].
A lower server cache hit ratio would reduce the stall
rate since transactions would take longer to execute and
thus dependencies would spread more slowly (we ran an
experiment to confirm this). Furthermore, a lower hit rate
would reduce the relative impact of stalls on overall execution
time. The costs for reading and writing an object are about
64 sec and 128 sec respectively. These times are based
on the observation that a transaction operates on an object
for some time when it accesses it, e.g., the time spent per
object in the OO7 benchmark by Thor [19] is around 35 sec
(and OO7 methods do not perform any significant amount of
work). Other costs such as those for validation, cache lookup,
etc., are not shown due to lack of space; they are negligible
compared to the access and fetch costs. The timeout period
is chosen to be 0.5 second. Clock skews are not modeled
since they are insignificant compared to the timeout period;
the Network Time Protocol [22] maintains clock skews that
are less than 10 milliseconds on LANs and WANs [23].

6.1.4 Database and Transaction Parameters
The database is divided into pages of equal size. Each
simulator run accesses a small subset of the database; this
set is called in-use pages of the run. As shown in Figure 2,
there are 1250 database in-use pages per server.

In all workloads, 80% of the transactions are single
server and the rest are multi-server (with a bias towards
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fewer number of servers in a transaction). To generate a
transaction’s accesses, we first generate the number of servers
for the transaction and then choose the servers. A preferred
server is chosen 90% of the time for transactions with one
or two servers. For a higher number of servers, we choose
both preferred servers and then choose randomly from the
remaining non-preferred servers. Each transaction accesses
200 objects on average; 10 objects are chosen on a page
resulting in 20 pages being accessed in a transaction. In a
multi-server transaction, the number of accesses are equally
divided among the servers. 20% of the accesses are writes.

The client cache size is 875 pages; cache management is
done using LRU. The client can potentially access 5000 pages
(1250 from each server). In single-server studies [13, 6] the
client cache was 1/4 of the in-use pages, so it might seem that
our cache is too small. However, we observed that more than
85% of accesses are to preferred servers, i.e., to 2500 pages.
Thus, a client cache size between 625 and 1250 pages, with
a bias towards 625, is in line with earlier work.

The total in-use database in our system is more than twice
the size used in [13, 6]. This means we have lower contention
(less than half) than what was observed in those studies.
We therefore also ran experiments with a smaller database
(to make contention levels similar) and observed a stall rate
increase of about 50-75%.

As before, our parameters are designed to stress the lazy
scheme. Although real systems are dominated by read-
only transactions [9, 26], we don’t have any since otherwise
invalidations would be generated with very low frequency
making stalls highly unlikely. Also, we have a relatively
high percentage of multi-server transactions (20%); 11.5%
of our transactions use two servers and 8.5% use more than
two servers. Benchmarks such as TPC-A and TPC-C [28]
have fewer than 10-15% multi-server transactions and these
transactions involve two servers; other researchers have also
reported two-server transactions to be common for distributed
transactions [26].

6.1.5 Workloads

We now discuss the different workloads used in our study;
these workloads have been used in the past to compare the
performance of various concurrencycontrol mechanisms [13,
6]. LOWCON is intended to be a realistic low-contention
workload; the others are intended to stress the system.

LOWCON. This workload models a realistic system with
low contention (like those observed in [16, 27]). Each client
has a private region of 50 pages at each preferred server. Each
server has a shared region of 1200 pages. 80% of a client’s
accesses go to its private region; the rest go to the shared
regions at its connected servers. Thus, in this workload, a
client can access 1250 pages at a preferred server and 1200
pages at a non-preferred server (note that private regions of
other clients are not accessed by a client).

SKEWED. As in LOWCON, each client has a private region
of 50 pages at each preferred server; together these regions
consume 1000 pages. Each server has a shared region
containing 250 pages. 80% of a client’s accesses go to its
private region; 20% of the accesses go to the rest of the
database (or RDB) region consisting of all other pages at its
connected servers, including private regions of other clients.
This workload models the case when a client has affinity
for its own objects and is used for checking contention with
skewed sharing patterns.

HOTSPOT. This is the same as SKEWED except there is
a small region of 50 pages added to the database at each
server (the shared region is thus 200 pages at each server).
10% of accesses go to the small region, 80% to the private
region and 10% to the RDB. The small region might be the
top of a naming hierarchy that is accessed often by clients;
to capture the fact that such a region will not be modified
often, only one in every ten transactions modifies the small
region. This workload has the richest access patterns; it
includes both uniform sharing (all clients access the small
region uniformly) and skewed sharing (one client accesses
its private region more frequently than other clients). The
workload is intended to stress the lazy scheme because of
high contention in the small region.

We could have added a small region to LOWCON, but
in practice modifications to such a region are extremely
rare and therefore its impact on lazy consistency would be
insignificant.

HICON. This is very unrealistic workload used in concur-
rency control studies to model high contention. There are
two regions at each server — a “hot” 250 page region that is
accessed 80% of the time and a 1000 page “cold” region that
is accessed 20% of the time. Both hot and cold regions are
shared uniformly among clients.

6.2 Basic Experimental Results

Figure 4 shows results of experiments as the maximum size
for multistamps increases from zero entries (just the threshold
timestamp) to the size reached when just aging is used.
(A system that uses just the threshold timestamp is using
Lamport clocks [18].) The X axis represents increasing
multistamp size; the Y axis shows the stall rate. The number
in parenthesis after the workload name gives the number
of fetches per transaction. The results show that even for
small multistamps, the percentage of stalls is low. Low stalls
translate into extremely low cost as discussed in Section 6.2.2.
Furthermore, we can decrease stall rates by a factor of two,
as shown in Section 6.4.

LOWCON has relatively few misses (all due to the shared
region) and few stalls. Since contention is low on the shared
region, the stall rate is extremely low. Most misses in
SKEWED and HOTSPOT are due to accesses to the RDB
region; HOTSPOT also has coherency misses due to the
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Figure 4: Percentage of fetch stalls as the maximum
multistamp size is increased

small region. The stall rate in HOTSPOT is higher than
in SKEWED because there is more contention on the small
region. Furthermore, since the client can cache a higher
percentage of this region than the RDB region in SKEWED,
more invalidation entries are generated in HOTSPOT. As a
result, there is more truncation, which leads to a higher stall
rate.

HICON has very high contention and a high number of
stalls. However, the number of fetches is also high because
there is a large number of coherency misses in the hot region
and capacity misses in the cold region and therefore the stall
rates are low. If we had a large enough cache that there were
no capacity misses in HICON, the stall rate would be about
2.6% (it will be lower than this since some of the capacity
misses will be replaced by coherency misses).

Figure 5 shows multistamp size when only aging is used.
These multistamps are large and therefore pruning is needed.
As shown in Figure 4, pruning to a reasonable size does not
increase stall rate significantly.

Workload Multistamp entries
LOWCON 27.5
SKEWED 117.9
HOTSPOT 135.8

HICON 201.7

Figure 5: No. of multistamp entries with aging

6.2.1 Additional Experiments
This section discusses results of some other experiments we
ran to determine what happens to the stall rate as parameters
vary. These experiments used HOTSPOT since it has uniform
and skewed sharing patterns, and because it stresses the
system.

We changed the topology so that one of the 2 preferred
servers was in a different cluster. The stall rate decreased

since the likelihood of a client depending on a multi-server
transaction that involved the same servers decreased (the
probability of two clients sharing multiple preferred servers is
lower). In another experiment, we decreased the percentage
of accesses to the preferred servers; the stall rate decreased
as the percentage of accesses to the preferred servers was
reduced, for similar reasons.

We varied client cache sizes and observed that the stall rate
did not change. As cache sizes were increased, the number
of fetches remained the same; capacity misses were replaced
by coherency misses.

We ran an experiment where a client had more than 2 non-
preferred servers; we varied the number of non-preferred
servers from 3 to 9, and allowed transactions to use all
connected servers. The stall rate for the 5-entry multistamp
increased steadily from 2% to 6.3%. Additional experiments
showed that this effect was due to transactions that used large
numbers of servers rather than the number of connections per
client. Of course, as discussed in Section 6.1.4, transactions
that use 8 or 9 servers are highly unlikely in practice.

We ran an experiment where there were 15 clusters instead
of 10 (giving 300 clients and 30 servers). The stall rates were
the same. In another experiment, we changed the number
of clients per cluster from 20 to 30, i.e., each server had an
average of 60 client connections. The stall rates for this setup
were also similar.

6.2.2 Impact on Performance

We ran experiments with lazy consistency enabled and
disabled and observed that the transaction latency/throughput
were the same. Very small stall rates have little impact on
transaction cost since other costs dominate. Each fetch
involves a roundtrip with the reply being a big message
(4KB); in contrast, a stall results in a small message roundtrip.
On an ATM network, a stall takes 300 secs, a fetch from
the server cache is approximately 650 secs (using U-Net
numbers), and a disk access is around 16 msec. For example,
consider HOTSPOT with a 5-entry multistamp and assume
50% of fetches hit in the cache. Using the stall rate of 2%
shown in Figure 4, we have an increase in the cost of running
transactions of less than 0.08%; with the simple optimization
discussed in Section 6.4, we get a stall rate of only 0.8% (see
Figure 8), and the increase is less than 0.03%.

Lazy consistency also has little cost in space or message
size. A multistamp entry requires approximately 12 bytes of
storage, and multistamps typically contain fewer entries than
a given bound (e.g., in HOTSPOT, a 20-entry multistamp
actually contains approximately 10 entries). Therefore,
multistamps are cheap to send in messages and the memory
requirements for storing them are low. The memory cost for
other data structures are also low since we add only a small
amount of information over what is needed for concurrency
control purposes.

We compared the abort rate with and without lazy
consistency and discovered that it did not change. This
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indicates that in these workloads invalidation requests are
almost always due to false sharing rather than true sharing,
and that transactions would rarely observe inconsistencies
in our base system. Nevertheless, lazy consistency
is worth supporting since it provides a much cleaner
semantics to programmers: they can count on never seeing
inconsistencies.

6.3 The Cost of Causality

This section evaluates the cost of supporting local causality
by comparing its stall rate with what happens in a system
that supports lazy consistency without any causality. It also
evaluates the additional cost of supporting global causality.
The results are shown in Figure 6; the results are for a 5-entry
multistamp. We can see that the stall rate approximately
doubles when support for local causality is added to lazy
consistency, and it increases further when support for global
consistency is added.
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Figure 6: Breakdown of stall rate for local and global
causality

Lazy consistency without local causality is implemented
by having the client maintain a table SSTAMP that maps
servers to multistamps; every time the client receives a
fetch reply from server S, it merges the multistamp in the
message into SSTAMP[S]. Furthermore, rather than a global
REQ table, REQ stores information only for the current
transaction. REQ is empty when the transaction starts. The
first time the transaction accesses an object from server S, it
uses SSTAMP[S] to update entries for other servers used by
the transaction in REQ, and then sends invalidation requests
to these other servers if necessary. After commit, REQ is
merged into SSTAMP[S] for all servers S accessed by the
current transaction T (to capture T’s dependencies).

In a system with just lazy consistency, single-server
transactions cannot stall, and even in a multi-server
transaction, a client’s requirements are due only to the servers
used in that transaction. Thus, the following situation
must occur for a client to stall: Client C fetches page P
at server S in a multi-server transaction that also involves
server R. Page P must have been modified recently by a
multi-server transaction that also involved server R and that
caused an invalidation for C. The likelihood of a multi-server

transaction (fetching P) depending on another “temporally
close” multi-server transaction is low. The fact that we
keep track of exact dependencies at validation ensures that a
preparing transaction depends on very few recent transactions
(in HOTSPOT, this was less than 1.5 and in HICON it was
around 4). Also, 80% of these transactions are single-server
so that the multistamp of a preparing transaction will mostly
contain entries for this server. As a result, when P is fetched,
P’s multistamp contains entries for other servers mostly due
to the last transaction that modified it.

When local causality is supported, there are more stalls
since a transaction can stall due to requirements generated in
an earlier transaction. For example, without causality single-
server transactions never stall but now they do; we observed
that with local causality about half the total stalls in HICON
and HOTSPOT were stalls in a single-server transaction.

Global causality is supported by adding the following to
the implementation described in Section 5: the coordinator
sends a transaction’s multistamp to the client in the commit
reply; the client sends its current multistamp to the server at
the next commit request; and the server merges it into the
multistamp generated for that transaction. Global causality
further increases the stall rate because clients now act as
“propagators” of multistamps. Without global causality,
multistamp information was propagated across servers only
through multi-server transactions. Now when a client
“switches” servers, it propagates the multistamps (generated
due to its previous commits) to the new servers. Also,
faster propagation causes more pruning to occur (since
the multistamp has more entries); the threshold is raised,
resulting in more stalls.

6.4 Optimizations
6.4.1 Reducing Switch Stalls
With local causality, we observed that 70-80% of stalls were
switching stalls that occurred the first time client uses a server
it has not used in the recent past. Switches are frequent
in our system since we select servers randomly for every
transaction. In a real system, a client will use a server or a
set of servers for some time before switching to a different
server; thus switching will be relatively infrequent and stalls
are likely to be smaller than what we observed.

Workload NORMAL ALL PREF
Stall Stall Stall
Rate Msgs Rate Msgs Rate Msgs

HOTSPOT 1.96 % 0.10 0.23 % 0.39 0.82 % 0.15
HICON 1.73 % 0.33 0.10 % 0.95 0.37 % 0.54
SKEWED 1.56 % 0.10 0.16 % 0.34 0.57 % 0.14
LOWCON 0.26 % 0.01 0.02 % 0.05 0.11 % 0.02

Figure 7: Tradeoff involved in sending background invalida-
tion requests to reduce the stall rates

A good way to reduce switching stalls is to send
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invalidation requests in the background, for example, in
parallel with a commit request. That way, the client will
be up to date for all servers when the next transaction starts.
However, since a client does not access non-preferred servers
frequently, it may not be worthwhile sending installation
requests to them. Figure 7 shows the results of this
optimization (for 5-entry multistamps). Here ALL is the
case in which invalidation requests are sent to all out-of-
date servers at commit, and PREF is the case in which
these requests are sent only to out-of-date preferred servers;
NORMAL is the case where no background invalidation
requests are sent. The “Msgs” column gives the total number
of invalidation messages (both background and foreground)
sent per transaction for each scheme. The main point to
note here is that PREF works very well; only slightly more
messages are sent (over NORMAL), yet the stall rate drops
significantly.

The results for all multistamp sizes for PREF are given in
Figure 8; we can see that the optimization reduces stall rate
by approximately a factor of two (compared with Figure 4).
This figure shows the true performance of our scheme. For
all the stressful workloads, the stall rate is less than 1%; for
the realistic workload, the stall rate is around 0.1%.

Note that a client can use heuristics based on its history
of previous transactions to determine whether a server is
preferred or non-preferred.
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Figure 8: Percentage of fetch stalls when messages are sent
to preferred servers at end of transaction

6.4.2 Using Server Stamps

The current system uses both client-server stamps and server
stamps in multistamps; it replaces client-server stamps with
server stamps when the number of stamps for a server exceeds
a bound (10 in our system). We also ran experiments where
only server stamps were used. We found that the two systems
ran identically when multistamp size (in number of entries)
was held constant. However, multistamps containing only
server stamps are smaller than those containing client-server
stamps, and therefore we can get the same low stall rates with

less space and smaller messages using server stamps.
We believe, however, that our workloads are biased

towards server stamps since all clients that share a server
also share pages at that server, so that page modifications
are likely to cause invalidations for many clients. Therefore,
there is not much information loss when client-server stamps
are replaced by server stamps. Instead, consider two clients
C and D that share pages from server S and also both use R
but do not share any pages at R. If client C fetches a page from
S that was modified in a multi-server transaction by client D,
C can stall unnecessarily due to invalidations generated by D
for some other client. Depending on the sharing patterns in
the system, the client-server stamp system will dynamically
replace some client-server stamps with a server stamp. Thus,
if the above sharing pattern occurs, the client-server stamp
system may be able to handle it better than the server-stamp
system. This pattern may be quite likely in practice, and
therefore client-server stamps seem like a good idea since
they are not very expensive.

6.5 Eager scheme

Lazy consistency can also be provided by an eager scheme
that delays installing new object versions until all old versions
have been removed from client caches. Participants send the
list of invalidations to the coordinator in their vote. The
coordinator sends the commit decision to the client and
initiates an invalidation phase in which it sends invalidations
to clients on behalf of participants. After it has received
replies from these clients, it sends the commit decision
to the participants. (The invalidation phase is similar to
communication in other concurrency control schemes, e.g.,
callbacks in [6], except that in those schemes, communication
occurs in the foreground.)

The eager scheme avoids fetch stalls entirely, but at the cost
of extra messages and an extra commit phase. For example,
in HOTSPOT an average of 20 clients are invalidated in
every transaction (the number of invalid objects per client
is low, e.g., 10), resulting in 20 extra roundtrip messages per
transaction with the eager scheme. Since our results show
that the stall rate is low using the lazy approach, we believe
the extra cost of the eager approach is not justified.

7 Conclusions
This paper has presented a new scheme for guaranteeing
that transactions in a client/server system view consistent
state while they are running. The scheme is presented
in conjunction with an optimistic concurrency control
algorithm, but could also be used to prevent read-only
transactions from conflicting with read/write transactions in
a multi-version system [7].

The scheme is lazy about providing consistency. It simply
gathers information as transactions commit, and propagates
information to clients in fetch replies. Clients use information
only when necessary — to ensure that the current transaction
observes a consistent view.
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The scheme is based on multipart timestamps. Today
the utility of multistamps is limited because their size is
proportional to system size and therefore they don’t scale
to very large systems. Our scheme solves this problem by
using real times in multistamps. Using time allows us to
keep multistamps small by truncating them without loss of
information and with minimal impact on performance: we
remove older information that is likely to already be known
while retaining recent information. We assume clocks are
loosely synchronized; loss of synchronization affects only
performance and not correctness.

The paper shows that our approach has extremely
low costs. Cost takes the form of stalls — times
when a client transaction must be delayed because some
dependency information is needed to ensure consistency.
Our experiments show that small multistamps are sufficient
to make stalls rare in all workloads and extremely rare in
realistic low-contention workloads. Furthermore, low stall
rates translate into extremely low impact on the cost to run
transactions.
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