
Evaluation of highly available and fault-tolerant
middleware clustered architectures using RabbitMQ

Maciej Rostanski
Academy of Business in Dabrowa Gornicza

ul. Cieplaka 1C, 41-300 Dabrowa Gornicza, Poland
Email: mrostanski@wsb.edu.pl

Krzysztof Grochla, Aleksander Seman
Proximetry Poland, Sp. z o.o.

Al. Rozdzienskiego 91 40-203 Katowice, Poland
Email: {kgrochla, aseman}@proximetry.pl

Abstract—The paper presents a performance evaluation of
message broker system, Rabbit MQ in high availability - en-
abling and redundant configurations. Rabbit MQ is a message
queuing system realizing the middleware for distributed systems
that implements the Advanced Message Queuing Protocol. The
scalability and high availability design issues are discussed. Since
HA and performance scalability requirements are in conflict,
scenarios for using clustered RabbitMQ nodes and mirrored
queues are presented. The results of performance measurements
are reported.

I. INTRODUCTION

M
ODERN distributed systems have modular architecture.
The applications, devices or appliances which are dis-

tributed parts of the whole solution, need to connect and scale.
The applications need to connect to one another as components
of a larger application, or to user devices and data. Nowadays,
messaging, understood as an information flow or a network
rather than a stack, needs to be supported by the system. As
Richardson writes in [21]: ”Future applications (..) [will be]
always on, cloud hosted, and accessible anywhere. Input and
processing are continuous and automatic, and deliver a filtered
stream of information that the user wants, as it happens.”

The middleware layer, often referred to as a ’glue’ between
different system components, allows communication between
them. The modern requirement is to overpower the limits of
point-to-point communication, and, moreover, to do it in a non-
synchronous fashion. This is also referred to as a time- , space-
and synchronisation-decoupling [6], and is especially impor-
tant, given the fact, that the distributed systems now involve
thousands of entities, which may be distributed throughout vast
geographical distances, and whose behaviour and even location
may vary in time. Message queuing also called message-
oriented middleware is an architectural pattern. It is based
on a message broker, an intermediary program which realizes
message validation, message transformation and message rout-
ing functions. Message broker provides common infrastructure
for interactions between elements of the distributed systems,
which interact by sending or receiving messages. It is a recent
alternative for distributed interaction between components,
entities of an information processing system. Message queuing
is thoroughly described, for example, in [2], [3] and [6]. It
is often based on a publish/subscribe-like interaction [6]. The

This work was supported by Proximetry Poland

message queuing is an alternative to Classifications, which are
complementary to the publish/subscribe model of a distributed
information system [9]. Classifications involve techniques such
as message passing, shared spaces or remote invocations
and constitute solutions to the middleware layer challenges.
Middleware systems are also subject to numerous studies,
concentrating on networking and concurrent design. There is
a concept of using patterns in overall software architecture,
with [5] as a main example, or for security related applications
([7], [8]).

This paper describes design considerations of scalability and
high availability (HA) improving solutions using RabbitMQ
software, an open source message broker and queuing server
that is becoming more and more popular as a middleware. The
balance between HA and scalability is challenging because
of contrary requirements, the scalability and performance-
optimisation mechanisms are in principle hindered by high
availability or fault tolerance solutions, which prefer stability
and durability over performance.

This paper presents possible configuration scenarios for
a RabbitMQ cluster of servers, which combine scalability
with high availability / fault tolerance (HA/FT) requirements.
For this purpose, RabbitMQ is described as middleware and
clustering options are presented as well as HA possibilities.
The scenarios were implemented for test-field studies, whose
results are presented. Most of the available literature or reports
such as [1], [19] or [13] concentrates on the scalability issues
and performance results, or, from a different perspective,
strictly on high availability / fault-tolerance solutions for
queuing [21]. This paper aims to bring a novelty in discussing
solutions that combine both requirements, as it is a probable
industry scenario.

The paper is organized as follows: the design requirements
for middleware system are presented and briefly explained—
specifically, scalability and high availability concerns are
discussed. The next part includes a short summary of Rab-
bitMQ, the message broker used in research. The main part
includes message broker configuration scenarios for scalability
and high availability; the experimental results of constructed
systems are presented for comparison. Finally, conclusions are
revealed.

Proceedings of the 2014 Federated Conference on
Computer Science and Information Systems pp. 879–884

DOI: 10.15439/2014F48
ACSIS, Vol. 2

978-83-60810-58-3/$25.00 c© 2014, IEEE 879

II. RABBITMQ AS A MIDDLEWARE

From designer’s perspective, message-oriented middleware
can be seen as a (1) queuing system, where messages are
concurrently pulled by consumers, as well as (2) subscription-
based exchange solution, allowing groups of consumers to sub-
scribe to groups of publishers, resulting in a communication
network or platform, or a message bus [6]. Such bus or queuing
system has to be able to scale in terms of geographical distance
as well as in terms of devices or applications served. Quoting
Jones et al. [13], ”the distribution of information sent from
the publishers to the hub to be distributed to the necessary
subscribers allows for applications to run while relying on
data from other locations, wherever they may be.”

RabbitMQ is an open source message broker and queuing
server that can be used to let disparate applications share data
via a common protocol or to simply queue jobs for processing
by distributed workers. RabbitMQ middleware supports many
messaging protocols [17], among which the most important
are STOMP: Streaming Text Oriented Messaging Protocol [20]
and AMQP: Advanced Messaging Queuing Protocol [11].

Within this paper the AMQP-defined messaging architecture
is used. Within the core of the message broker architecture
are queues; every message received by the RabbitMQ always
is placed in a queue. Messages in queues can be stored in
memory (memory-based) or on a disk (disk-based). Second
important elements of the RabbitMQ are exchanges - the
delivery service for messages. The exchange used by a publish
operation determines if the delivery will be direct or publish-
and-subscribe, for example. A client chooses the exchange
used to deliver each message as it is published. The exchange
looks at the information in the headers of a message and selects
where they should be transferred to. This is how AMQP brings
the various messaging idioms together - clients can select
which exchange should route their messages [15].

A. Specific system design requirements for middleware

1) Scalability: Scalability is an architectural characteristic,
which can be defined as a capability to cope and perform under
an increased or expanding workload. A system that scales
well will be able to maintain or even increase its level of
performance or efficiency when tested by larger operational
demands. In terms of message-queuing, or even publisher/-
consumer exchange system, this would mean the possibility
of increasing processing speed or message throughput, user
capacity, etc.

2) Resiliency: In order to be resilient (which means to be
able to deal with internal failures), the system needs to imple-
ment some forms of high availability (HA) or fault tolerance
(FT). In general, HA and FT systems are designed with two
different design principles in mind. Given the availability (A)
formula (eq. 1),

A =
MTBF

MTBF +MTTR

HA aims to minimize downtime and IT service disruption;
so the common goal in HA is to increase Mean Time Between

Failure (MTBF) and decrease Mean Time to Repair (MTTR).
HA applications are designed to have a high level of service
uptime. HA solutions may feature many elements, e.g: system
management, live replacement (hot-swap), component redun-
dancy and failover mechanisms. Common strategy is to avoid
single points of failure in the system. This can be difficult,
because demands on such systems include not only ensuring
the availability of important data, but also efficient resource
sharing of the relatively expensive components.

Typical HA solution involves clustering; symmetrical (all
nodes have similar capabilities) or asymmetrical (nodes have
different possibilities and inventory). Clustering in this context
can be described as the use of two or more systems loosely
coupled to provide system level redundancy. Because these
systems are not directly coupled, they utilize standard network
connections to communicate failovers. This can cause failover
latencies to take several seconds to complete. Typically, there
is a middleware software solution to provide a failover mech-
anism between the two systems. But this middleware has to
be protected with HA in mind as well, possibly with the use
of clustering.

Contrary to HA, which implies a service level in which both
planned and unplanned outages do not exceed a small stated
value [18], fault-tolerant (FT) systems tend to implement as
much component redundancy and mirroring techniques as
possible, in order to eliminate system failures completely (this
is of course from client’s perspective, in fact introducing
redundant components will make component failures occur
faster) [4].

But FT has its problems; performance degradation is another
concern. As an example, let’s discuss mirroring a single server.
Besides handling all of the file transfer work for network users,
the primary server may have to process additional I/O as it
passes information along to the mirror server. This can also
add substantial processor overhead if system usage is heavy.
In effect, RAM, CPU and network performance is degraded.

B. Scalable and fault-tolerant middleware

Message broker, being one of the most crucial components
of distributed system, is supposed to be fault-tolerant. That
means, typical HA configuration (as described in II-A1) is not
the best option; restarting message broker on another node in
case of failure would introduce a timeout span, as the service is
being restarted and prepared for operation, but, what is worse,
the message queue of failed message broker would be lost
entirely. For message broker, both HA and FT solutions were
considered:

1) HA (Active/Passive solution): in which the downtime
of message broker service is expected in case of planned
or unplanned unavailability of primary server. Queues and
messages have to be persistent (disk-based), and message
broker can be restarted elsewhere in the system. It is possible
to base such solution on virtualization, where MB running
host can be virtualized and rely on hypervisor built-in HA
mechanism. This would cause hypervisor to run another in-
stance of VM in case of a failure of primary MB guest or

880 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

even virtualization host. Another active/passive solution is to
deploy clustering HA solution like pacemaker [16] in order
to manage message broker and restart it (or migrate) when
necessary, using available resources.

2) FT (Active/Active solution): means that the planned or
unplanned downtime of message broker doesn’t have any
effect on queuing system. Typically it is implemented by MB
leveraging clustering mechanism built-in RabbitMQ, which is
developed strictly for such situations, and replicates queues on
every RabbitMQ node in the cluster. RabbitMQ nodes failure
monitoring, and IP load-balancing techniques are explained
further in detail. Active/active solution can also be based on
virtualization, where MB running host can be virtualized and,
for example, marked as FT-demanding in VMware vCenter
virtualisation environment. This would create a VM mirror
image called ”replica”, updated in real-time, ready to be run
in case of a failure of primary MB host.

The second solution is a typical Active/Active topology and
is recommended as more reliable and scalable at the same
time. Additionally, virtualization was not considered, because
it would introduce additional conditions and variables to the
experiments and is a subject for another study. This paper’s
research is concentrated on RabbitMQ message broker clusters
and its characteristics.

C. RabbitMQ cluster setup and operation

The clustering built into RabbitMQ was designed with two
goals in mind: allowing consumers and producers to keep
running in the event of node failure, and linearly scaling mes-
saging throughput by adding more nodes [21]. With clustering,
a client can connect as normal to any node within a cluster. If
that node should fail, and the rest of the cluster survives, then
the client should notice the closed connection, and should be
able to reconnect to some surviving member of the cluster. [17]

The design decision that had to be made was an IP address-
ing of the cluster. As RabbitMQ documentation describes, it’s
not generally advisable to hardcode node hostnames or IP ad-
dresses into client applications: this introduces inflexibility and
will require client applications to be edited, recompiled and
redeployed should the configuration of the cluster change or
the number of nodes in the cluster change. As in general, this
aspect of managing the connection to nodes within a cluster
is beyond the scope of RabbitMQ itself. RabbitMQ’s authors
recommend a more abstracted approach, including a dynamic
DNS service which has a very short TTL configuration, or
a plain TCP load balancer (for example HAproxy [12]), or
some sort of mobile IP achieved with pacemaker or similar
technologies [16]. For this study, HAproxy was chosen as a
load balancer between clients and cluster nodes.

III. CLUSTERING SCENARIOS

The maximization of the systems performance suggests that
content of the queues should not be replicated throughout the
cluster. The queue owner node has full information about it;
other nodes in the cluster only know the queue’s metadata
and a pointer to the node where the queue actually is stored.

Fig. 1. Publishing to queues: a) on another node, b) to the mirrored queue.

This solution allows to limit storage space requirements and
increase performance—replicating messages to every node
would result in increase of network and disk load for every
node, keeping the performance of the cluster the same (or
worse) [21]. Regardless where publish is made, message
will end up on the queue owner node. This leads to main
performance optimization technique: to increase performance
for every added node by spreading queues across nodes. On
the contrary to performance-driven requirements for queues,
there is a need for queue to be redundant when the main goal
is to achieve high availability and fault tolerance. If a queue
owner node fails, all of the messages within a queue are gone.
An active-active redundancy option is possible; any queue can
be mirrored. The mirrored queue is achieved by creating slave
copies of the queue on other nodes in the cluster. It can be
copied on every node, but the designer is able to specify a
subset of nodes in the cluster for a queue to live on. Both
situations are presented on Fig. 1.

The design of the cluster and its queues can support the
following:

1) Creating fully mirrored queues on every node in order
to achieve HA; create very efficient connection between
nodes and create RAM nodes for quick distribution of
messages,

2) Creating spread queues, but configure mirrored queues
for at least one master and one slave (allowing for one
node failure),

3) Creating fully spread queues and do not mirror them,
but make them durable instead—all of the nodes are
disk based, and in the event of failure, message broker
is restarted elsewhere.

Within above listed possibilities, 1) is a scenario for maximum
fault-tolerance, 3) is a scenario allowing some downtime for
maximum performance (which is HA scenario) and 2) is a
compromise between those two.

A. Cluster and queues configuration

Considering a three-node cluster, one can come up for
specific testing scenarios that can provide comparable results
for performance assessment [14]. Those results may provide
an answer, whether given configuration is useful for a specific
real-world scenario [10]. For testing purposes, there were
following implications made: a) cluster may include up to
three nodes, b) queues are created in the cluster as a single

MACIEJ ROSTAŃSKI ET AL.: EVALUATION OF HIGHLY AVAILABLE AND FAULT-TOLERANT MIDDLEWARE 881

Fig. 3. The comparison of two-queue, one-client-per-queue publishes and
consumes using scenario 2 and scenario 3.

(non-mirrored), fully mirrored, and spread (mirrored to one
node) queue, c) all of configuration scenarios are put to the
three tests:

1) single publishes and consumes: there are single publish-
ers and consumers for both queues,

2) balanced conversations: there are three publishers and
three consumers for every queue (as many as cluster
nodes),

3) many conversations: there are six publishers and six
consumers.

Possible configuration possibilities for two queues are pre-
sented on Fig. 2. On the left, there is no fault-tolerance; queues
are not mirrored and the cluster is configured for performance
scalability; on the right, queues are mirrored for resiliency—
this is possible only using two nodes minimum; adding the
third node creates two possibilities—mirroring queues and
adding one node for scalability (scenario 5) or spreading
mirrored queues on available nodes (scenario 6).

B. Initial testing and results

All of scenarios were tested with commodity-equipped
virtual machines (single core, 4GB RAM, 8GB HDD) which
eliminated any possible networking issues. The hypervisor
host was equipped with Intel i7 CPU and 32GB RAM. There
was no resource overload. The most interesting observations
were as follows. In conclusion A, there is practically no
difference between the performance of publishing to single or
multiple queues on one node. Scenario 1 is viable and does not
introduce any performance problems. This question doesn’t
need any more evaluation.

The results of scenario 2 and scenario 3 (more than one node
in the cluster) show significant improvement of performance
over scenario 1. Fig. 3 presents exemplary results of single
publisher and consumer for both queues, summarized for
comparison. These results are expected, however designer has
to keep in mind such configuration is not fault-tolerant—if a
node fails, the queue is no longer available for publishing or
consuming. The difference between scenario 2 and scenario
3 is interesting and should be a subject for another study—
adding supplementary node allowed faster publishing, but the
consuming rate dropped, as the cluster nodes communication

Fig. 4. Mirrored queues performance results example.

introduced an overhead. In effect, whole system performance
was kept on the same level. This design could be more
appropriate with large number of publishers and consumers,
but such study is out of scope for this paper.

The performance of sending and receiving to mirrored
queues, as in scenarios 5 and 6, is significantly worse. Fig.
4 shows typical results (scenario 4 is shown). The difference
between publishing and consuming to the master (owner) node
compared to publishing and consuming from the slave node
is as expected - publishers are unaffected, but the consumers
suffer from intra-cluster traffic (master-to-slave) overhead.

C. Detailed evaluation

The initial tests results show the importance of load bal-
ancing the traffic between the clients and cluster nodes. The
message publishing or consuming rate depends whether the
client was redirected to the:

1) ”master” node (the node which is the master for the
specific queue being used),

2) ”slave” node (the node which specific queue is being
replicated onto),

3) ”empty” node (the node which is part of the cluster but
the queue resides on other nodes).

If the client is redirected onto ”master” or ”slave” nodes, the
published messages do not need to be communicated to every
node in the cluster, which has good effect on performance.
Otherwise, message sending/receiving rates drop.

For detailed information on this impact, the cluster was set
up with three nodes - two disk-based and one RAM-based.
Such configuration assures that if queue is mirrored, it always
resides on at least one disk-based node, and messages are
written to disk and can be retrieved even after power failure.
For such cluster, a single queue was tested for performance
when configured as:

1) ”single” queue (not mirrored at all, for performance
comparison and load balancing issues evaluation de-
scribed before),

2) ”spread” queue (mirrored to one other node in the
cluster, as suggested in scenario 6),

3) ”mirrored” queue (mirrored to every other node in the
cluster).

882 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

Fig. 2. Performance-driven vs. Fault-Tolerant-driven testing scenarios.

Fig. 5. Spread queues performance extensive testing results comparison

The results are presented in Table 1. For every queue config-
uration average message publication/consummation rates (for
9 consecutive tests) are shown, as well as standard deviation.
The effect of load-balancing is visible mostly for single client
consuming from mirrored queues—if the client’s request is
redirected to an empty node, the average message receive rate
is significantly lower. Also, the effect is visible when sending
to single-hosted queue, as the two other nodes are empty,
therefore they need to redirect a request.

Fig. 5 presents exemplary detailed extensive testing run
results in quantitative form, but gathered for comparison and
conclusions. Every queue configuration was created on master
disk or RAM node, then tested for a minute-long run ten
consecutive times. Such tests were conducted for one, three
and six simultaneous connections.

Most important observations are, as indicated by mutliple
tests (ca. 50 re-runs), the performance of single queue drops
significantly when this queue is mirrored throughout entire
cluster for fault-tolerance. Full mirrored queue is therefore not
as good architectural choice as it would seem, especially if
there are frequent moments of only one producer active. The
performance of spread queues is about 10%-20% minimum

better than fullmirrored queues on a three-node cluster. There
is no significant difference in RAM / disk node effect on
mirroring. Spread queues are stable; performance degradation
is however visible when receiving by many clients at once.

IV. CONCLUSIONS

This paper shows there are many considerations for building
clustered middleware and implementing scalable yet fault-
tolerant system. Queues need to be distributed evenly, or
internal transfers within the cluster will cause performance
to drop, especially for receiving clients. There is, however
a way to mirror queues asymmetrically, which is shown by
experimental results in this paper.

Relevant studies show many more aspects have to be
taken under consideration—for example, the disk-based nodes
compared to RAM-based nodes performance, or the expected
distribution of the clients (publishers and consumers) but
results show there is a possibility to create a design principles
for specific clients count and message rates requirements,
which can be a subject of next authors’ study. This is au-
thors’ contribution in discussing solutions that combine both
requirements, as it is a real industry scenario.

To summarize results, study shows that while typical single
queues on clustered nodes are key to performance, if the
requirements include fault-tolerance, performance can still be
improved by “spreading” queues to be mirrored only by one
more node, as N+1 rule dictates.

ACKNOWLEDGEMENT

This work is partially supported by NCBIR INNOTECH
Project K2/HI2/21/1 84126/NCB R/13, The Effective Man-
agement of Telecommunication Networks Consist of Millions
of Devices.

MACIEJ ROSTAŃSKI ET AL.: EVALUATION OF HIGHLY AVAILABLE AND FAULT-TOLERANT MIDDLEWARE 883

TABLE I
SUMMARIES FOR MOST IMPORTANT SCENARIOS (10 PUBLISHERS, 10 CONSUMERS)

Scenario Scenario 3 (performance) Scenario 5 (mirrored) Scenario 6 (spread mirrors)

Average publish rate [msg/s] 33296.59 8553.28 12668.86

Average consume rate [msg/s] 16162.00 5087.00 8231.55

REFERENCES

[1] M. Altherr, M. Erzberger and S. Maffeis, “iBus - a software bus
middleware for the Javaplatform,” in: Proceedings of the International

Workshop on Reliable Middleware Systems, 1999, pp. 43–53.
[2] G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A case for mes-

sage oriented middle-ware”, in: Proceedings of the 13th International

Symposium on Distributed Computing (DISC99), 1999, pp. 1–18
[3] B. Blakeley, H. Harris, and J. Lewis, Messaging and Queuing Using the

MQI. McGraw-Hill, New York, NY, 1995.
[4] P. Buchwald, “The Example of IT System with Fault Tolerance in a

Small Business Organization”, in: Internet—Technical Development and

Applications 2, Springer 2012, pp. 179–187
[5] F. Buschmann et al., it Pattern-oriented software architecture: a system

of patterns, John Wiley and Sons, Inc. New York, NY, USA ÂŠ1996
ISBN:0-471-95869-7

[6] Eugster et al., “The Many Faces of Publish/Subscribe”, in: ACM
Computing Surveys, Vol. 35, No. 2, June 2003, pp. 114–131.

[7] X. Yuan and E. B. Fernandez, “Patterns for Business-to-Consumer
E-Commerce Applications”, accepted for the International Journal of
Software Engineering and Applications (IJSEA)

[8] M. VanHilst, E. B. Fernandez and F. Braz, “A Multidimensional Clas-
sification for Users of Security Patterns”, in Journal of Research and

Practice in Information Technology, vol. 41, No 2, May 2009, pp. 87–97
[9] M. Franklin and S. Zdonik, “A framework for scalable dissemination-

based systems”,in: Proceedings of the 12th ACM Conference on Object-

Oriented Programming Systems, Languages and Applications (OOP-

SLA’97).ACM Press, New York, NY, 1997, pp. 94–105.
[10] K. Grochla, L. Naruszewicz, “Testing and Scalability Analysis of

Network Management Systems Using Device Emulation”, in: Computer

Networks, Springer 2012, pp. 91-100

[11] P. Houston, “Building distributed applications with message
queuing middleware” (Whitepaper). Available online at
http://msdn.microsoft.com/library/en-us/dnmqqc/html/bldappmq.asp,
1998

[12] “HAProxy. The Reliable, High Performance TCP/HTTP Load Bal-
ancer”. Website: http://haproxy.1wt.eu/, accessed: 21.01.2014

[13] B. Jones, S. Luxenberg, D. McGrath, P. Trampert and J. Weldon,
“RabbitMQ Performance and Scalability Analysis”, project on CS 4284:
Systems and Networking Capstone, Virginia Tech 2011

[14] S. Nowak, M. Nowak and M. Foremski, “New Synchronization Method
for the Parallel Simulations of Wireless Networks”, in 11th International

Conference, NEW2AN 2011, and 4th Conference on Smart Spaces, ruS-
MART 2011, St. Petersburg, Russia, August 22-25, 2011. Proceedings,

LNCS 6869, Springer Berlin Heidelberg, pp. 405–415
[15] J. O’Hara, “Toward a Commodity Enterprise Middleware”, ACM Queue

5 (4), June 2007, pp. 48–55
[16] “Pacemaker. A scalable High Availability cluster resource manager”.

Website: http://clusterlabs.org/, accessed: 18.01.2014
[17] RabbitMQ documentation [online], http://www.rabbitmq.com/

documentation.html, accessed 21.01.2014
[18] M. Rostanski, “High Availability Methods for Routing in Soho Net-

works”, in Internet - Technical Developments and Applications 2,
Springer 2011, pp. 154–152

[19] Salvan, M., A quick message queue benchmark: ActiveMQ, RabbitMQ,

HornetQ, QPID, ApolloâĂŚ [online: http://bit.ly/1b1UGTa], April 2013
[20] The Simple Text Oriented Messaging Protocol website [online],

http://stomp.github.io/, accessed 20.01.2014
[21] A. Videla and J. Williams, RabbitMQ in action. Distributed messaging

for everyone. Manning, April 2012

884 PROCEEDINGS OF THE FEDCSIS. WARSAW, 2014

