
ADD-01

RabbitMQ: Messaging in the Cloud

Matthew Sackman
matthew@rabbitmq.com

I  P

C     . . .

I Messaging, messaging, messaging: What does it all mean?
I What is this angular mutant orange Rabbit thing, and why is it

dropping AMQP all over the carpet?
I How many balloons does it take to keep a Rabbit in a cloud?
I Prizes! Prizes! Prizes!

I  P

C     . . .
I Messaging, messaging, messaging: What does it all mean?

I What is this angular mutant orange Rabbit thing, and why is it
dropping AMQP all over the carpet?

I How many balloons does it take to keep a Rabbit in a cloud?
I Prizes! Prizes! Prizes!

I  P

C     . . .
I Messaging, messaging, messaging: What does it all mean?
I What is this angular mutant orange Rabbit thing, and why is it

dropping AMQP all over the carpet?

I How many balloons does it take to keep a Rabbit in a cloud?
I Prizes! Prizes! Prizes!

I  P

C     . . .
I Messaging, messaging, messaging: What does it all mean?
I What is this angular mutant orange Rabbit thing, and why is it

dropping AMQP all over the carpet?
I How many balloons does it take to keep a Rabbit in a cloud?

I Prizes! Prizes! Prizes!

I  P

C     . . .
I Messaging, messaging, messaging: What does it all mean?
I What is this angular mutant orange Rabbit thing, and why is it

dropping AMQP all over the carpet?
I How many balloons does it take to keep a Rabbit in a cloud?
I Prizes! Prizes! Prizes!

W   ?

M      :
I Scalability issues demand greater flexibility from application

developers
I Traditional synchronous programming models fair poorly at

large scale
I Cloud computing permits greater dynamic scaling than ever

seen before, but applications need to be written well to take
advantage of this

I Messaging enables scaling by decoupling components and
adding flexibility

RMQ   C
T  R   H

I Several cloud infrastructures have been built using RabbitMQ
as the nervous system of the cloud

I RabbitMQ is easily installed and used by clients on existing
clouds such as Amazon EC2

I RabbitMQ is available as an additional component on Heroku
I RabbitMQ is going to become available in more clouds in the

future, e.g. Social, Nebula, VMforce
I RabbitMQ is just as easy to use to solve problems in clouds as it

is to solve problems on the ground

W  ?

What is Messaging?

What is a Banana?

W  ?

What is Messaging?
What is a Banana?

W  ?

What can I use Messaging for?

What can I use a Banana for?

W  ?

What can I use Messaging for?
What can I use a Banana for?

W  ?

What can I use a Messaging protocol for?

What can I use a Banana for?

U  M P
I’      , ?

Decoupling

Producer Consumer

E.g. website passing orders to a credit-card charging engine

U  M P
I’      , ?

Decoupling

Producer Consumer

E.g. website passing orders to a credit-card charging engine

U  M P
I’      , ?

Bidirectional Decoupling

Caller Callee

E.g. remote procedure call

U  M P
I’      , ?

Bidirectional Decoupling

Caller Callee

E.g. remote procedure call

U  M P
I’      , ?

Pipelining and Decoupling

Producer Consumer

Producer

Consumer

E.g. combining messages with records in a database

U  M P
I’      , ?

Pipelining and Decoupling

Producer Consumer

Producer

Consumer

E.g. combining messages with records in a database

U  M P
I’      , ?

Pipelining and Decoupling

Producer Consumer
Producer

Consumer

E.g. combining messages with records in a database

U  M P
I’      , ?

Pipelining and Decoupling

Producer Consumer
Producer

Consumer

E.g. combining messages with records in a database

U  M P
I’      , ?

Work-distribution and Decoupling

Producer

Consumer

Consumer

Both duplication and round-robin.
Duplication can be used for logging messages at certain points in

the system.
Round-robin can be used for horizontal scaling.

U  M P
I’      , ?

Work-distribution and Decoupling

Producer

Consumer

Consumer

Both duplication and round-robin.

Duplication can be used for logging messages at certain points in
the system.

Round-robin can be used for horizontal scaling.

U  M P
I’      , ?

Work-distribution and Decoupling

Producer

Consumer

Consumer

Both duplication and round-robin.
Duplication can be used for logging messages at certain points in

the system.
Round-robin can be used for horizontal scaling.

U  M P
I’      , ?

Work aggregation, distribution and
Decoupling

Producer Consumer

ConsumerProducer

U  M P
T I ’   

O      
I Store-and-forward of messages
I Absorbing spikes of activity (again, decoupling)
I Routing to different consumers based on message properties

G 
I Messaging protocols as a means of decoupling events is an

extremely common and pervasive task
I There is an enormous range of applications and problems to

which using a messaging protocol is an effective solution

U  M P
T I ’   

O      
I Store-and-forward of messages
I Absorbing spikes of activity (again, decoupling)
I Routing to different consumers based on message properties

G 
I Messaging protocols as a means of decoupling events is an

extremely common and pervasive task
I There is an enormous range of applications and problems to

which using a messaging protocol is an effective solution

AMQP

AMQP:
Advanced Message Queueing Protocol

W AMQP?
I’  Advanced,     !

AMQP    . . .
I All resources are dynamically created and destroyed by clients

as they need them – no static preconfiguration
I A clean and simple model: just three key nouns to learn
I Open standard, developed by the AMQP Working Group (we’re

members)
I Lots of client libraries available in many languages, for free

I An excellent, freely available, open source broker
implementation, called RabbitMQ. . .

W AMQP?
I’  Advanced,     !

AMQP    . . .
I All resources are dynamically created and destroyed by clients

as they need them – no static preconfiguration
I A clean and simple model: just three key nouns to learn
I Open standard, developed by the AMQP Working Group (we’re

members)
I Lots of client libraries available in many languages, for free
I An excellent, freely available, open source broker

implementation, called RabbitMQ. . .

AMQP 
A != C

Create an exchange,. . .

X
"my_exchange"

type = fanout

AMQP 
A != C

. . . create a queue,. . .

X
"my_exchange"

type = fanout
"my_queue"

AMQP 
A != C

. . . add a binding,. . .

X
"my_exchange"

type = fanout
"my_queue"

AMQP 
A != C

. . . all inside a broker.

X
"my_exchange"

type = fanout

"my_queue"

AMQP 
A != C

Publish a message, . . .

it sits in a queue.

X
"my_exchange"

type = fanout
"my_queue"

msg

AMQP 
A != C

Publish a message,

. . . it sits in a queue.

msgX
"my_exchange"

type = fanout

"my_queue"

AMQP 
A != C

Publish another message, . . .

it also goes to the queue.

msgX
"my_exchange"

type = fanout
"my_queue"

msg 2

AMQP 
A != C

Publish another message,

. . . it also goes to the queue.

msg 2 msgX
"my_exchange"

type = fanout

"my_queue"

AMQP 
A != C

Consuming from the queue retrieves the messages in order.

msg 2 msgX
"my_exchange"

type = fanout
"my_queue"

AMQP 
A != C

Consuming from the queue retrieves the messages in order.

msg 2X
"my_exchange"

type = fanout
"my_queue" msg

AMQP 
A != C

Consuming from the queue retrieves the messages in order.

X
"my_exchange"

type = fanout
"my_queue" msg 2

AMQP 
A != C

Publish many messages,. . .

and they are distributed amongst several
consumers on the same queue.

X
"my_exchange"

type = fanout

"my_queue"

ABCDEF

AMQP 
A != C

Publish many messages,

. . . and they are distributed amongst several
consumers on the same queue.

X
"my_exchange"

type = fanout

"my_queue" F

E

D

C

B

A

AMQP 
A != C

We can create a second queue and bind it to the same exchange.

"my_queue"

"my_queue_2"X
"my_exchange"

type = fanout

AMQP 
A != C

Messages go to every queue bound to a fanout exchange . . .

and the
queues can be consumed from at different rates.

"my_queue"

"my_queue_2"X
"my_exchange"

type = fanout

ABC

AMQP 
A != C

Messages go to every queue bound to a fanout exchange . . .

and the
queues can be consumed from at different rates.

ABC

ABC

"my_queue"

"my_queue_2"X
"my_exchange"

type = fanout

AMQP 
A != C

Messages go to every queue bound to a fanout exchange

. . . and the
queues can be consumed from at different rates.

C

ABC

"my_queue"

"my_queue_2"X
"my_exchange"

type = fanout

AB

AMQP 
A != C

Messages go to every queue bound to a fanout exchange

. . . and the
queues can be consumed from at different rates.

C

"my_queue"

"my_queue_2"X
"my_exchange"

type = fanout

A

B

C

AMQP 
A != C

Messages go to every queue bound to a fanout exchange

. . . and the
queues can be consumed from at different rates.

"my_queue"

"my_queue_2"X
"my_exchange"

type = fanout

C

AMQP 
A != C

We replace “my_exchange” with a direct exchange.

"my_queue"

"my_queue_2"X
"my_exchange"

type = direct

bk = "vodka"

bk = "beer"

bk: Binding Keyrk: Routing Key

AMQP 
A != C

The routing key of a published message selects which queues the
message goes to.

"my_queue"

"my_queue_2"X
"my_exchange"

type = direct

bk = "vodka"

bk = "beer"

bk: Binding Keyrk: Routing Key

A rk = "vodka"

AMQP 
A != C

The routing key of a published message selects which queues the
message goes to.

A

"my_queue"

"my_queue_2"X
"my_exchange"

type = direct

bk = "vodka"

bk = "beer"

bk: Binding Keyrk: Routing Key

B rk = "beer"

AMQP 
A != C

The routing key of a published message selects which queues the
message goes to.

A

B

"my_queue"

"my_queue_2"X
"my_exchange"

type = direct

bk = "vodka"

bk = "beer"

bk: Binding Keyrk: Routing Key

AMQP 
A != C

Messages with no matching bindings are discarded.

A

B

"my_queue"

"my_queue_2"X
"my_exchange"

type = direct

bk = "vodka"

bk = "beer"

bk: Binding Keyrk: Routing Key

C rk = "tequila"

AMQP 
A != C

Messages with no matching bindings are discarded.

A

B

"my_queue"

"my_queue_2"X
"my_exchange"

type = direct

bk = "vodka"

bk = "beer"

bk: Binding Keyrk: Routing Key

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.

Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

A rk = "a"

B rk = "a.c"

C rk = "a.b.c"

D rk = "a.e"

E rk = "b.e"

F rk = "e"

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

A rk = "a"

B rk = "a.c"

C rk = "a.b.c"

D rk = "a.e"

E rk = "b.e"

F rk = "e"

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

B rk = "a.c"

C rk = "a.b.c"

D rk = "a.e"

E rk = "b.e"

F rk = "e"

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

B rk = "a.c"

C rk = "a.b.c"

D rk = "a.e"

E rk = "b.e"

F rk = "e"

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

C rk = "a.b.c"

D rk = "a.e"

E rk = "b.e"

F rk = "e"

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

C

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

D rk = "a.e"

E rk = "b.e"

F rk = "e"

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

D

C

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

E rk = "b.e"

F rk = "e"

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

E D

C

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

F rk = "e"

AMQP 
A != C

Topic exchanges permit wildcards in the binding key.
Keys are .-separated lists, e.g. “stocks.nyse.vmw”
* matches any 1 element.
matches zero or more elements.

EF D

C

"my_queue"

"my_queue_2"X
"my_exchange"

type = topic

bk = "a.*.c"

bk = "#.e"

bk: Binding Keyrk: Routing Key

O    AMQP
Y,        

I Errors can be raised for messages that do not get routed to any
queues

I Messages can be consumed so that the broker does not forget
about the message until the client explicitly acknowledges the
message

I Messages can be published with a property indicating
whether the message should be written to disk

I Transactions: making publication and acknowledgement of
several messages atomic

I Flow control: e.g. used to stop publishers from overwhelming
the broker in extreme situations

C: W AMQP?
I’  Advanced,     !

A O Protocol      . . .
I Makes it easier to have multiple implementations that

interoperate at the wire-level
I Avoids vendor lock-in: easy to rip out and replace individual

components with alternative implementations
I Allows third-parties to write client libraries for other languages
I Decouples flag-day upgrades for both client libraries and

broker
I Allows third-party traffic analysis tools to inspect and decode

interactions between the clients and brokers
I Promotes similarities in APIs presented by different client

libraries

RMQ

I RMQ
N   

RMQ, AMQP & M
I RabbitMQ consists of the broker (server) and several clients

(Java, .Net, plus others)
I They speak the AMQP protocol to each other
I Anyone can write (and many have) other clients which also

speak AMQP and work with RabbitMQ

I RabbitMQ is freely available and open source, licensed under
the Mozilla Public License v1.1

I It’s already in many popular Linux distributions (Ubuntu,
Debian, Fedora, Gentoo) and can be easily installed on OS X
both through MacPorts and Homebrew

I RMQ
N   

RMQ, AMQP & M
I RabbitMQ consists of the broker (server) and several clients

(Java, .Net, plus others)
I They speak the AMQP protocol to each other
I Anyone can write (and many have) other clients which also

speak AMQP and work with RabbitMQ
I RabbitMQ is freely available and open source, licensed under

the Mozilla Public License v1.1
I It’s already in many popular Linux distributions (Ubuntu,

Debian, Fedora, Gentoo) and can be easily installed on OS X
both through MacPorts and Homebrew

I RMQ
N   

I The broker is written in Erlang: an excellent programming
language and platform for the task

I A mere 17k lines of code in the broker
I Supports clustering for increased scalability
I Supports several extension points via plugins which are

frequently used to extend RabbitMQ, e.g. STOMP, XMPP
adaptors; The Shovel; additional exchange types. . .

I Can work with Pacemaker and associated tools to provide
various forms of High Availability

RMQ F

I A single queue can run up around 30,000 messages per
second, depending on payload, clients, and properties of the
messages

I But several queues together can achieve much higher
throughput, and still keep the queues empty

I RabbitMQ 2.0 gains the ability to send messages to disk to free
up memory, thus allowing queue depths to grow, bounded
only by disk space, not RAM. Queues of 10s of millions of items
are easily accommodated

I Adding extension to RabbitMQ based on feedback from our
users, e.g. queue expiry, queue-message TTL, publisher
acknowledgements

C

I RabbitMQ is a leading implementation of AMQP, and has wide
adoption from a large community across a large number of
languages and problem domains

I Website and downloads available at
http://www.rabbitmq.com/

I On Ubuntu and Debian, just an
apt-get install rabbitmq-server away. Similarly easy for
Fedora and many other Linux distributions

I For OS X, it’s in MacPorts
I Full easy-to-install Windows bundles available from the

website

http://www.rabbitmq.com/

A . . .
C I   P ?

“All our messages are incredibly important andmust never ever be lost
under any circumstances”.

Fact: There are always moments at which the message is at a single
point of failure.

A . . .
C I   P ?

“All our messages are incredibly important andmust never ever be lost
under any circumstances”.

Fact: There are always moments at which the message is at a single
point of failure.

A . . .
C I   P ?

“We need guaranteed exactly-once delivery – I want to send 1
message, and know it gets delivered to exactly one consumer, once”.

Fact: Provably impossible.
Depends on definition of guarantee: you can achieve a high

probability of no duplicates and no message loss.

A . . .
C I   P ?

“We need guaranteed exactly-once delivery – I want to send 1
message, and know it gets delivered to exactly one consumer, once”.

Fact: Provably impossible.
Depends on definition of guarantee: you can achieve a high

probability of no duplicates and no message loss.

T E
W !

Thank you

Questions?

