
M A N N I N G

Alvaro Videla
Jason J.W. Williams
FOREWORD BY
ALEXIS RICHARDSON

IN ACTION
Distributed messaging for everyone

www.it-ebooks.info

http://www.it-ebooks.info/

RabbitMQ in Action

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

RabbitMQ in Action
DISTRIBUTED MESSAGING FOR EVERYONE

ALVARO VIDELA
JASON J.W. WILLIAMS

M A N N I N G
SHELTER ISLAND

www.it-ebooks.info

http://www.it-ebooks.info/

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2012 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Maria Townsley, Cynthia Kane
20 Baldwin Road Technical proofreader: Jerry Kuch
PO Box 261 Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreader: Katie Tennant
 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781935182979
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 17 16 15 14 13 12
 www.it-ebooks.info

www.manning.com
http://www.it-ebooks.info/

 To my grandfather, Maximiliano Godoy,
who showed me the ways of life. Gracias.

 —A.V.

 To Mama, Papa, and my sister J’aime.
 Your love, support, and faith in me

has made it possible to climb mountains...
 and to God who always carries me to the other side.

 —J.W.
 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

brief contents
1 ■ Pulling RabbitMQ out of the hat 1

2 ■ Understanding messaging 12

3 ■ Running and administering Rabbit 37

4 ■ Solving problems with Rabbit: coding and patterns 60

5 ■ Clustering and dealing with failure 87

6 ■ Writing code that survives failure 107

7 ■ Warrens and Shovels: failover and replication 120

8 ■ Administering RabbitMQ from the Web 137

9 ■ Controlling Rabbit with the REST API 154

10 ■ Monitoring: Houston, we have a problem 167

11 ■ Supercharging and securing your Rabbit 195

12 ■ Smart Rabbits: extending RabbitMQ 216
vii

 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
about the cover illustration xxiv

1 Pulling RabbitMQ out of the hat 1
1.1 Living in other people’s dungeons 3
1.2 AMQP to the rescue 5
1.3 A brief history of RabbitMQ 5
1.4 Picking RabbitMQ out of the hat (and other open

options) 8
1.5 Installing RabbitMQ on Unix systems 8

Why environment matters—living la vida Erlang 8 ■ Getting the
package 9 ■ Setting up the folder structure 9 ■ Firing Rabbit up
for the first time 9

1.6 Summary 10

2 Understanding messaging 12
2.1 Consumers and producers (not an economics lesson) 13
2.2 Building from the bottom: queues 16
2.3 Getting together: exchanges and bindings 20
ix

 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSx
2.4 Multiple tenants: virtual hosts and separation 24
2.5 Where’s my message? Durability and you 25
2.6 Putting it all together: a day in the life of a message 28
2.7 Using publisher confirms to verify delivery 33
2.8 Summary 35

3 Running and administering Rabbit 37
3.1 Server management 38

Starting nodes 38 ■ Stopping nodes 39 ■ Stopping and
restarting the application: what’s the difference? 40 ■ Rabbit
configuration files 41

3.2 Asking permission 43
Managing users 43 ■ Rabbit’s permissions system 44

3.3 Checking up 47
Viewing statistics 47 ■ Understanding RabbitMQ’s logs 52

3.4 Fixing a bad Rabbit: troubleshooting 55
badrpc,nodedown and other Erlang-induced problems 55

3.5 Summary 59

4 Solving problems with Rabbit: coding and patterns 60
4.1 A decoupling story: what pushes us to messaging 61

An asynchronous state of mind (separating requests and
actions) 61 ■ Affording scale: a world without load balancers 63
Zero-effort APIs: why be locked into just one language? 64

4.2 Fire-and-forget models 65
Sending alerts 65 ■ Parallel processing 74

4.3 Remember me: RPC over RabbitMQ and waiting for
answers 80
Private queues and sending acknowledgements 81 ■ Simple JSON
RPC with reply_to 82

4.4 Summary 86

5 Clustering and dealing with failure 87
5.1 Batteries included: RabbitMQ clustering 88
5.2 Architecture of a cluster 89

Queues in a cluster 89 ■ Distributing exchanges 91 ■ Am I
RAM or a disk? 92
 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xi
5.3 Setting up a cluster on your laptop 94
5.4 Distributing the nodes to more machines 97
5.5 Upgrading cluster nodes 100
5.6 Mirrored queues and preserving messages 101

Declaring and using mirrored queues 101 ■ Under the hood
with mirrored queues 104

5.7 Summary 105

6 Writing code that survives failure 107
6.1 Load balancing your Rabbits 108

Installing HAProxy 110 ■ Configuring HAProxy 110

6.2 Lost connections and failing clients between
servers 112

6.3 Summary 119

7 Warrens and Shovels: failover and replication 120
7.1 Warrens: another way of clustering 121
7.2 Setting up load balancer–based master/slave

clusters 123
7.3 Long-distance communication and replication 126

Shoveling your Rabbits: an introduction to the Shovel plugin 126
Installing Shovel 129 ■ Configuring and running Shovel 130

7.4 Summary 136

8 Administering RabbitMQ from the Web 137
8.1 Beyond rabbitmqctl: the RabbitMQ Management

plugin 138
Why you need the Management plugin 138 ■ Management plugin
features 138 ■ Enabling the Management plugin 139

8.2 Managing RabbitMQ from the web console 141
Monitoring the Erlang VM 141 ■ Importing configuration from
JSON files 142

8.3 Managing users from the web console 143
Creating users 143 ■ Managing users’ permissions 145

8.4 Managing exchanges and queues from the web
console 146
Listing queues 148 ■ Creating queues 149
 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTSxii
8.5 Back to the command line 150
Why another CLI? 150 ■ CLI administration the easier
way 151 ■ Installing rabbitmqadmin script 152 ■ Purging
queues, creating exchanges, and more 152

8.6 Summary 153

9 Controlling Rabbit with the REST API 154
9.1 What can you do with the RabbitMQ REST API? 155
9.2 Granting your clients access 157
9.3 Accessing statistics 158
9.4 Automating vhost and user provisioning 161
9.5 Summary 165

10 Monitoring: Houston, we have a problem 167
10.1 RabbitMQ monitoring: keeping an eye on your

warren 168
Writing health checks for Nagios 168 ■ Checking that RabbitMQ
is alive with AMQP simulation checks 170 ■ Checking aliveness
with the REST API 172 ■ Creating a watchdog for configuration
changes 176 ■ Monitoring your cluster status 180

10.2 Making sure consumers are consuming 185
Monitoring queue levels through AMQP 186 ■ Using the REST
API to watch queue levels 190 ■ Rules of thumb for establishing a
queue count baseline 193

10.3 Summary 194

11 Supercharging and securing your Rabbit 195
11.1 The need for speed 196

Message durability 196 ■ Message acknowledgment 197
Routing algorithm and bindings 197 ■ Delivering messages 198

11.2 Memory usage and process limits 200
Memory usage 201 ■ Erlang process count 203

11.3 SSL connections 204
SSL certificates 204 ■ Setting up a certificate authority 206
Generating the root certificate 209 ■ Generating the server
certificates 210 ■ Generating the client certificates 211
Enabling SSL listeners in RabbitMQ 211 ■ Testing your
RabbitMQ SSL setup 213

11.4 Summary 215
 www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS xiii
12 Smart Rabbits: extending RabbitMQ 216
12.1 RabbitMQ plugins 217

What can you do with plugins? 217 ■ Where do you find
plugins? 218 ■ Installing plugins 218 ■ Removing
plugins 220

12.2 Making your own plugins 221
Getting the RabbitMQ Public Umbrella 222 ■ Setting up the folder
structure 223 ■ Including the plugin build system 223
Creating the Erlang application file 224

12.3 Creating your custom exchange module 225
Registering your exchange with RabbitMQ 227 ■ Implementing
the exchange behaviour 230 ■ Compiling your custom
exchange 236 ■ Taking your plugin for a test drive 239

12.4 Summary 243

appendix A Using Rabbit from Java and .NET 244
appendix B Online resources 270
appendix C Installing RabbitMQ on Windows 275

index 279
 www.it-ebooks.info

http://www.it-ebooks.info/

 www.it-ebooks.info

http://www.it-ebooks.info/

foreword
Welcome to RabbitMQ in Action. If you’re like me, possibly you’re thinking, “Should I
read past page one?” Alas, too many technology books are written and published, and
not all merit more than superficial attention. So let me invite you to read on, if you
think this description fits you:

■ You want a practical way to learn about push technology, streaming data, and
other messaging patterns.

■ You want to achieve professional-level expertise with RabbitMQ, including best
practices for design and running in production.

In other words, this book is not just a guide to RabbitMQ. It teaches fundamental
design patterns across many use cases. It shows why more applications are using
them—and what the “dos” and “don’ts” are.

 What are these patterns? If you’ve ever wanted to draw a picture of your system as
an information flow or network, rather than as a stack, then you’re probably using
messaging, or are ready to do so. You may be thinking of data delivery, nonblocking
operations, or push notifications. Or you want to use publish/subscribe, asynchro-
nous processing, or work queues. All of these are patterns, and they form part of the
design canvas known as messaging.

 Messaging is a critical capability: it enables software applications to connect and
scale. Applications can connect to each other as components of a larger application,
or to user devices and data. Messaging is essentially asynchronous in that it decouples
applications by separating the sending and receiving of data. The wonderful thing is
that this connection pattern works in the same way at any scale.
xv

 www.it-ebooks.info

http://www.it-ebooks.info/

FOREWORDxvi
 Scale is the point. The dominance of the internet as a basis for application delivery
has made scale the critical factor in application design. Thinking small is no longer
acceptable. Recently the term big data has become fashionable. But everything is big
now, compared to only a few years ago.

 For example, the number of mobile-connected devices will exceed the number of
people on earth soon, probably in 2012. As I write this, Facebook is about to IPO. CTO
Bret Taylor said that “Facebook would have been a mobile application if the technol-
ogy had been available when Mark Zuckerberg was building it in his dorm room.”

 Take a moment to think about that. Most applications used to look like this: you
load a document or get data from a database, do some processing, and write the
results to disk. Future applications will look more like Facebook: always on, cloud
hosted, and accessible anywhere. Input and processing are continuous and automatic,
and deliver a filtered stream of information that the user wants, as it happens.

 These levels of automation, reach, and scale are impossible without adopting a
very specific set of design patterns. It is these patterns that you can learn in this book.
Derek Collison, one of the originators of modern messaging technology, memorably
described messaging as enabling “data in motion.” It’s hard to imagine an application
that doesn’t need to move data. So messaging is everywhere.

 This book gets you started immediately. The patterns are presented as code exam-
ples that you can run, and the authors take special care to help you operate your sys-
tem as well. With Jason J. W. Williams and Alvaro Videla, you have access to experts
who’ve been running large-scale RabbitMQ systems for years. This book is a natural
culmination of their outstanding work sharing these experiences with the community.

 After you get a feel for RabbitMQ, it’s very easy to get help and find more examples
via the extensive RabbitMQ user community, regardless of which languages you’re
writing code in. This makes RabbitMQ an excellent choice for your messaging needs.

 I hope this has whetted your appetite to turn the page and read on. There will be
messages, and there will be rabbits, and all will be revealed.

ALEXIS RICHARDSON

COFOUNDER AND FORMER CEO
RABBIT TECHNOLOGIES, LTD.

SENIOR DIRECTOR

VMWARE CLOUD APPLICATION PLATFORM
 www.it-ebooks.info

http://www.it-ebooks.info/

preface
Writing this book has been like discovering RabbitMQ itself—encountering a prob-
lem that needed solving, but not knowing what the solution looked like. Until May
2010, we didn’t even know each other. We both had been active in the RabbitMQ com-
munity for the past two years, but we’d never actually bumped into each other. Then
one day a conversation with Alexis Richardson (Rabbit’s CEO at the time) introduced
Alvaro and me to each other, and made what you hold in your hands possible. What
we had in common was a desire to write down in a single place all the knowledge we
had acquired about RabbitMQ the hard way. Back in 2010, that knowledge was (and
today still largely is) scattered across the internet in a smattering of blog articles and
terse technical tutorials. In other words, we both wanted to write the book we wished
had existed when we started with RabbitMQ two years earlier.

 Neither of us came from a traditional messaging background, which made us fast
friends and has largely informed the tone of RabbitMQ in Action; we wanted this book
to be accessible for folks who’ve never heard of a queue or a binding before. In fact,
when each of us discovered RabbitMQ, we didn’t even know what “messaging” was or
that it was the solution to the problems we were having. My (Jason’s) situation was that
my company needed a way to take the spam reportings we received from our custom-
ers and process them out-of-band from our main stream of incoming messages. In
Alvaro’s case, his company had a social network whose member communication sys-
tem was creaking under the load of a 200 GB database. Like so many others who’ve
come to messaging, both us had first tried to solve our queue-centric issues using data-
base tables. Problems, like ensuring that only one application instance consumed any
particular queue item, plagued our attempts at a database-driven solution and sent us
xvii

 www.it-ebooks.info

http://www.it-ebooks.info/

PREFACExviii
looking for a better way. After all, we knew we couldn’t be the first people in the his-
tory of software to have these issues.

 The solution for both of us came in a surprisingly similar way: a friend at Plaxo told
me to check out this “RabbitMQ thing” as a way to solve my queue-centric problems,
and an Erlang colleague of Alvaro’s in China gave him the same advice. Halfway
around the world, both of us discovered RabbitMQ in the same way, and in response
to trying to solve almost exactly the same problem! In fact, since you’re reading this
book about RabbitMQ, it’s likely that similar challenges have led you to discover Rab-
bitMQ in the same way. That speaks to the fact of why RabbitMQ is so popular: it eas-
ily solves the basic problems of distributing data that each of us runs into again and
again when trying to scale the software that we build.

 Our hope is that RabbitMQ in Action will help you design solutions to those chal-
lenges more quickly and easily with RabbitMQ, so you can spend more time writing
the software that will change the world and less time getting up to speed on the mes-
saging broker that will help you do it. Perhaps, along the way, RabbitMQ will intro-
duce you to an awesome coauthor who will become the lifelong friend you never
expected.1 This book is a product of how much we love writing software, and our hope
is that it will help you do the same in ways you never thought possible.

ALVARO VIDELA

DÜBENDORF, SWITZERLAND

JASON J. W. WILLIAMS

BOISE, IDAHO, UNITED STATES

1 They say that coauthor relationships have a worse “divorce” rate than marriage. It’s not a bad comparison,
since writing a book together requires the constant give-and-take and mutual respect that it takes to make liv-
ing in close quarters work. So it’s been an unexpected blessing to not only be able to write a book, but to dis-
cover a friend whose ideas can live in close quarters with yours and make a whole far greater than you could
achieve alone.
 www.it-ebooks.info

http://www.it-ebooks.info/

acknowledgments
Only two names appear on the cover of this book, but there are many more without
whom it would not exist. First and foremost, we’d like to thank Alexis Richardson,
RabbitMQ’s CEO when we started writing. Without his recommendation, Manning
would not have come knocking on our inboxes, and we would never have written a book
together. We also thank him for providing the foreword to our book. In that vein, we
need to express our utmost gratitude to the RabbitMQ team for continual help and
answers to our incessant questions about the minutiae of Rabbit. In particular, we owe
a thank you to Matthew Sackman and Matthias Radestock, without whom the chapters
on clustering and RabbitMQ internals would not have been possible.

 Above all, we owe an incalculable debt of gratitude to Jerry Kuch from the
RabbitMQ team. Jerry volunteered countless hours repeatedly reviewing drafts of each
chapter for accuracy, including doing the “official” technical review of the completed
book by himself. Every time we needed clarification or advice outside our experience,
Jerry was always a quick IM away. He was never cranky and never complained about
being our point person on the RabbitMQ team. If you find yourself discovering little
picadillos you never knew about Rabbit’s operation, you likely have Jerry Kuch to
thank. He truly made this a better book, and is a fantastic engineer.

 At Manning, we cannot thank our primary development editor Maria Townsley
enough. Maria kept us writing and on track. She put up with our work schedules, and
our feast-or-famine style of delivering material. Above all she was our advocate and
fought for what was important to us. If you enjoy the style of RabbitMQ in Action, thank
Maria as she carried the flag for it. We also need to thank Cynthia Kane tremendously
for getting us through the final chapters and into print. Cynthia stepped in as our
xix

 www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTSxx
final development editor when we were set in our ways. She adapted to our work style,
and treated the book as if she’d been invested in it with us from day one. Cynthia was
truly our third-base coach and got us home.

 Finally, we’d like to thank our dedicated readers, who bought the book during
Manning’s Early Access Program (MEAP), as well as our reviewers: Barry Alexander, P.
David Pull, Bruce Snyder, Tony Garnock-Jones, James Williams, Patrick Lemiuex,
Bruce Lowekamp, Carlton Gibson, Paul Grebenc, Richard Siddaway, Gordon Dickens,
Gene Campbell, Karsten Strøbæk, Jeff Addison, David Dossot, Daniel Bretoi, and Ben
Rockwood. You were not paid, and yet you gave us detailed feedback and thoughtful
advice as if the book were your baby too. This book is immeasurably better in ways
unforeseen by us because of you. Thank you.

Alvaro

I would like to thank my wife Silvana for being always there supporting me during the
writing of this book. How many movies we did not watch and how many times we did
not go for walks together because I was writing this book? I don’t know…but all I can
say now is, thanks for understanding. Another big thanks goes to my mom for always
believing in me. After all, writing a book is a family effort. I’d also like to thank my ol’
pals at The Netcircle in China where I caught the rabbit fever and made them hear
the word RabbitMQ too many times a day. Finally, I would like to thank Jason; Manning
presented me with a coauthor and I ended up with a great friend.

Jason

I can never thank my parents and my sister enough for their support and love during
this process. They believed in me and urged me forward—including making sure my
derrière was pushed out the door to the coffee shop to write when I didn’t feel like it.
They always believed I would complete this book, even when the end looked so far away.

 I’m lucky enough to call my parents my partners in the startup we founded
together, and as partners, I owe them and DigiTar a huge debt for never complaining
when writing cut into work hours, and for giving me the flexibility to balance both.
Without our company, I would never have been driven to discover Rabbit or write the
blog tutorials that led to being invited to write this book. Among the many blessings
and opportunities DigiTar has given me, this book is one of them.

 Finally, thank you to Alvaro. You are the friend I never knew existed, my ever stead-
fast compatriot in arms, and truly my brother from another mother. Thank you for
being an unexpected blessing.
 www.it-ebooks.info

http://www.it-ebooks.info/

about this book
RabbitMQ is an open source message broker and queueing server that can be used to
let disparate applications share data via a common protocol, or to simply queue jobs
for processing by distributed workers. It doesn’t matter whether your project is big or
small: RabbitMQ can adapt to your needs. Do you want to quickly prototype one of
your application components in language X and be sure you can easily switch it
tomorrow to a more performant language? RabbitMQ can help you by decoupling
the communication protocol. Do you need to be able to process image uploads for
your social website as they arrive, while adding or removing workers with ease? You
can use Rabbit queues to store jobs and let the broker perform the load balancing
and job distribution for you. Problems like these can be easily and quickly solved by
using RabbitMQ; this book is here to show you how to best implement your architec-
tures around messaging.

 Programming your application is one thing—keeping your application up and
running is where the challenge starts. Don’t worry; this book also covers best practices
for RabbitMQ administration, clustering, securing, and monitoring, so you can also
learn the operational side of things.

 Finally, we’ll get into RabbitMQ’s brain and those inner details that will let you
understand the system resources used by the broker so you can perform capacity plan-
ning while you design your architectures. Also, you’ll learn how to extend the broker
by installing plugins and by creating your own, because, why not? Get your editor
ready because you’ll be coding in Python, PHP, Erlang, Java, and C#.
xxi

 www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOKxxii
Roadmap
Chapter 1 explains the origin of the AMQP protocol, how RabbitMQ was born, and
what industry problems it came to solve. Next, you’ll install the server and create your
first Hello World program that will send data via RabbitMQ.

 Chapter 2 immerses you in the world of messaging. We go from basic concepts up
to seeing how to map those concepts in AMQP (the protocol used by RabbitMQ).
Once you’re past that, you’ll learn about message durability and what happens in the
life of a message from being published to getting consumed on the other end of the
network.

 Chapter 3 shows the basics of server management. You’ll see how to start and stop
nodes, how to configure permissions, and how to get statistics about what’s happening
on the server. And we give you some useful tips for troubleshooting the server.

 Chapter 4 teaches you about messaging patterns and best practices. You’ll learn
about fire-and-forget models, RPC architectures, and much more.

 Chapter 5 starts a series of three chapters on RabbitMQ clustering and setup for
high availability. Here you’ll set up a RabbitMQ cluster both on your local machine
and on physical servers. You’ll learn how to upgrade a cluster of RabbitMQ nodes and
how to use mirrored queues.

 Chapter 6 discusses how to load balance a set of RabbitMQ brokers using HAProxy
while teaching how to create smart messaging clients that know how to reconnect to
the broker in case of failures.

 Chapter 7 ends the series on high availability by explaining how active/standby
broker pairs work. You’ll also learn about the Shovel plugin that allows RabbitMQ to
replicate data across data centers.

 Chapter 8 is where RabbitMQ administration goes visual. You’ll learn about the
RabbitMQ Management plugin and its web interface, but we don’t stop there: we also
perform an overview of the REST API offered by the plugin.

 Chapter 9 builds from the previous chapter by explaining the REST API in detail.
Here you’ll learn how most of the administration tasks can be performed from your
code by using this API. Provisioning new users and virtual hosts for your applications
was never so easy.

 Chapter 10 teaches you how to monitor RabbitMQ, from Nagios checks to using
AMQP and the REST API to monitor the server internal state. You’ll learn what you can
do to detect problems before they happen.

 Chapter 11 explains in detail the inner workings of exchanges (the routing algo-
rithms used by RabbitMQ). We go into the details of the resources used by your mes-
saging fabric to see what to expect from your architectural decisions. We also cover the
security side of things by teaching you to enable SSL connections for your applications.

 Chapter 12 ends the book by showing how to extend RabbitMQ’s behavior both by
adding new plugins created by others and by creating your own plugin.
 www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THIS BOOK xxiii
Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 Since one of RabbitMQ’s greatest strengths is gluing together applications written
in different languages, we use both Python and PHP as the primary example languages
(with a little .NET and Java thrown in for good measure in the appendixes). But we want
our examples to be as widely usable as possible to readers from all languages. Since we
can’t convert every example into every language, we’ve posted a Github repository so
you can contribute too: https://github.com/rabbitinaction/sourcecode.

 In the official Github repository you’ll find the latest versions of the example code
from the book, along with a number of those examples already converted by other
readers into languages like Ruby. Don’t see your favorite language? Fork the reposi-
tory and add it! Then just send us a pull request and we’ll do our best to incorporate
your versions of the examples. (Note: you must use the same BSD license as our code
for us to pull your changes in.)

 If you’d like the canonical and truly “official” copies of the examples from
RabbitMQ in Action, you can download them from the publisher’s website: http://
manning.com/RabbitMQinAction. The exact code as it appears in the latest pub-
lished edition of the book will always be posted there.

Author Online

The purchase of RabbitMQ in Action includes free access to a private forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and other users. You can access and sub-
scribe to the forum at www.manning.com/RabbitMQinAction. This page provides
information on how to get on the forum once you’re registered, what kind of help is
available, and the rules of conduct in the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It isn’t a commitment to any specific amount of participation on the part of the
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors

ALVARO VIDELA is a developer and architect specializing in MQ-based applications. He
speaks about RabbitMQ at conferences throughout Asia, Europe, and the U.S.

JASON J. W. WILLIAMS is CTO of DigiTar, a messaging service provider, where he directs
design and development, including using RabbitMQ for real-time analysis operations
since 2008.
 www.it-ebooks.info

http://manning.com/RabbitMQinAction
http://manning.com/RabbitMQinAction
https://github.com/rabbitinaction/sourcecode
http://www.manning.com/
http://www.manning.com/
http://www.it-ebooks.info/

about the cover illustration
The figure on the cover of RabbitMQ in Action is captioned “A farmer from Lumbarda,
island of Korcula, Croatia.” The illustration is taken from a reproduction of an album
of Croatian traditional costumes from the mid-nineteenth century by Nikola Arsen-
ovic, published by the Ethnographic Museum in Split, Croatia, in 2003. The illustra-
tions were obtained from a helpful librarian at the Ethnographic Museum in Split,
itself situated in the Roman core of the medieval center of the town: the ruins of
Emperor Diocletian’s retirement palace from around AD 304. The book includes
finely colored illustrations of figures from different regions of Croatia, accompanied
by descriptions of the costumes and of everyday life.

 Lumbarda is small fishing village of approximately 1,200 inhabitants. It is situated
on the northeastern coast of the island of Korcula, one of a number of small islands in
the Adriatic off the western coast of Croatia. The farmer on the cover is wearing his
work clothes, not one of the colorful and richly embroidered costumes that are typical
for this region, worn only on Sundays and other special occasions. His everyday outfit
consists of well-patched brown trousers and a brown vest worn over a white linen shirt,
and a straw hat on his head. He is smoking a pipe, leaning on a spade, and, appropri-
ately enough, looking down at a white rabbit, in a moment of rest from his toils.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.
xxiv

 www.it-ebooks.info

http://www.it-ebooks.info/

Pulling RabbitMQ
out of the hat
We live in a world where real-time information is constantly available, and the
applications we write need easy ways to be routed to multiple receivers reliably and
quickly. More important, we need ways to change who gets the information our
apps create without constantly rewriting them. Too often, our application’s infor-
mation becomes siloed, inaccessible by new programs that need it without rewrit-
ing (and probably breaking) the original producers. You might be saying to
yourself, “Sure, but how can message queuing or RabbitMQ help me fix that?” Let’s
start by asking whether the following scenario sounds familiar.

 You’ve just finished implementing a great authentication module for your com-
pany’s killer web app. It’s beautiful. On every page hit, your code efficiently coordi-
nates with the authentication server to make sure your users can only access what

This chapter covers
 The need for an open protocol—AMQP

 Brief history of RabbitMQ

 Installing RabbitMQ

 First program—Hello World
1

 www.it-ebooks.info

http://www.it-ebooks.info/

2 CHAPTER 1 Pulling RabbitMQ out of the hat
they should. You’re feeling smug, because every page hit on your company’s world-
class avocado distribution website activates your code. That’s about when your boss
walks in and tells you the company needs a way to log every successful and failed per-
mission attempt so that it can be data mined. After you lightly protest that that’s the job
of the authentication server, your boss not so gently informs you that there’s no way to
access that data. The authentication server logs it in a proprietary format; hence this is
now your problem. Mulling over the situation causes a four-aspirin headache, as you
realize you’re going to have to modify your authentication module and probably break
every page in the process. After all, that wonderful code of yours touches every access to
the site. Let’s stop for a moment though. Let’s punch the Easy button and time warp
back to the beginning of the development of that great auth module. Let’s assume you
leveraged message queuing heavily in its design from day one.

 With RabbitMQ in place, you brilliantly leveraged message queuing to decouple
your module from the authentication server. With every page request, your authenti-
cation module is designed to place an authorization request message into RabbitMQ.
The authentication server then listens on a RabbitMQ queue that receives that
request message. Once the request is approved, the auth server puts a reply message
back into RabbitMQ where it’s routed to the queue that your module is listening on.
In this world, your boss’s request doesn’t faze you. You realize you don’t need to touch
your module or even write a new one. All you need to do is write a small app that con-
nects to RabbitMQ and subscribes to the authorization requests your auth module is
already publishing. No code changes. Nothing you already wrote knows anything has
changed. It’s so simple a smile almost breaks out on your face. That’s the power of
messaging to make your day job easier.

Message queuing is simply connecting your applications together with messages that
are routed between them by a message broker like RabbitMQ. It’s like putting in a
post office just for your applications. The reality is that this approach isn’t just a solu-
tion to the real-time problems of the financial industry; it’s a solution to the problems
we all face as developers every day. We, the authors, don’t come from a financial ser-
vices background. We had no idea what “enterprise messaging” was when we needed
to scale. We were simply devs like you with an itch that needed scratching: an itch to
deal with real-time volumes of information and route it to multiple consumers quickly.
We needed to do it all without blocking the producers of that information … and
without them needing to know who the final consumers might be. RabbitMQ helped
us to solve those common problems easily, and in a standards-based way that ensured
any app of ours could talk to any other app, be it Python, PHP, or even Scala.

 Over the next few chapters, we’ll take you on a ride. It starts by explaining how
message queuing works, its history, and how RabbitMQ fits in. Then we’ll take you all
the way through to real-world examples you can apply to your own scalability and
interoperability challenges … ending with how to make Rabbit purr like a well-oiled
machine in a “downtime is not acceptable!” environment.
 www.it-ebooks.info

http://www.it-ebooks.info/

3Living in other people’s dungeons
 This is the book we wished was on the shelves when we entered the messaging wil-
derness. We hope it will help you benefit from our experience and battle scars and
free you to make amazing applications with less pain. Before we’re done in this chap-
ter, you’ll have a short history of messaging under your belt, and RabbitMQ up and
running. Without further ado, let’s take a look at where all this messaging fun started.

1.1 Living in other people’s dungeons
The world of message queuing didn’t start out the dank and cramped one it is today,
with most folks subservient to lock-in overlords. It started with a ray of light in an oth-
erwise byzantine software landscape. It was 1983 when a 26-year-old engineer from
Mumbai had a radical question: why wasn’t there a common software “bus”—a commu-
nication system that would do the heavy lifting of communicating information from
one interested application to another? Coming from an education in hardware design
at MIT, Vivek Ranadivé envisioned a common bus like the one on a motherboard, only
this would be a software bus that applications could plug into. (See http://
hbswk.hbs.edu/archive/1884.html.) Thus, in 1983 Teknekron was born. A freshly
minted Harvard MBA in his hand and this powerful idea in his head, Vivek started
plowing a path that would help developers everywhere.

 Having the idea was one thing, but finding a killer application for it was something
completely different. It was at Goldman Sachs in 1985 that Ranadivé found his first
customer and the problem his software bus was born to solve: financial trading. A
trader’s stall at that time was packed to the brim with different terminals for each type
of information the trader needed to do his job. Teknekron saw an opportunity to
replace all those terminals and their siloed applications. In their place would be
Ranadivé’s software bus. What would remain would be a single workstation whose dis-
play programs could now plug into the Teknekron software bus as consumers and
allow the trader to “subscribe” to the information the trader wanted to see. Publish-
subscribe (PubSub) was born, as was the world’s first modern message queuing soft-
ware: Teknekron’s The Information Bus (TIB).

 It didn’t take long for this model of data transfer to find many more killer uses.
After all, an application publishing data and an application consuming it no longer
had to directly connect to each other. Heck, they didn’t even have to know each other
existed. What Teknekron’s TIB allowed application developers to do was establish a set
of rules for describing message content. As long as the messages were published
according to those rules, any consuming application could subscribe to a copy of the
messages tagged with topics it was interested in. Producers and consumers of informa-
tion could now be completely decoupled and flexibly mixed on-the-fly. Either side of
the PubSub model (producer/consumer) was completely interchangeable without
breaking the opposite side. The only thing that needed to remain stable was the TIB
software and the rules for tagging and routing the information. Since the financial
trading industry is full of information with a constantly changing set of interested
folks, TIB spread like wildfire in that sector. It was also noticed by telecommunications
 www.it-ebooks.info

http://hbswk.hbs.edu/archive/1884.html
http://hbswk.hbs.edu/archive/1884.html
http://www.it-ebooks.info/

4 CHAPTER 1 Pulling RabbitMQ out of the hat
and especially news organizations, who also had information that needed timely deliv-
ery to a dynamically changing set of interested consumers. That’s why mega news out-
fit Reuters purchased Teknekron in 1994.

 Meanwhile, this burgeoning new segment of enterprise software didn’t go unno-
ticed by Big Blue. After all, many of IBM’s biggest customers were in the financial ser-
vices industry. Also, Teknekron’s TIB software was frequently run on IBM hardware and
operating systems … all without the boys in White Plains getting a cut. Thus, in the late
’80s IBM began research into developing their own message-queuing software, leverag-
ing their extensive experience in information delivery from developing DB2 (see
http://www-01.ibm.com/software/integration/wmq/MQ15Anniversary.html). Devel-
opment began in 1990 at IBM’s Hursely Park Laboratories near Winchester, United
Kingdom. What emerged three years later was the IBM MQSeries family of message-
queuing server software. In the 17 years since, MQSeries has evolved into WebSphere
MQ and is today the dominant commercial message-queuing platform. During that
time, Ranadivé’s TIB hardly disappeared into the bowels of Reuters. Instead it has
remained the other major player in enterprise messaging, thriving through a renam-
ing to Rendezvous and Teknekron’s re-emergence as an independent company in the
form of TIBCO in 1997. The same year, Microsoft’s first crack at the messaging market
emerged: Microsoft Message Queue (MSMQ).

 Through all of this evolution, message queuing (MQ) software primarily remained
the domain of large-budgeted organizations with a need for reliable, decoupled, real-
time message delivery. Why didn’t MQ find a larger audience? How did it survive the
information boom that was the late ’90s internet bubble without experiencing explo-
sive adoption? After all, everyone today from Twitter to Salesforce.com is scrambling
to create internal solutions to the PubSub problems that The Information Bus solved
25 years ago. Two words: vendor lock-in. The commercial MQ vendors wanted to help
applications interoperate, not create standard interfaces that would allow different
MQ products to interoperate or, Heaven forbid, allow applications to change MQ plat-
forms. Vendor lock-in has kept prices and margins high, and commercial MQ software
out of reach of the startups and Web 2.0 companies that are abounding today.

 As it turned out, smaller tech companies weren’t the only ones unhappy about the
high-priced walled gardens of MQ vendors. The financial services companies that
formed the bread and butter of the MQ industry weren’t thrilled either. Inevitably, the
size of financial companies meant that MQ products were in place from multiple ven-
dors servicing different internal applications. If an application subscribing to informa-
tion on a TIBCO MQ suddenly needed to consume messages from an IBM MQ, it
couldn’t easily be done. They used different APIs, different wire protocols, and defi-
nitely couldn’t be federated together into a single bus. From this problem was born
the Java Message Service (JMS) in 2001 (see http://en.wikipedia.org/wiki/Java_Message
_Service). JMS attempted to solve the lock-in and interoperability problem by provid-
ing a common Java API that hides the actual interface to the individual vendor MQ
products. Technically, a Java application only needs to be written to the JMS API, with
the appropriate MQ drivers selected. JMS takes care of the rest … supposedly. The
 www.it-ebooks.info

http://www-01.ibm.com/software/integration/wmq/MQ15Anniversary.html
http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Java_Message_Service
http://www.it-ebooks.info/

5A brief history of RabbitMQ
problem is you’re trying to glue a single standard interface over multiple diverse inter-
faces. It’s like gluing together different types of cloth: eventually the seams come apart
and the reality breaks through. Applications could become more brittle with JMS, not
less. A new standards-based approach to messaging was needed.

1.2 AMQP to the rescue
In 2004, JPMorgan Chase required a better solution to the problem and started devel-
opment of the Advanced Message Queuing Protocol (AMQP) with iMatix Corporation (see
http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Development).
AMQP from the get-go was designed to be an open standard that would solve the vast
majority of message queuing needs and topologies. By virtue of being an open stan-
dard, anyone can implement it, and anyone who codes to the standard can interoperate
with MQ servers from any AMQP vendor.

 In many ways, AMQP promises to liberate us from the dungeons of vendors and ful-
fill Ranadivé’s original vision: dynamically connecting information in real time from
any publisher to any interested consumer over a software bus.

1.3 A brief history of RabbitMQ
In the early 2000s, a young entrepreneur out of the London financial sector co-
founded a company for caching Java objects: Metalogic. For Alexis Richardson, the
theory was simple enough: use Java objects for distributed computing and cache them
in transit for performance. The reality was far different. Varying versions of the Java
Virtual Machine, as well as differing libraries on the client and server, could make the

IBM
MQseries
launched

TIBCO spun
out from
Reuters

Teknekron &
"TIB"

acquired by
Reuters

Microsoft MQ
(MSMQ)

launched

Java
Messaging

Service
debuts

AMQP starts
development
at JPMorgan

Rabbit
Technologies

founded

RabbitMQ
1.0 launched

20031998199319881983

20072004997199419901985

Teknekron
founded

"The
Information
Bus" (TIB)
developed

IBM starts
development
on MQseries

1993 20011983 2006

AMQP spec
first released

Figure 1.1 Short timeline of message queueing
 www.it-ebooks.info

http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol#Development
http://www.it-ebooks.info/

6 CHAPTER 1 Pulling RabbitMQ out of the hat
objects unusable when they arrived. There were too many environment variables in
the real world for Metalogic’s approach to be widely successful. What did come out of
Metalogic was Alexis meeting Matthias Radestock.

 Matthias was working for LShift, where Alexis was subleasing office space while at
Metalogic. LShift at the time was heavily involved in language modeling and distrib-
uted computing contracts for a major software vendor. The background in these areas
triggered Matthias’s interest in Erlang, the programming language that Ericsson had
originally developed for their telephone switching gear. What grabbed Matthias’s
attention was that Erlang excelled at distributed programming and robust failure
recovery, but unfortunately at the time it wasn’t open source. In the meantime, Meta-
logic had closed operations and LShift was in the process of winding down their pri-
mary distributed computing contract. But Alexis had learned two valuable lessons
from his experience at Metalogic: what works in a distributed computing environ-
ment, and what companies want for those environments.

 Alexis knew he wanted to start a new company to solve the problems of communi-
cating in a distributed environment. He also knew the next company he started would
be open source and build on the model just proved successful by JBoss and MySQL.
Looking back at where the Metalogic solution had run into problems, Alexis started to
see that messaging was the right answer to distributed computing. More important, in
the tech world circa 2004 a huge gap existed for open source messaging. No one was
providing a messaging solution except for the big commercial vendors, and while
“enterprise” open source was flourishing with databases (MySQL) and application
servers (JBoss), no one was touching the missing component: messaging. Interest-
ingly, it was in 2004 that AMQP was just starting to be developed at JPMorgan Chase.
Through his background in the financial industry, Alexis had been introduced to the
principal driver of AMQP at JPMorgan, John O’Hara (future founder of the AMQP
Working Group). Through O’Hara, Alexis became acquainted with AMQP, and started
lining up the building blocks for what would become RabbitMQ.

 Around 2005, Alexis cofounded CohesiveFT. He and his cofounders in the U.S.
started the company to provide an application stack and tools for what has today
become cloud computing. That a key part of that stack would be distributed messag-
ing seemed obvious to Alexis, who (still in the same office as LShift) started talking to
Matthias about AMQP. What was clear to Matthias was that he’d just found the applica-
tion he’d been looking for to write in Erlang. But before any of this could get started,
Alexis and Matthias focused on three questions that they knew would be critical to an
open source version of AMQP being successful if it was written in Erlang:

1 Would large financial institutions care whether their messaging broker was writ-
ten in Erlang?

2 Was Erlang really a good choice for writing an AMQP server?
3 If it was written in Erlang, would that slow down adoption in the open source

community?
 www.it-ebooks.info

http://www.it-ebooks.info/

7A brief history of RabbitMQ
The first issue was quickly dispatched by a financial company who confirmed they
didn’t care what it was written in if it helped reduce their integration costs. The sec-
ond question was answered by Francesco Cesarini at Erlang Solutions: from his analy-
sis of AMQP, the specification implied an architecture present in every telephone
switch. In other words, you couldn’t pick a better implementation language than
Erlang for building an AMQP broker. The final question was put to rest by an entirely
different messaging server: ejabberd. By 2005, Extensible Messaging and Presence Protocol
(XMPP) had become a respected standard for open instant messaging, and one of the
foremost implementations was the Erlang-based ejabberd server package by Alexey
Shchepin. ejabberd was widely in use by many different organizations, and its imple-
mentation in Erlang didn’t seem to be slowing anyone down.

 With the three major questions answered, Alexis and Matthias convinced
CohesiveFT and LShift to jointly back the project. The first thing they did was contract
Matthew Sackman (now a core Rabbit developer) to write a prototype in Erlang to test
latency. They quickly discovered that using the distributed computing libraries built
into Erlang produced incredible latency that was comparable to using raw sockets.
There was also the question of what to call this thing: everyone agreed on Rabbit. After
all, rabbits are fast and they multiply like crazy, making it a great name for distributed
software. Not the least of the reasons for this choice is that Rabbit is easy to remember.
Thus, in 2006 Rabbit Technologies was born: a joint venture between CohesiveFT and
LShift that would hold the intellectual property for what we know today as RabbitMQ.

 The timing couldn’t have been more perfect because, around the same time, the
first public draft of the AMQP specification had become available. As a new specifica-
tion, AMQP was rapidly changing. This was an area where Erlang proved critical. By
using Erlang, RabbitMQ could be developed quickly and keep pace with a moving tar-
get: the AMQP standard. Amazingly, version 1.0 of RabbitMQ was written in only two
and a half months by core developer Tony Garnock-Jones. From the beginning,
RabbitMQ has implemented a key feature of AMQP that differentiates it from TIBCO
and IBM: provisioning resources like queues and exchanges can be done from within
the protocol itself. With the commercial vendors, provisioning is done by specialized
staff at specialized administrative consoles. RabbitMQ’s provisioning capabilities make
it the perfect communication bus for anyone building a distributed application, par-
ticularly one that leverages cloud-based resources and rapid deployment.

 That brings us to today, where RabbitMQ is used by everyone from small Silicon
Valley startups to some of the largest names on the internet. That’s perhaps the best
thing about RabbitMQ, and the thing that surprised its founders: its largest block of
users are tech firms, not financial companies. RabbitMQ fulfills Ranadivé’s vision for
the rest of us with smaller budgets and the same real problems. That’s what drew us to
RabbitMQ. We didn’t know that we were looking for message-queueing software. All
we knew was that we had real problems to solve integrating applications and serving
high transaction loads. RabbitMQ provides a powerful toolkit for solving those prob-
lems, and brings to the masses the rich history of messaging … and finally a pluggable
information bus for everyone that needs one.
 www.it-ebooks.info

http://www.it-ebooks.info/

8 CHAPTER 1 Pulling RabbitMQ out of the hat
1.4 Picking RabbitMQ out of the hat
(and other open options)
Today, RabbitMQ isn’t the only game in town for open messaging. Options like
ActiveMQ, ZeroMQ, and Apache Qpid all providing different open source
approaches to message queuing. The question is, why do we think you should pick
RabbitMQ?

 Except for Qpid, RabbitMQ is the only broker implementing the AMQP open
standard.

 Clustering is ridiculously simple on RabbitMQ because of Erlang.
 Your mileage may vary, but we’ve found RabbitMQ to be far more reliable and

crash resistant than its competitors.

Perhaps the most important reason is that RabbitMQ is incredibly easy to install and
use. Whether you need a simple one-node setup for your workstation, or a seven-
server cluster to power your web infrastructure, RabbitMQ can be up and running in
about 30 minutes. With that in mind, it’s about time we fired up the little critter.

1.5 Installing RabbitMQ on Unix systems
So far we’ve discussed the motivation behind the AMQP protocol and the history of the
RabbitMQ server. Now it’s time to get the broker up and running and start doing cool
stuff with it. The operating system requirements for running RabbitMQ are flexible
because we can run it on several platforms including Linux, Windows, Mac OS X, and
other Unix-like systems. In this chapter we’ll go through the process of setting up the
server for a generic Unix system (all examples and instructions in the book assume a
UNIX environment unless otherwise noted). Since RabbitMQ is written in Erlang, we
need to have installed the language libraries to run the broker.

1.5.1 Why environment matters—living la vida Erlang

We recommend that you use the latest version of Erlang, which at the time of this writing
is R14A. You can obtain a copy of Erlang from its website (http://www.erlang.org/).
Please follow the installation instructions provided there. By running the latest version
of Erlang on your system, you’ll be sure to have all the updates and improvements for
the foundations RabbitMQ will run on. Every new release of Erlang includes perfor-
mance improvements that are worth having.

 Once you have RabbitMQ dependencies solved, create a folder where you can per-
form our tests. Assuming that you’re running a Unix-flavored system, fire up a termi-
nal to start typing commands:

$ mkdir rabbitmqinaction
$ cd rabbitmqinaction
 www.it-ebooks.info

http://www.erlang.org/
http://www.it-ebooks.info/

9Installing RabbitMQ on Unix systems
1.5.2 Getting the package

Then download the RabbitMQ Server from the server download page: http://
www.rabbitmq.com/server.html. Select the package for a generic Unix system and
download it:1

$ wget http://www.rabbitmq.com/releases/rabbitmq-server/v2.7.0/\
rabbitmq-server-generic-unix-2.7.0.tar.gz

Your next step is to unpack the tarball and change to the rabbitmq_server-2.7.0
directory inside the package:

$ tar -xzvf rabbitmq-server-generic-unix-2.7.0.tar.gz
$ cd rabbitmq_server-2.7.0/

1.5.3 Setting up the folder structure

You’re nearly ready to start the broker, but there are a couple of folders to create before
you do that. The first one is where RabbitMQ will write the logs. You can look into this
folder in case you need to troubleshoot your installation. The second folder is for the
Mnesia database that RabbitMQ uses to store information about the broker, like queue
metadata, virtual hosts, and so on. Type the following commands at the terminal:

$ mkdir -p /var/log/rabbitmq
$ mkdir -p /var/lib/rabbitmq/mnesia/rabbit

You may need to run those commands as a super user. If you have to do so, then don’t
forget to chown the folders to your system user.

TIP When we run RabbitMQ in production, we usually create a rabbitmq
user and then we grant the folder privileges to that user instead of running all
the commands with a normal user account.

1.5.4 Firing Rabbit up for the first time

Now you’re all set to fire up the server. Type the final command to do so:

$ sbin/rabbitmq-server

RabbitMQ will output some information about the startup progress. If all went as
expected, you’ll see ASCII art of the RabbitMQ logo and the message broker running,
as seen in figure 1.2.

 Now open a new terminal window and check the status of the server. Type the
following:2

$ cd path/to/rabbitmqinaction/rabbitmq_server-2.7.0/
$ sbin/rabbitmqctl status

1 Pre-build installation packages for RabbitMQ are available for Windows, Debian/Ubuntu and RedHat (RPM)
from http://www.rabbitmq.com/download.html.

2 If you installed from an RPM or Ubuntu/Debian package, you may need to run rabbitmqctl as root.
 www.it-ebooks.info

http://www.rabbitmq.com/server.html
http://www.rabbitmq.com/server.html
http://www.rabbitmq.com/download.html
http://www.it-ebooks.info/

10 CHAPTER 1 Pulling RabbitMQ out of the hat
As you can see in figure 1.3, this command will output the status of the broker, the
running applications, and nodes. At this point you have a RabbitMQ broker running
in your computer with the default configuration.

 Let’s review what we did:

 Downloaded the server package
 Unpacked it in a tests folder
 Set up the required folder structure
 Started the RabbitMQ server
 Checked the server status

With those easy steps you got started with RabbitMQ. Now more theory about messag-
ing, and then we’ll start running some examples against the broker.

1.6 Summary
Now you can see why we love RabbitMQ so much. Despite being the progeny of tech-
nology from the financial industry, it’s dead simple to set up. You get complex routing
and reliability features pioneered by folks like TIBCO and IBM but in a package that’s
easier to manage and use. And the best part, it’s open source! We’ve shown how far
messaging has come in the past 30 years, from a simple software bus linking together

Figure 1.2 RabbitMQ welcome message
 www.it-ebooks.info

http://www.it-ebooks.info/

11Summary
financial traders, to message routing monsters that are the beating heart of everything
related to financial exchanges, to the manufacturing lines at semiconductor fabs. Now
you have that kind of power running on your dev laptop, and we’ve only finished
chapter 1! With RabbitMQ running, it’s time to dive into the building blocks of mes-
saging: queues, bindings, exchanges, and virtual hosts. Let’s see how they all fit
together and get Rabbit saying “Hello World”!

Figure 1.3 Checking RabbitMQ status
 www.it-ebooks.info

http://www.it-ebooks.info/

Understanding messaging
When you say messaging, programmers think of a lot of different things. Email and
IM come most readily to mind, but these models aren’t what we mean when we talk
about messaging in terms of RabbitMQ. Messaging in RabbitMQ has some ele-
ments in common with email and IM, but is a completely different paradigm. For
example, while AMQP, like email, stores messages for consumers who aren’t online,
those messages are routed based on tags that are much more flexible. Also differ-
ent from email, the messages have no set structure and can even store binary data
directly. Unlike IM protocols, AMQP hides the sender and receiver from each other.
There’s no concept of presence. As a result, you have a flexible infrastructure that
encourages pervasive decoupling of your applications. AMQP messages can be
routed one-to-many both in a broadcast pattern or selectively, as well as one-to-one.
With IM you typically only get one-to-one.

This chapter covers
 Messaging concepts—consumers, producers, and brokers

 AMQP elements—exchanges, queues, and bindings

 Virtual hosts

 Message durability

 The life of a message from producer to consumer
12

 www.it-ebooks.info

http://www.it-ebooks.info/

13Consumers and producers (not an economics lesson)
 Since AMQP messaging is different from other messaging protocols, we’ll spend
the next few sections explaining the lingo and building blocks of AMQP. If you have a
good basis in enterprise messaging systems like TIBCO or IBM’s MQSeries, a lot of this
will be familiar. Because RabbitMQ’s focus is on application-to-application messaging,
it’s important to understand the concepts of that messaging pattern clearly. Let’s start
by forgetting the client/server distinction we’ve had ingrained in us and begin figur-
ing out consumers and producers.

2.1 Consumers and producers (not an economics lesson)
If you’ve ever worked with software that uses a network, you’re probably used to think-
ing about clients and servers. Whether it’s a browser and a web server, or your app and
a MySQL server, you have someone making requests and someone servicing them.
You could call it the food truck model. Your app places the order and the food truck
fulfills it. The source of the data you want is the food truck server. This model is usu-
ally how we try to understand anything that involves our app and a service. So with this
new messaging approach, you might ask, who’s the customer, who’s the food truck,
and how do I order?

 That’s the problem though. RabbitMQ isn’t a food truck; it’s a delivery service.
The data your app gets from RabbitMQ is no more served from Rabbit than the pack-
age you pick up was produced by FedEx. So let’s think about Rabbit as a delivery ser-
vice. Your app can send and receive packages. The server with the data you need can
send and receive too. The role RabbitMQ plays is as the router between your app and
the “server” it's talking to. So when your app connects to RabbitMQ, it has a decision
to make: am I sending or receiving? Or in AMQP talk, am I a producer or a consumer?

Producers create messages and publish (send) them to a broker server (RabbitMQ).
What’s a message? A message has two parts: a payload and a label. The payload is the
data you want to transmit. It can be anything from a JSON array to an MPEG-4 of your
favorite iguana Ziggy. RabbitMQ doesn’t care. The label is more interesting. It
describes the payload, and is how RabbitMQ will determine who should get a copy of
your message. Unlike, for example, TCP, where you specify a specific sender and a spe-
cific receiver, AMQP only describes the message with a label (an exchange name and
optionally a topic tag) and leaves it to Rabbit to send it to interested receivers based
on that label. The communication is fire-and-forget and one-directional. We’ll get
more details about how RabbitMQ interprets the label later when we talk about
exchanges and bindings. For now, all you need to know is that producers create mes-
sages and label them for routing (see figure 2.1).

 Consumers are just as simple. They attach to a broker server and subscribe to a
queue. Think of a queue as a named mailbox. Whenever a message arrives in a particu-
lar mailbox, RabbitMQ sends it to one of the subscribed/listening consumers. By the
time a consumer receives a message, it now only has one part: a payload. The labels
attached to the message don’t get passed along with the payload when the message is
routed. RabbitMQ doesn’t even tell you who the producer/sender was. It would be
like picking up your mail but all of the envelopes are blank. The only way to know a
 www.it-ebooks.info

http://www.it-ebooks.info/

14 CHAPTER 2 Understanding messaging
message is from your Aunt Millie is if she signed the letter inside. Similarly, if you need
to know specifically who produced an AMQP message, it’s up to the producer to
include that information as a part of the message payload.

 From the outside it’s simple: producers create messages and consumers receive
them. Your app can be a producer when it needs to send a message to another app, or
it can be a consumer when it needs to receive. It can also switch between the two. But
before it can do either it has to set up a channel. Wait a minute … what’s a channel?

 Before you consume from or publish to Rabbit, you first have to connect to it. By
connecting, you’re creating a TCP connection between your app and the Rabbit bro-
ker. Once the TCP connection is open (and you’re authenticated), your app then cre-
ates an AMQP channel. This channel is a virtual connection inside the “real” TCP
connection, and it’s over the channel that you issue AMQP commands. Every channel
has a unique ID assigned to it (your AMQP library of choice will handle remembering
the ID for you). Whether you’re publishing a message, subscribing to a queue, or
receiving a message, it’s all done over a channel. Why do we need channels, you might
ask? Why not just issue AMQP commands directly over the TCP connection? The main
reason is because setting up and tearing down TCP sessions is expensive for an
operating system. Let’s say your app consumes messages from a queue and spins
threads up or down based on service demand. If all you had were TCP connections,

RabbitMQ

Consumer

Producer

e

Message!

Message!

e
Message

Consumer

Message! Read
message

Publish
message

Data!
Create

message
Message!

Data!

Figure 2.1 Message flow
from producers to consumers
 www.it-ebooks.info

http://www.it-ebooks.info/

15Consumers and producers (not an economics lesson)
each thread would need its own con-
nection to Rabbit, which could mean
hundreds of connections per second
during high load periods. Not only
would this be a massive waste of TCP
connections, but an operating system
can only build so many per second. So
you could quickly hit a performance
wall. Wouldn’t it be cool if you could
use one TCP connection for all of your threads for performance, but get the same pri-
vacy as giving each thread its own connection? This is where a channel comes in. As
each thread spins up, it creates a channel on the existing connection and gets its own
private communication path to Rabbit without any additional load on your operating
system’s TCP stack, as in figure 2.2. As a result, you can create a channel hundreds or
thousands of times a second without your operating system seeing so much as a blip.
There’s no limit to how many AMQP channels you can have on one TCP connection.
Think of it like a bundle of fiber optic cable.

 Each fiber strand in the cable can transmit (just like a channel). But the cable has
many fiber strands, allowing all the connected threads to transmit and receive simulta-
neously via multiple strands. A TCP connection is like the cable, and an AMQP channel
is like an individual fiber strand.

 How about an example? Let’s say you’ve written a service for keeping track of valet
parking, and everyone talks to it through RabbitMQ. Your service has to fulfill two
tasks:

1 Store valet ticket IDs and the associated parking space the car is in
2 Return the parking space for any particular valet ticket ID

For the first task, your service is a consumer. It’s subscribed to a Rabbit queue waiting
for “store ticket” messages with ticket IDs and parking space numbers inside. With the
second task, your service is both a consumer and a producer. It needs to receive mes-
sages that tell it a particular valet ticket ID and then it needs to publish a response
message with the associated parking space number.

 To fulfill the second task, your app is a producer. Once the connection to the
RabbitMQ broker is open, your app creates multiple channels: chan_recv for the receiv-
ing thread and a chan_sendX (X being the thread number) channel for each reply
thread. Using chan_recv, you set up a subscription to the queue that receives messages
containing “ticket retrieval” requests. When a ticket retrieval message is received by
your app over chan_recv, it looks up the ticket ID contained in the message. As soon as
the associated parking space number has been identified, your app then creates a
thread to send the response (letting the original thread continue to receive new
requests). The new reply thread then creates a message containing the parking space
number. Finally, the new thread labels the response message and publishes it to Rabbit
using its chan_sendX channel. If your app had only one channel, it wouldn’t be

Channel

Channel

Channel AMQP connection

Figure 2.2 Understanding AMQP channels and
connections
 www.it-ebooks.info

http://www.it-ebooks.info/

16 CHAPTER 2 Understanding messaging
possible to share the TCP connection with the new reply threads. This would leave you
with two choices. Either use one connection and one thread—meaning your app
couldn't process new ticket retrieval requests until it sent a response to the current
one—or spawn a TCP connection for each sending thread, wasting TCP resources.
With multiple channels, many threads can share the same connection simultaneously,
meaning that responding to requests doesn’t block you from consuming new requests
and you don’t waste a TCP connection for each thread. Sometimes you may choose to
use only one channel, but with AMQP you have the flexibility to use as many channels
as your app needs without the overhead of multiple TCP connections.

 The important thing to remember about consumers and producers is that they map
to the ideas of sending and receiving rather than client and server. Messaging in gen-
eral, and AMQP in particular, can be thought of as an enhanced transport layer. With
channels, you have the ability to create as many parallel transport layers as your app
needs without being limited by TCP connection restrictions. When you understand
these concepts, you can begin thinking of RabbitMQ as a router for your software.

2.2 Building from the bottom: queues
You have consumers and producers under your belt, and now you’re itching to get
started eh? Not so fast. First, you need to understand queues. Conceptually, there are
three parts to any successful routing of an AMQP message: exchanges, queues, and
bindings. The exchanges are where producers publish their messages, queues are
where the messages end up and are received by consumers, and bindings are how the
messages get routed from the exchange to particular queues. Before you get to exam-
ine exchanges and bindings, you need to understand what a queue is and how it
works. Take a look at figure 2.3.

Virtual host

Queues

Exchanges

Q1 Q2 Q3 Q4 Q5 Q6

Bindings

Messages in

Topic Fanout Direct

lo
g

s.
* ap

i_call*.
se

ve
re

Figure 2.3 AMQP stack:
exchanges, bindings, and queues
 www.it-ebooks.info

http://www.it-ebooks.info/

17Building from the bottom: queues
As we said when we were talking about producers and consumers, queues are like
named mailboxes. They’re where messages end up and wait to be consumed. Con-
sumers receive messages from a particular queue in one of two ways:

1 By subscribing to it via the basic.consume AMQP command. This will place the
channel being used into a receive mode until unsubscribed from the queue.
While subscribed, your consumer will automatically receive another message
from the queue (as available) after consuming (or rejecting) the last received
message. You should use basic.consume if your consumer is processing many
messages out of a queue and/or needs to automatically receive messages from a
queue as soon as they arrive.

2 Sometimes, you just want a single message from a queue and don’t need to be
persistently subscribed. Requesting a single message from the queue is done by
using the basic.get AMQP command. This will cause the consumer to receive
the next message in the queue and then not receive further messages until the
next basic.get. You shouldn’t use basic.get in a loop as an alternative to
basic.consume, because it’s much more intensive on Rabbit. basic.get essen-
tially subscribes to the queue, retrieves a single message, and then unsubscribes
every time you issue the command. High-throughput consumers should always
use basic.consume.

If one or more consumers are subscribed to a queue, messages are sent immediately
to the subscribed consumers. But what if a message arrives at a queue with no sub-
scribed consumers? In that case, the message waits in the queue. As soon as a con-
sumer subscribes to the queue, the message will be sent to that consumer. A more
interesting question is how messages in a queue are distributed when multiple con-
sumers are subscribed to the same queue.

 When a Rabbit queue has multiple consumers, messages received by the queue are
served in a round-robin fashion to the consumers. Each message is sent to only one
consumer subscribed to the queue. Let’s say you had a queue named seed_bin and con-
sumers Farmer Bob and Farmer Esmeralda subscribed to seed_bin. As messages arrive
in seed_bin, the deliveries would look like this:

1 Message_A arrives in the seed_bin queue.
2 RabbitMQ sends Message_A to Farmer Bob.
3 Farmer Bob acknowledges receipt of Message_A.
4 RabbitMQ removes Message_A from the seed_bin queue.
5 Message_B arrives in the seed_bin queue.
6 RabbitMQ sends Message_B to Farmer Esmeralda.
7 Farmer Esmeralda acknowledges receipt of Message_B.
8 RabbitMQ removes Message_B from the seed_bin queue.

You may have noticed that Farmers Bob and Esmeralda did something we haven’t
talked about yet: they acknowledged receipt of the message. Every message that’s
 www.it-ebooks.info

http://www.it-ebooks.info/

18 CHAPTER 2 Understanding messaging
received by a consumer is required to be acknowledged. Either the consumer must
explicitly send an acknowledgement to RabbitMQ using the basic.ack AMQP com-
mand, or it can set the auto_ack parameter to true when it subscribes to the queue.
When auto_ack is specified, RabbitMQ will automatically consider the message
acknowledged by the consumer as soon as the consumer has received it. An important
thing to remember is that message acknowledgements from the consumer have noth-
ing to do with telling the producer of the message it was received. Instead, the acknowl-
edgements are a way for the consumer to confirm to RabbitMQ that the consumer has
correctly received the message and RabbitMQ can safely remove it from the queue.

 If a consumer receives a message and then disconnects from Rabbit (or unsub-
scribes from the queue) before acknowledging, RabbitMQ will consider the message
undelivered and redeliver it to the next subscribed consumer. If your app crashes, you
can be assured the message will be sent to another consumer for processing. On the
other hand, if your consumer app has a bug and forgets to acknowledge a message,
Rabbit won’t send the consumer any more messages. This is because Rabbit considers
the consumer not ready to receive another message until it acknowledges the last one
it received. You can use this behavior to your advantage. If processing the contents of
a message is particularly intensive, your app can delay acknowledging the message
until the processing has finished. This will keep Rabbit from overloading you with
more messages than your app can handle.

 What if you want to specifically reject a message rather than acknowledge it after
you've received it? For example, let’s say that when processing the message you
encounter an uncorrectable error, but it only affects this consumer due to a hardware
issue (this is a good reason to never acknowledge a message until it’s processed). As
long as the message hasn’t been acknowledged yet, you have two options:

1 Have your consumer disconnect from the RabbitMQ server. This will cause
RabbitMQ to automatically requeue the message and deliver it to another con-
sumer. The advantage to this method is that it works across all versions of
RabbitMQ. The disadvantage is the extra load put on the RabbitMQ server
from the connecting and disconnecting of your consumer (a potentially signifi-
cant load if your consumer is encountering errors on every message).

2 If you’re running RabbitMQ 2.0.0 or newer, use the basic.reject AMQP com-
mand. basic.reject does exactly what it sounds like: it allows your consumer
to reject a message RabbitMQ has sent it. If you set the requeue parameter of
the reject command to true, RabbitMQ will redeliver the message to the next
subscribed consumer. Setting requeue to false will cause RabbitMQ to remove
the message from the queue immediately without resending it to a new con-
sumer. You can also discard a message simply by acknowledging it (this method
of discarding has the advantage of working with all versions of RabbitMQ). This
is useful if you detect a malformed message you know none of your consumers
will be able to process.
 www.it-ebooks.info

http://www.it-ebooks.info/

19Building from the bottom: queues
NOTE When discarding a message, why would you want to use the
basic.reject command with the requeue parameter set to false instead of
acknowledging the message? Future versions of RabbitMQ will support a spe-
cial “dead letter” queue where messages that are rejected without requeuing
will be placed. A dead letter queue lets you inspect rejected/undeliverable
messages for issues. If you want your app to automatically take advantage of
the dead letter queue feature when it’s added to Rabbit, use the reject com-
mand with requeue set to false.

There’s one more important thing you need to know about queues: how to create
them. Both consumers and producers can create queues by using the queue.declare
AMQP command. But consumers can’t declare a queue while subscribed to another
one on the same channel. They must first unsubscribe in order to place the channel
in a “transmit” mode. When creating a queue, you usually want to specify its name.
The name is used by consumers to subscribe to it, and is how you specify the queue
when creating a binding. If you don’t specify a name, Rabbit will assign a random
name for you and return it in the response to the queue.declare command (this is
useful when using temporary “anonymous” queues for RPC-over-AMQP applications, as
you’ll see in chapter 4). Here are some other useful properties you can set for the
queue:

 exclusive—When set to true, your queue becomes private and can only be
consumed by your app. This is useful when you need to limit a queue to only
one consumer.

 auto-delete—The queue is automatically deleted when the last consumer
unsubscribes. If you need a temporary queue used only by one consumer, com-
bine auto-delete with exclusive. When the consumer disconnects, the queue
will be removed.

What happens if you try to declare a queue that already exists? As long as the declara-
tion parameters match the existing queue exactly, Rabbit will do nothing and return
successfully as though the queue had been created (if the parameters don’t match,
the declaration attempt will fail). If you just want to check whether a queue exists, you
can set the passive option of queue.declare to true. With passive set to true,
queue.declare will return successfully if the queue exists, and return an error without
creating the queue if it doesn’t exist.

 When you’re designing your apps, you’ll most likely ask yourself whether your pro-
ducers or consumers should create the queues you need. It might seem that the most
natural answer is that your consumers should create your queues. After all, they’re the
ones that need to subscribe, and you can’t subscribe to a queue that doesn’t exist,
right? Not so fast. You need to first ask yourself whether the messages your producers
create can afford to disappear. Messages that get published into an exchange but have
no queue to be routed to are discarded by Rabbit. So if you can’t afford for your mes-
sages to be black-holed, both your producers and your consumers should attempt to
create the queues that will be needed. On the other hand, if you can afford to lose
 www.it-ebooks.info

http://www.it-ebooks.info/

20 CHAPTER 2 Understanding messaging
messages or have implemented a way to republish messages that don’t get processed
(we’ll show you how to do this) you can have only your consumers declare the queues.

 Queues are the foundational block of AMQP messaging:

 They give you a place for your messages to wait to be consumed.
 Queues are perfect for load balancing. Just attach a bunch of consumers and let

RabbitMQ round-robin incoming messages evenly among them.
 They’re the final endpoint for any messages in Rabbit (unless they get black-

holed).

With queues under your belt, you’re ready to move to the next building block of
Rabbit: exchanges and bindings!

2.3 Getting together: exchanges and bindings
As you saw in the previous sections, you want to have consumers fetching messages
from your queues. Now the question, is how does a message reach a queue? Meet
AMQP bindings and exchanges. Whenever you want to deliver a message to a queue,
you do it by sending it to an exchange. Then, based on certain rules, RabbitMQ will
decide to which queue it should deliver the message. Those rules are called routing
keys. A queue is said to be bound to an exchange by a routing key. When you send a
message to the broker, it’ll have a routing key—even a blank one—which RabbitMQ
will try to match to the routing keys used in the bindings. If they match, then the mes-
sage will be delivered to the queue. If the routing message doesn’t match any of bind-
ing patterns, it’ll be black-holed.

 Why do you need such indirection? “I just want my messages on the queue,” you
might be saying. Let’s look at an example to understand the advantages of such concept.

 You can compare this scenario with email: if you want to send a message to any of
your contacts, you send it to his address, and the SMTP server will check whom the
message is addressed to and will take care of delivering it to that user’s inbox. But
what happens if your contact wants every message sent from you to be filed into the
business folder? Then they have to set up certain rules based on the content of the
message in order to achieve such a goal. They may also want rules that send the mes-
sage to the same folder, for example, based on the hostname of some business provid-
ers. With the concepts of exchanges, bindings, and queues, AMQP can accommodate
such use cases and many more, so you can bind a queue to an exchange with no rout-
ing key and then every message with no routing key that you send to that exchange
will be delivered to said queue, in a fashion similar to email. If you require complex
use cases, like publish/subscribe or multicast, you can achieve that too. You’ll see that
in a moment.

 Besides the different use cases that you can handle with exchanges and bindings,
there’s another advantage: the publisher—the process that is sending messages to the
broker—doesn’t have to care about the logic on the other side of the broker (the
queues and consumers involved in processing the messages). As you’ll see, this can
lead to interesting messaging scenarios that aren’t possible—or are very hard to
 www.it-ebooks.info

http://www.it-ebooks.info/

21Getting together: exchanges and bindings
accomplish—with a broker that only
allows you to publish directly to queues.

 As you’ve seen, the broker will route
messages from exchanges to queues based
on routing keys, but how does it handle
delivery to multiple queues? Here come
into play the different types of exchanges
provided by the protocol. There are four:
direct, fanout, topic, and headers. Each
implements a different routing algorithm.
We’ll go over all of them except the head-
ers exchange, which allows you to match
against a header in the AMQP message
instead of the routing key. Other than that,
it operates identically to the direct
exchange but with much worse perfor-
mance. As a result, it doesn’t provide much
real-world benefit and is almost never
used. Let’s see each of the other exchange
types in detail.

 The direct exchange is pretty simple: if the routing key matches, then the message
is delivered to the corresponding queue. You can see a representation of this in
figure 2.4.

 The broker must implement the direct exchange, including a default exchange
with an empty string as its name. When a queue is declared, it’ll be automatically
bound to that exchange using the queue name as routing key. This means that you
can use code like the following to send messages to a previously declared queue, pro-
vided that you obtained a channel instance:

$channel->basic_publish($msg, '', 'queue-name');

The first parameter is the message that you want to send, the second one is an empty
string to specify the default exchange, and the third one will be the routing key, which
is the name you used to declare the queue. Later you’ll see how to achieve the RPC
messaging pattern using the default exchange and temporary queues.

 When the default direct exchange isn’t enough for your application’s needs, you
can declare your own exchanges. You can issue the exchange.declare command with
appropriate parameters to accomplish that.

 The next type of exchange that we’ll discuss is the fanout exchange. As you can see
from figure 2.5, this exchange will multicast the received message to the bound
queues. The messaging pattern is simple: when you send a message to a fanout
exchange, it’ll be delivered to all the queues attached to this exchange. This allows you
to react in different ways based on only one message. For example, a web application
may require that when a user uploads a new picture, the user’s own image gallery cache

Direct
exchange

Q2 Q3Q1

Cucumber

Banana

Blueberry

Cucumber
Banana

Blueberry

Figure 2.4 Direct exchange message flow
 www.it-ebooks.info

http://www.it-ebooks.info/

22 CHAPTER 2 Understanding messaging
must be cleared and also they should be
rewarded with some points. You can have
two queues bound to the upload-pictures
exchange, one with consumers clearing
the cache and the other one for increasing
user points. Also from this scenario, you
can see the advantage of using exchanges,
bindings, and queues over publishing mes-
sages directly to queues. Let’s say that the
first requirement of the application was
that after a picture was uploaded to the
website, the user gallery cache was cleared.
You can easily implement that by using just
one queue, but what happens when the
product owner comes to you with the new
feature of giving awards to users for their
actions? If you’re sending messages
directly to queues, then you have to modify
the publisher’s code to send message to the
new points queue. If you’ve been using
fanout exchanges, the only thing that you
have to do is to write the code for your new
consumer and then declare and bind a
new queue to the fanout exchange. As we
said earlier, the publisher’s code is com-
pletely decoupled from the consumer’s
code, allowing you to increase your appli-
cation functionality with ease.

 Last but not least, we’ll discuss the topic
exchange. This exchange allows you to
achieve interesting messaging scenarios,
where messages can arrive to the same
queue coming from different sources. Let’s
take as an example a logging system for your
web application. You have several logging
levels, like error, info, and warning, and at
the same time your application is separated
into modules like user-profile, image-gallery,
msg-inbox, and so forth. As you can see in fig-
ure 2.6, if you want to report an error when
the send message action failed, you can do
so with the following code:

Q2 Q3Q1

Fanout
exchange

Figure 2.5 Fanout exchange message flow

Q2 Q3Q1

log.
critical

alert.
criticallert.

critical

log.
critical

Topic
exchange

log.
critical

alert.
critical

log.* *.critical alert.*

Figure 2.6 Topic exchange message flow
 www.it-ebooks.info

http://www.it-ebooks.info/

23Getting together: exchanges and bindings
$channel->basic_publish($msg, 'logs-exchange', 'error.msg-inbox');

Then, provided that you’ve declared a queue msg-inbox-errors, you can bind it to the
exchange to receive the messages like this:

$channel->queue_bind('msg-inbox-errors',
 'logs-exchange',

'error.msg-inbox');

So far this looks very similar to a direct exchange. You’ve used the same string
error.msg-inbox as the binding rule for the queue-binding operation and for the
message publication routing key. That will ensure that your message is routed into the
msg-inbox-errors queue, nothing fancy. But what if you want to have a queue listen-
ing to all kinds of error levels that happen in the msg-inbox module? You can do so
using the same exchange that you already have by binding a new queue like this:

$channel->queue_bind('msg-inbox-logs',
'logs-exchange',
'*.msg-inbox');

The msg-inbox-logs queue will receive all the error, warning, and info log messages from
the msg-inbox module. What about receiving all the logs? That’s easy to accomplish
too. You can use a wildcard while binding the queue to the exchange. As you can see
from the previous examples, a single . delimits the routing key into parts, and the *
matches any text in that particular part position. To perform a match-all rule you can
use the # character:

$channel->queue_bind('all-logs', 'logs-exchange', '#');

With that binding, the all-logs queue will receive all the logs published by your web
application. Of course for all the previous examples to work you must have declared
the queues in advance before performing the bindings. Unlike the * operator, which
considers . in the routing key as a part delimiter, the # operator has no concept of
parts and considers any . characters as part of the key to match.

 Now that you know about these three exchange types, you can see the power
offered by AMQP. You can program the broker behavior to work in the way you want. It
can be used just as a queue server, in a publish/subscribe setup, or as an RPC server. It
just depends on how you wire the pieces together.

 Let’s recap what you’ve learned in this section:

 The key components in the AMQP architecture are exchanges, queues, and
bindings.

 You bind queues to exchanges based on binding rules.
 Messages are sent to exchanges.
 There are three exchange types: direct, fanout, and topic.
 Based on the message routing key and the exchange type, the broker will

decide to which queue it has to deliver the message.
 www.it-ebooks.info

http://www.it-ebooks.info/

24 CHAPTER 2 Understanding messaging
2.4 Multiple tenants: virtual hosts and separation
With exchanges, bindings, and queues under your belt, you might think you have all
the coolness that is Rabbit figured out. But if you’ve played around much with Rabbit,
you know there’s one nagging concept we haven’t talked about yet: the vhost. Within
every RabbitMQ server is the ability to create virtual message brokers called virtual
hosts (vhosts). Each one is essentially a mini-RabbitMQ server with its own queues,
exchanges, and bindings … and, more important, its own permissions. This lets you
safely use one RabbitMQ server for multiple applications without worrying that your
Sudoku app might delete queues used by your lost Fido tracker. Vhosts are to Rabbit
what virtual machines are to physical servers: they allow you to run data for multiple
applications safely and securely by providing logical separation between instances.
This is useful for anything from separating multiple customers on the same Rabbit to
avoiding naming collisions on queues and exchanges. Where otherwise you might
have to run multiple Rabbits and gain all the management headaches that come with
that, you can instead run one Rabbit and build up or tear down vhosts on demand.

 Vhosts are so fundamental to the concept of AMQP that you have to specify one
when you connect. RabbitMQ makes it easy to get started by including a default vhost
called / right out of the box. If you don’t need multiple vhosts, just use the default one.
It’s accessible using the default guest username with password guest, though you should
change the password for security (more on this in chapter 3). An interesting property
of AMQP is that it doesn’t specify whether permissions are per vhost or server-wide.
This is left up to the broker developer and in RabbitMQ’s case permissions are per vhost.

 When you create a user in Rabbit, it’s usually assigned to at least one vhost and will
only be able to access queues, exchanges, and bindings on those assigned vhosts. Also,
when you’re designing your messaging architecture, keep in mind that separation
between vhosts is absolute. You can’t bind an exchange on vhost banana_tree to a
queue on vhost oak_tree. This is actually a good thing, not only for security, but also
for portability. Imagine for a second that you’ve designed the check cashing tier of
your magnificent banking app to use its own vhost. You might initially put this vhost
on the same Rabbit that houses the vhosts for other tiers of your app. But one day
your customers start cashing millions of checks—good for you but bad for the Rabbit
server. Check cashing needs to be on a Rabbit server with less load. If the check cash-
ing tier had used the default vhost, you would have to worry about naming collisions
(queues and exchanges) when you point it to the new Rabbit server. But since it has its
own vhost, you can safely move everything to any other Rabbit server and instantly
start handling the new load without any name collisions. Hence, we highly recom-
mend identifying the common functionality groups in your infrastructure (such as
web logging) and giving each one its own vhost. Also, keep in mind that when you cre-
ate a vhost on a RabbitMQ cluster, it’s created across the entire cluster. Just as vhosts
eliminate needing to run a RabbitMQ server for every tier in your infrastructure, they
also avoid making you create different clusters for each tier.
 www.it-ebooks.info

http://www.it-ebooks.info/

25Where’s my message? Durability and you
 We’ve talked about all of the great benefits of vhosts, but how do you create them?
Vhosts and permissions are unique in that they’re the only primitives in AMQP (unlike
queues, exchanges, and bindings) that can’t be created using the AMQP protocol. For
RabbitMQ they’re created using the rabbitmqctl utility found in the ./sbin/ direc-
tory of your RabbitMQ installation. To create a vhost simply run rabbitmqctl
add_vhost [vhost_name], where [vhost_name] is the vhost you want to create. Deleting
a vhost is similarly simple: rabbitmqctl delete_vhost [vhost_name]. Once a vhost
has been created, you can connect to it and start adding your queues and exchanges.
If you need to find out what vhosts are running on a particular Rabbit server, run
rabbitmqctl list_vhosts and voila! There they are:

$./sbin/rabbitmqctl list_vhosts
Listing vhosts ...
/
oak
sycamore
...done.

NOTE Typically you’ll run rabbitmqctl directly on the server with the
RabbitMQ node you want to manage. But you can also pass the -n
rabbit@[server_name] option before any command to manage a remote
RabbitMQ node. The node identifier (rabbit@[server_name]) is split into
two parts at the @: the left half is the Erlang application name and will almost
always be rabbit, and the right half is the server hostname or IP address. You
need to make sure the server running the Rabbit node and the workstation
you’re running rabbitmqctl on have the same Erlang cookie installed. For
more info on Erlang cookies, check out section 3.4.1.

Now that you’ve secured your queues and exchanges with vhosts, it’s time to talk
about making sure critical messages don’t disappear when Rabbit crashes or reboots.

2.5 Where’s my message? Durability and you
There’s a dirty secret about creating queues and exchanges in Rabbit: by default they
don’t survive reboot. That’s right; restart your RabbitMQ server and watch those
queues and exchanges go poof (along with the messages inside). The reason is
because of a property on every queue and exchange called durable. It defaults to
false, and tells RabbitMQ whether the queue (or exchange) should be re-created after
a crash or restart of Rabbit. Set it to true and you won’t have to re-create those queues
and exchanges when the power supply in your server dies. You might also think that
setting durable to true on the exchanges and queues is all you need to do to make
your messages survive a reboot, but you’d be wrong. Whereas queues and exchanges
must be durable to allow messages to survive reboot, it isn’t enough on its own.

 A message that can survive a crash of the AMQP broker is called persistent. You flag a
message as persistent by setting the delivery mode option of the message to 2 (your
AMQP client may use a human-friendly constant instead) before publishing it. At this
point, the message is indicated as persistent, but it must be published to an exchange
 www.it-ebooks.info

http://www.it-ebooks.info/

26 CHAPTER 2 Understanding messaging
that’s durable and arrive in a queue that’s durable to survive. If this weren’t the case,
the queue (or exchange) a persistent message was sitting in when Rabbit crashed
wouldn’t exist when Rabbit restarted, thereby orphaning the message. So, for a mes-
sage that’s in flight inside Rabbit to survive a crash, the message must

 Have its delivery mode option set to 2 (persistent)
 Be published into a durable exchange
 Arrive in a durable queue

Do these three things and you won't have to play Where’s Waldo with your critical
messages.

 The way that RabbitMQ ensures persistent messages survive a restart is by writing
them to the disk inside of a persistency log file. When you publish a persistent mes-
sage to a durable exchange, Rabbit won’t send the response until the message is com-
mitted to the log file. Keep in mind, though, that if it gets routed to a nondurable
queue after that, it’s automatically removed from the persistency log and won’t survive
a restart. When you use persistent messages it’s crucial that you make sure all three
elements required for a message to persist are in place (we can’t stress this enough).
Once you consume a persistent message from a durable queue (and acknowledge it),
RabbitMQ flags it in the persistency log for garbage collection. If Rabbit restarts any-
time before you consume a persistent message, it’ll automatically re-create the
exchanges and queues (and bindings) and replay any messages in the persistency log
into the appropriate queues or exchanges (depending on where in the routing pro-
cess the messages were when Rabbit died).

 You might be thinking that you should use persistent messaging for all of your mes-
sages. You could do that, but you’d pay a price for ensuring your messages survive
Rabbit restarts: performance. The act of writing messages to disk is much slower than
just storing them in RAM, and will significantly decrease the number of messages per
second your RabbitMQ server can process. It’s not uncommon to see a 10x or more
decrease in message throughput when using persistency.1 There’s also the issue that
persistent messages don’t play well with RabbitMQ’s built-in clustering. Though
RabbitMQ clustering allows you to talk to any queue present in the cluster from any
node, those queues are actually evenly distributed among the nodes without redun-
dancy (there’s no backup copy of any queue on a second node in the cluster). If the
cluster node hosting your seed_bin queue crashes, the queue disappears from the
cluster until the node is restored … if the queue was durable. More important, while
the node is down its queues aren’t available and the durable ones can’t be re-created.
This can lead to black-holing of messages. We’ll cover the behavior in more detail and
show alternate clustering approaches to get around this in chapter 5.

 Given the trade-offs, when should you use persistent/durable messaging? First, you
need to analyze (and test) your performance needs. Do you need to process 100,000

1 Placing your RabbitMQ’s message store on an SSD can greatly improve the performance of persistent
messaging.
 www.it-ebooks.info

http://www.it-ebooks.info/

27Where’s my message? Durability and you
messages per second on a single Rabbit server? If so, you should probably look at
other ways of ensuring message delivery (or get a very fast storage system). For exam-
ple, your producer could listen to a reply queue on a separate channel. Every time it
publishes a message, it includes the name of the reply queue so that the consumer can
send a reply back to confirm receipt. If a message isn’t replied to within a reasonable
amount of time, the producer can republish the message. That said, the critical
nature of messages requiring guaranteed delivery generally means they’re lower in
volume than other types of messages (such as logging messages). So if persistent mes-
saging meets your performance needs, it’s an excellent way to help ensure delivery.
We use it a lot for critical messages. We’re just selective about what types of content
use persistent messaging. For example, we run two types of Rabbit clusters: traditional
RabbitMQ clustering for nonpersistent messaging, and pairs of active/hot-standby
nonclustered Rabbit servers for persistent messaging (using load balancers). This
ensures the processing load for persistent messaging doesn’t slow down nonpersistent
messages. It also means Rabbit’s built-in clustering won’t black-hole persistent mes-
sages when a node dies. Do keep in mind that while Rabbit can help ensure delivery, it
can never absolutely guarantee it. Hard drive corruption, buggy behavior by a con-
sumer, or other extreme events can trash/black-hole persistent messages. It’s ulti-
mately up to you to ensure your messages arrive where they need to go, and persistent
messaging is a great tool to help you get there.

 A concept that’s related to the durability of a message is the AMQP transaction. So
far we’ve talked about marking messages, queues, and exchanges as durable. That’s all
well and good for keeping a message safe once RabbitMQ has it in its custody, but
since a publish operation returns no response to the producer, how do you know if
the broker has persisted the durable message to disk? Should the broker die before it
can write the message to disk, the message would be lost and you wouldn’t know.
That’s where transactions come in. When you absolutely need to be sure the broker
has the message in custody (and has routed the message to all matching subscribed
queues) before you move on to another task, you need to wrap it in a transaction. If
you come from a database background, it’s important not to confuse AMQP transac-
tions with what “transaction” means in most databases. In AMQP, after you place a
channel into transaction mode, you send it the publish you want to confirm, followed
by zero or more other AMQP commands that should be executed or ignored depend-
ing on whether the initial publish succeeded. Once you’ve sent all of the commands,
you commit the transaction. If the transaction’s initial publish succeeds, then the chan-
nel will complete the other AMQP commands in the transaction. If the publish fails,
none of the other AMQP commands will be executed. Transactions close the “last
mile” gap between producers publishing messages and RabbitMQ committing them
to disk, but there’s a better way to close that gap.

 Though transactions are a part of the formal AMQP 0-9-1 specification, they have
an Achilles heel in that they’re huge drains on Rabbit performance. Not only can
using transactions drop your message throughput by a factor of 2–10x, but they also
make your producer app synchronous, which is one of the things you’re trying to get
 www.it-ebooks.info

http://www.it-ebooks.info/

28 CHAPTER 2 Understanding messaging
rid of with messaging. Knowing all of this, the guys at RabbitMQ decided to come up
with a better way to ensure message delivery: publisher confirms.2 Similar to transactions,
you have to tell Rabbit to place the channel into confirm mode, and you can’t turn it
off without re-creating the channel. Once a channel is in confirm mode, every mes-
sage published on the channel will be assigned a unique ID number (starting at 1).
Once the message has been delivered to all queues that have bindings matching the
message’s routing key, the channel will issue a publisher confirm to the producer app
(containing the message’s unique ID). This lets the producer know the message has
been safely queued at all of its destinations. If the message and the queues are dura-
ble, the confirm is issued only after the queues have written the message to disk. The
major benefit of publisher confirms is that they’re asynchronous. Once a message has
been published, the producer app can go on to the next message while waiting for the
confirm. When the confirm for that message is finally received, a callback function in
the producer app will be fired so it can wake up and handle the confirmation. If an
internal error occurs inside Rabbit that causes a message to be lost, Rabbit will send a
message nack (not acknowledged) that’s like a publisher confirm (it has the message’s
unique ID) but indicates the message was lost. Also, since there’s no concept of mes-
sage rollback (as with transactions), publisher confirms are much lighter weight and
have an almost negligible performance hit on the Rabbit broker.

 Now you have the individual parts of RabbitMQ down, from consumers and pro-
ducers to durable messaging, but how do they all fit together? What does the lifecycle
of an actual message look like from beginning to end? The best way to answer that is
to look at the life of a message in code.

2.6 Putting it all together: a day in the life of a message
We’ve talked about the history of RabbitMQ, we’ve discussed AMQP and its details,
and we have the broker installed; now it’s time we get our hands dirty and write some
code. We’ll illustrate how a message is created, published, and then consumed on the
other side of the wire. We don’t want to break the tradition of the initial Hello World
example, so let’s do that.

 In this book we write code in PHP and Python, but—as you’ll see when you com-
pare the Python code with the PHP code—thanks to AMQP the examples are easy to
port to other libraries and languages. For our first program, we’ll use Python since the
code is easy to understand and read even for people new to Python.

 Let’s get started by going over what you’re going to need to build your Hello World.

 Python 2.6 or higher—You’ll need a recent version of the Python interpreter. The
version (2.6.1) installed with Mac OS X 10.6 is what we’ll use. You can install
Python on your Linux of choice by telling your package manager to install the
python package.

2 Publisher confirms are a RabbitMQ-only extension to AMQP (though other brokers are free to add it to their
AMQP implementation). They’re only available in version 2.3.1 or higher of RabbitMQ.
 www.it-ebooks.info

http://www.it-ebooks.info/

29Putting it all together: a day in the life of a message
 easy_install—This handy program is part of the setuptools Python package and
will help you install the extra packages you need for your framework.

 Pika 0.9.6 or higher—Besides being a cute member of the rabbit family, Pika is
also the official Python AMQP library produced by the guys at Rabbit.

To set up your environment, you first need to install easy_install (you may need to run
these commands under sudo depending on your OS):

$ wget http://peak.telecommunity.com/dist/ez_setup.py
...
(25.9 KB/s) - ez_setup.py saved [10285/10285]

$ python ez_setup.py
...
Installed /Library/Python/2.6/site-packages/setuptools-0.6...

With easy_install ready to do your bidding, next get Pika installed:

$ easy_install pika
...
Installed /Library/Python/2.6/site-packages/pika-0.9.6-py2.6.egg
Processing dependencies for pika
Finished processing dependencies for pika

The next step is to create a folder to store your sample code:

$ mkdir chapter-2
$ cd chapter-2

Let’s start with the code for the publisher. It has to perform the following tasks:

 Connect to RabbitMQ
 Obtain a channel
 Declare an exchange
 Create a message
 Publish the message
 Close the channel
 Close the connection

Now that you’re all set up, open the file hello_world_producer.py in your text editor
and type code from the following listing.

import pika, sys

credentials = pika.PlainCredentials("guest", "guest")
conn_params = pika.ConnectionParameters("localhost",

credentials = credentials)
conn_broker = pika.BlockingConnection(conn_params)

channel = conn_broker.channel()

channel.exchange_declare(exchange="hello-exchange",
type="direct",

Listing 2.1 Hello World producer

BEstablish connection
to broker

Obtain channelC
Declare exchangeD
 www.it-ebooks.info

http://www.it-ebooks.info/

30 CHAPTER 2 Understanding messaging
passive=False,
durable=True,
auto_delete=False)

msg = sys.argv[1]
msg_props = pika.BasicProperties()
msg_props.content_type = "text/plain"

channel.basic_publish(body=msg,
exchange="hello-exchange",
properties=msg_props,
routing_key="hola")

That’s a bunch of code; let’s see what’s happening. First at B you have boilerplate
code to set up your connection to RabbitMQ (by not specifying the virtual host, you’re
using the default one at /). You’ll connect to a RabbitMQ server running on port
5672 on your local machine. You’ll use the default guest user and password. Then you
obtain a channel C to communicate with RabbitMQ.

 The next step is to declare an exchange D where your message will be sent to. The
first parameter is the exchange name, hello-exchange; the second one is the
exchange type, direct. The first Boolean flag tells RabbitMQ that you’re issuing the
declare command in nonpassive mode—you want to declare the exchange, not just
obtain information about it. The last two flags will tell RabbitMQ that you want your
exchange to be durable and to not be automatically deleted.

 Then at E you proceed to create a message whose content will be the first argu-
ment passed to your hello_world_consumer.py script. The content type of the message
will be text/plain.

 Once you get the message, you’ll publish it to the hello-exchange F issuing the
basic_publish command.

 You don’t have to close the connection right away every time. You can send several
messages through one channel/connection and then close them when you’re done.

 You have your publisher ready; now let's create the message consumer. It has to do
the following tasks:

 Connect to RabbitMQ
 Obtain a channel
 Declare an exchange
 Declare a queue
 Bind the queue with the exchange
 Consume the messages
 Close the channel
 Close the connection

That seems like a lot, but it’s not really. You already wrote the first three steps and the
last two in the previous code example. What will be new is how to declare a queue,
bind it to an exchange, and start consuming new messages.

 Create a file called hello_world_consumer.py and add the code from the following listing.

Create plaintext
message

E

Publish messageF
 www.it-ebooks.info

http://www.it-ebooks.info/

31Putting it all together: a day in the life of a message

Decl
excha

Dec
qu

Funct
to proc
incom
messa

gement

g

S
consum

import pika
credentials = pika.PlainCredentials("guest", "guest")
conn_params = pika.ConnectionParameters("localhost",

credentials = credentials)
conn_broker = pika.BlockingConnection(conn_params)
channel = conn_broker.channel()
channel.exchange_declare(exchange="hello-exchange",

type="direct",
passive=False,
durable=True,
auto_delete=False)

channel.queue_declare(queue="hello-queue")
channel.queue_bind(queue="hello-queue",

exchange="hello-exchange",
routing_key="hola")

def msg_consumer(channel, method, header, body):
channel.basic_ack(delivery_tag=method.delivery_tag)
if body == "quit":

channel.basic_cancel(consumer_tag="hello-consumer")
channel.stop_consuming()

else:
print body

return
channel.basic_consume(msg_consumer,

queue="hello-queue",
consumer_tag="hello-consumer")

channel.start_consuming()

As you can see, you have the same code as before for including the library and defin-
ing some constants for your connection parameters. You could move those definitions
to a config.py file and avoid duplicated code. We leave that as an exercise for you.

 At point B you set up your connection to the broker and then C create your
channel. After you have the connection D, you declare the exchange again. Since the
semantics for the declare commands mean “create if not present; otherwise con-
tinue,” nothing will break. You do that to avoid errors when you later issue the
queue_bind command in case the exchange hasn’t been created in advance.

 At E you declare a queue with the name hello-queue using AMQP default
options. Then you bind the queue to hello-exchange F. You’re using the routing key
hola, which will work for this simple example.

 You’re almost ready to start consuming messages, but you need a callback function
where you’ll process the message. At point G you create such a function that will
acknowledge H the message so RabbitMQ can delete it and send a new one to your
consumer. At the end of your callback function you echo the body of the message.
Soon you’ll see what the code at point I is doing.

 Once you have your callback function you can issue the J basic_consume com-
mand to subscribe to the queue. The first parameter will be the callback that you just

Listing 2.2 Hello World consumer

Establish
connection

to broker

B

Obtain channelC
D

are
nge

Elare
eue

Bind queue
and exchange
on key "hola"

F

ion
ess
ing
ges G

Message
acknowled

H

I
Stop consumin
and quit

Subscribe consumerJ

1)tart
ing
 www.it-ebooks.info

http://www.it-ebooks.info/

32 CHAPTER 2 Understanding messaging
wrote. Next you pass as parameters the name of the queue and the consumer tag that
you want to use to identify your process. Every message that RabbitMQ sends to your
consumer will be passed to your callback function.

 With the previous command you’re ready to receive messages. Now you have to
actually do it. For that you 1) start a blocking loop waiting for incoming data through
the channel. If RabbitMQ sends you a message, pika will take care of passing it to the
callback function.

 The last bit of the puzzle is point I. start_consuming() is a blocking while loop
that will never end. To make it end, you inserted a condition inside your callback stat-
ing that if a message has the text 'quit' as body, then you’ll issue the basic_cancel
command to stop consuming (and then close the channel and connection). You have
to provide the consumer tag as parameter for basic_cancel.

 Now let’s test the code. First you have to start RabbitMQ, so open a new terminal
window, move to the folder where you installed RabbitMQ and type the following
command:

$ sbin/rabbitmq-server

Once RabbitMQ is running, switch to the previous terminal window and start the con-
sumer with the following command (see figure 2.7):

$ python ./hello_world_consumer.py

Open a new terminal window, move to the chapter-2 folder and type the following:

$ python ./hello_world_producer.py 'Hello World!'

If everything went okay, you should see the text "Hello World!" in the terminal win-
dow where you’re running the consumer. Congratulations, everything is working fine!

 Now try sending other messages like this:

$ python ./hello_world_producer.py 'Hello Mundo!'

And you should see this text: "Hello Mundo!"
 And finally you stop the consumer with

$ python ./hello_world_producer.py 'quit'

Let’s see what you just did. You wanted to send messages over the wire and consume
them, so you declared your exchange in order to have a place to publish your mes-
sages. You also created a queue and bound it to the hello-exchange. Then based on
text that you input at the command line, you created your message instances and send
them over RabbitMQ. Based on your direct exchange type, RabbitMQ routed your
message to the hello-queue. Since you had a consumer on the other side of the wire,
RabbitMQ delivered the message and it was processed by your callback function. You
can see that no routing key was provided; that’s because AMQP can be as simple or
complex as you want it to be. For our example the empty routing key sufficed.
 www.it-ebooks.info

http://www.it-ebooks.info/

33Using publisher confirms to verify delivery
2.7 Using publisher confirms
to verify delivery
So now you know how to write a basic consumer
and producer, but you might be wondering
how publisher confirms and transactions fit
into the mix. Let’s take a look at how you can
upgrade your Hello World producer to take
advantage of publisher confirms to track mes-
sage delivery.3 Before we dive into updating the
Hello World producer to use publisher con-
firms, look at figure 2.8, which is an illustration
of how message IDs are assigned.

 We said that every message published gets a
unique ID if the channel is in confirm mode.
This might make you think that basic

_publish will suddenly start returning a
message ID, but that’s not how message IDs
work. Since a channel can only be used by a
single thread, you can be assured that all pub-
lishes using that channel are sequential. As a
result, RabbitMQ makes a simple assumption:
the first message published on any channel

3 Since transactions kill performance, we focus on publisher confirms as the preferred way to add delivery con-
firmation to your producers. If you really need to learn how to add transactions to your producers, don’t
worry. We’ve included a version of the Hello World producer that uses transactions in the RabbitMQ in Action
examples online: https://github.com/rabbitinaction/sourcecode.

Figure 2.7 Rabbit
MQ Hello World

RabbitMQ
node

Q1

1

Consumer

1

Channel 1

Channel 2

Producer

2

1

2
1

Next message ID
Channel 1: 3
Channel 2: 2

Figure 2.8 Publisher confirm message IDs
 www.it-ebooks.info

https://github.com/rabbitinaction/sourcecode
http://www.it-ebooks.info/

34 CHAPTER 2 Understanding messaging
will have an ID of 1, and every subsequent message on the channel will increment that
ID by 1. So the second published message on the channel will have an ID of 2, the
third message an ID of 3, and so on. The message IDs are unique to the channel, so
once the channel is closed you won’t be able to track the status of any outstanding
publisher confirms for messages published on that channel. What this means is that
RabbitMQ doesn’t have to tell you the ID of the message you just published; you keep
track of it yourself in a counter internal to your app and increment that counter every
time your app’s channel publishes. Also, since every channel starts its message IDs at 1,
if you have multiple channels open in parallel, you need to maintain a separate inter-
nal message ID counter for each channel. Now that you understand how message IDs
are assigned, let’s take a look at the following version of your Hello World producer,
now updated to use publisher confirms.

import pika, sys
from pika import spec
credentials = pika.PlainCredentials("guest", "guest")
conn_params = pika.ConnectionParameters("localhost",

credentials = credentials)
conn_broker = pika.BlockingConnection(conn_params)
channel = conn_broker.channel()
def confirm_handler(frame):

if type(frame.method) == spec.Confirm.SelectOk:
print "Channel in 'confirm' mode."

 elif type(frame.method) == spec.Basic.Nack:
if frame.method.delivery_tag in msg_ids:

print "Message lost!"
 elif type(frame.method) == spec.Basic.Ack:

if frame.method.delivery_tag in msg_ids:
print "Confirm received!"
msg_ids.remove(frame.method.delivery_tag)

channel.confirm_delivery(callback=confirm_handler)

msg = sys.argv[1]
msg_props = pika.BasicProperties()
msg_props.content_type = "text/plain"
msg_ids = []
channel.basic_publish(body=msg,

exchange="hello-exchange",
properties=msg_props,
routing_key="hola")

msg_ids.append(len(msg_ids) + 1)
channel.close()

This looks similar to your original Hello World producer, but you’ve now added a call-
back function B confirm_handler that will be called when the app receives a pub-
lisher confirm. You then tell Pika to put the channel into confirm mode C and use
confirm_handler as the callback that will receive publisher confirms as they arrive.
Once your channel is set up to handle publisher confirms, you then set up your

Listing 2.3 Hello World producer with confirms

Publisher
confirm handler

B

Put channel in
confirm mode

C

Reset message
ID tracker

D

Publish messageE

Add ID to
tracking list

F

 www.it-ebooks.info

http://www.it-ebooks.info/

35Summary
internal list (msg_ids) for tracking message IDs on the channel D, and publish the
message E. Finally, once the publish completes you increment msg_id_no to indicate
the message’s ID of 1 F. Inside confirm_handler is where all the interesting magic
with confirms happens.

 When confirm_handler receives a publisher confirm, it first checks whether the
confirmation type is Confirm.SelectOk:

if type(frame.method) == spec.Confirm.SelectOk:
print "Channel in 'confirm' mode."

RabbitMQ sends a confirmation of type Confirm.SelectOk when you first put the
channel into confirm mode. It’s not a confirmation of a message, but rather a notifica-
tion that your channel is now set to receive publisher confirms. If the confirmation
isn’t Confirm.SelectOk, then confirm_handler checks whether it’s a Basic.Nack
confirmation:

elif type(frame.method) == spec.Basic.Nack:
if frame.method.delivery_tag in msg_ids:

print "Message lost!"

You might remember from our explanation of publisher confirms that Basic.Nack
indicates the message was lost due to an internal RabbitMQ error. But before you
treat the message as lost, you check frame.method.delivery_tag for the message ID
of the message being “nacked.” If the message ID matches the ID of the message you
published, then you tell the user that the message was lost. In a more sophisticated
application, this is where you’d put code that republishes the lost message. Finally, if
the confirmation isn’t Confirm.SelectOk or Basic.Nack, you check whether it’s
Basic.Ack:

elif type(frame.method) == spec.Basic.Ack:

Providing the message is a publisher confirm acknowledgement (Basic.Ack), you
need to make sure that the message ID is in your list of published message IDs:

if frame.method.delivery_tag in msg_ids:
print "Confirm received!"
msg_ids.remove(frame.method.delivery_tag)

If the message ID of the confirmation is one you’re tracking in msg_ids, you confirm
to the user that the message was successfully queued and then remove the message ID
from your list of IDs awaiting delivery acknowledgement. It’s slightly more compli-
cated than your original Hello World producer, but in only 12 lines of code you’ve
added the ability to track delivery of your published messages. Even more impressive
is that this simple code can track delivery of millions of published messages per min-
ute! That’s how much better publisher confirms perform than AMQP transactions.

2.8 Summary
We’ve covered a lot of territory in this chapter. Not only do you have the foundation
you need to build nearly any messaging app you can dream up, but you also have a
 www.it-ebooks.info

http://www.it-ebooks.info/

36 CHAPTER 2 Understanding messaging
real-live running producer and consumer, including a producer that can track mes-
sage delivery! In future chapters we’ll cover specific patterns for building messaging
applications that will make your apps elegant, efficient, and powerful. But with what
you've learned so far you can start coding right away on that distributed Twitter clone
you’ve been dying to build. Before we dive into more coding, let’s take a look at how
to manage your RabbitMQ server more expertly. For example, it’s probably not a great
idea that anyone can connect to your virtual hosts and publish messages into any
exchange they like. That’s exactly the type of problem we’ll show you how to avoid
next by setting permissions. So let’s take a look at how to start, stop, and generally
manage RabbitMQ!
 www.it-ebooks.info

http://www.it-ebooks.info/

Running and
administering Rabbit
We’ve spent the majority of our time so far on the concepts of AMQP messaging and
how to get a basic install of RabbitMQ running. Now we’re ready to more deeply
explore what it takes to administer RabbitMQ on a day-to-day basis. Knowing how
to get RabbitMQ started on your workstation is one thing, but how do you get it
stopped cleanly? How do you limit the amount of RAM it can consume so it doesn’t
starve other applications on the same server? These are the kinds of things you’ll
run into when it comes time to move RabbitMQ out of development and into pro-
duction. We’ll use this chapter to show you how to run a top-notch production
RabbitMQ environment so you can avoid the big gotchas.

This chapter covers
 Server management—starting and stopping nodes

 Permission configuration

 Usage statistics

 Troubleshooting problems with RabbitMQ and Erlang
37

 www.it-ebooks.info

http://www.it-ebooks.info/

38 CHAPTER 3 Running and administering Rabbit
 Among the different things we’ll cover are

 Some background on how Erlang operates, including those mysterious Erlang
cookies

 Controlling user access via RabbitMQ’s permissions system
 Using the command-line tools to view the status of your vhosts, queues,

exchanges, and bindings
 What to do when you see scary Erlang error messages like "badrpc,nodedown"
 How to interpret RabbitMQ’s various log files

By the time we’re done, you’ll be a top-notch RabbitMQ admin and ready to tackle
your production Rabbit environment. Let’s get started with the basics and dive into
how to manage a RabbitMQ server.

3.1 Server management
Running a RabbitMQ server effectively can be different from other products you’ve
used. This is primarily because RabbitMQ is written in Erlang and Erlang does things
its own way. For the most part this is a good thing. Erlang was designed from day one
to let apps talk to each other without having to know whether they’re on the same
machine or different machines. For RabbitMQ, this makes clustering and reliable
routing of messages a breeze. But accomplishing this “easy distribution” requires two
concepts you might be unfamiliar with: the Erlang node and the Erlang application.
Not to worry; these concepts aren’t as alien as they may sound. If you’re familiar with
Java Virtual Machines (JVM), these ideas are very similar to the ideas behind the JVM.
As we move through this section, you’ll learn how to start and stop RabbitMQ nodes
and how to work with the RabbitMQ config file. Without further ado, we’ll begin by
looking at what a node is and how to start it.

3.1.1 Starting nodes

Up to this point, we’ve frequently used the term node to refer to a RabbitMQ server
instance. In reality, what a node really describes is an Erlang node running an Erlang
application. Don’t get scared off by the mention of Erlang—you don’t need to be an
Erlang aficionado to understand what’s going on. It’s very similar to what happens
with the JVM.

 When you run a Java application, an instance of the JVM is spun up and begins exe-
cuting the specified Java application. Similarly, Erlang has a virtual machine and each
instance of it is referred to as a node. Nodes are special. Unlike the JVM, multiple
Erlang applications can run inside the same node, and more important, nodes can
talk natively to each other (whether they’re on the same server or not). For example,
due to the magic of Erlang, an application on node asparagus can call functions in
applications running on node artichoke as though those functions were local. Also, if
an application crashes for any reason (say, RabbitMQ crashing) the Erlang node will
automatically attempt to restart the application (providing Erlang itself didn’t crash).
 www.it-ebooks.info

http://www.it-ebooks.info/

39Server management
This has some interesting benefits when we start talking about plugins and clustering.
The important thing to remember right now is that when we talk about RabbitMQ
nodes, we’re referring to the RabbitMQ application and the Erlang node it runs on.

 Luckily for us, RabbitMQ makes it easy to start the Erlang node and the Rabbit
application in one step. Find the ./sbin directory in your RabbitMQ installation and
run ./rabbitmq-server.1 As you watch the console, you’ll see the different RabbitMQ
subsystems come online and become ready to process your messages. If you encounter
any errors during startup, take a look at the RabbitMQ log. Normally, it's found in /var
/log/rabbitmq/ and is named rabbit@[hostname].log (the “rabbit” part of the file-
name is the default Erlang node name running RabbitMQ). You can also start the
Rabbit node in the background as a daemon by adding the -detached flag: ./rabbitmq
-server -detached. That’s all there is to getting a single RabbitMQ node started. Now
that it’s started though, how do you stop it?

3.1.2 Stopping nodes

When it comes to stopping RabbitMQ, there are two ways of doing it: the clean way
and dirty way. If you run RabbitMQ attached to the console, you might be confused
when you punch CTRL-C and see something like this:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

1 If you installed RabbitMQ from packages specific to your OS (say, RPMs), it’s a good idea to use the start/stop
init.d scripts installed by the package.

One application crashes
but node continues running

Erlang node

RabbitMQ Mnesia
Rabbit
admin
plugin

app 1 app 2 app 3

Erlang node

Rab MQ Mnesia
Rabbit
admin
plugin

app 1 app 2 app 3

X
Cluster communication

Figure 3.1 Understanding Erlang
nodes and applications
 www.it-ebooks.info

http://www.it-ebooks.info/

40 CHAPTER 3 Running and administering Rabbit
Holey moley, what’s that all about? All you wanted to do was stop RabbitMQ. What
you’re looking at is the Erlang node asking you if you want to kill the application, the
whole node, or if it’s all a mistake and you want to keep running. Generally speaking,
you want to kill the whole node, so abort is what you want. But there’s a much better
way to stop RabbitMQ—a way that will tell RabbitMQ to cleanly shut down and protect
all those persistent queues.

rabbitmqctl is the one-stop shop for almost all of your RabbitMQ management
needs. You’ve already seen how it can help you create and list vhosts. It can also help
you stop RabbitMQ. When you run ./sbin/rabbitmqctl stop from your RabbitMQ
installation directory, rabbitmqctl will communicate with the local node and instruct
it to cleanly shut down. You can also specify a different node to shut down, including
remote nodes, by passing the -n rabbit@[hostname] option. If you watch the
RabbitMQ log you’ll see something like this:

=INFO REPORT====
application: rabbit
exited: stopped
type: permanent

=INFO REPORT====
application: mnesia
exited: stopped
type: permanent

=INFO REPORT====
application: os_mon
exited: stopped
type: permanent

When you see that rabbit, mnesia, and os_mon are stopped, the Rabbit node is com-
pletely shut down. If you installed RabbitMQ from a packaging system like APT on
Ubuntu, you might also have a RabbitMQ startup/shutdown script installed in /etc/
init.d/. You can use that script to accomplish the same shutdown task. At this point
the entire RabbitMQ node is shut down, including its Erlang parent. Sometimes,
though, you want to just stop the RabbitMQ application and leave the Erlang parent
running. Let’s take a look at how to do that.

3.1.3 Stopping and restarting the application: what’s the difference?

So far we’ve talked about stopping the entire RabbitMQ node (application and Erlang
node together). But sometimes you just want to restart the RabbitMQ application and
keep the Erlang node running. What’s the advantage? For clustering, it’s required.
Since rabbitmq-server starts both the node and the application, it preconfigures the
RabbitMQ application for standalone mode. To add the node to an existing cluster,
what you need to do is stop the application and reset the node to a pristine state so it
can be prepared for clustering. If you were to use ./rabbitmqctl stop you’d shut
down both the application and the node, forcing you to start both in standalone
mode again via ./rabbitmq-server. There’s also the use case where you’re running
 www.it-ebooks.info

http://www.it-ebooks.info/

41Server management
other Erlang applications besides RabbitMQ on the same node, making stopping the
whole node undesirable.

 Stopping just the RabbitMQ application is a lot simpler than the reasons for want-
ing to. Just run ./rabbitmqctl stop_app. The Rabbit logs will show the same shut-
down messages as when shutting down the whole node.

 Starting and stopping RabbitMQ is great, but what about when your problem is
configuring RabbitMQ so it doesn’t gobble up all the RAM on your server? Or maybe
you need to change the port RabbitMQ listens on. That’s where the RabbitMQ config-
uration files come into play.

3.1.4 Rabbit configuration files

Like most server applications, RabbitMQ allows you to set systemwide tunables and
settings via a configuration file. Typically, this file is located at /etc/rabbitmq/
rabbitmq.config, but its location can be changed via the CONFIG_FILE environment
variable set in the rabbitmq-server script. Within rabbitmq.config you’ll find a
scary-looking file format:

[{mnesia, [{dump_log_write_threshold, 1000}]},
{rabbit, [{vm_memory_high_watermark, 0.4}]}].

What you’re looking at is essentially a raw Erlang data structure. But if you’re familiar
with Python, JavaScript, or any other modern programming language, it’s easy to
understand once you break it down. Let’s reformat the configuration to be more
human friendly:

1) [
2) {mnesia, [{dump_log_write_threshold, 1000}]},
3) {rabbit, [{vm_memory_high_watermark, 0.4}]}
4)].

That’s better. You can see that a RabbitMQ configuration file is really an array contain-
ing nested hashtables (dictionaries or named arrays). Lines 1 and 4 open and close the
configuration array. Within the outer config array, each Erlang application gets its own
hashtable for its configuration options (here we have two applications). mnesia speci-
fies configuration options for the Mnesia database (Mnesia is what RabbitMQ uses for
storing exchange and queue metadata). rabbit specifies RabbitMQ-specific configura-
tion options. Each option is expressed in the format: {[option_name], [option_value]}.
For example, {dump_log_write_threshold, 1000} changes how often Mnesia flushes
entries from its append-only log file into the actual database files. To add another Mne-
sia configuration option, just add another {[option_name], [option_value]} term sep-
arated from the last one by a comma.

NOTE The metadata for every queue, exchange, and binding in RabbitMQ
(but not message content) is written to Mnesia, which is a non-SQL database
built right into Erlang. Mnesia ensures RabbitMQ metadata integrity through
crashes by writing first to an append-only log file. It then regularly dumps the
contents of the log into the actual Mnesia database files. If you're familiar with
 www.it-ebooks.info

http://www.it-ebooks.info/

42 CHAPTER 3 Running and administering Rabbit
the way a logging database like MySQL’s InnoDB or a logging filesystem like
XFS works, it's the same concept. The Mnesia dump_log_write_threshold
option controls how often the dumping occurs. A setting of 1000 tells Mnesia
to dump the log contents into the database files every 1000 entries.

With the Rabbit configuration file format squared away, what are the actual options
you can change? Some are related to the Mnesia database, and some are directly for
Rabbit, as shown in tables 3.1 and 3.2.

Table 3.1 Mnesia configuration options

Option name
Value type

Default Description

dump_log_write_threshold

Integer 100 How often to flush/dump the contents of the append-only
log into the actual database files. It’s specified in terms of
how many entries must be in the log before a dump opera-
tion occurs. Setting this to a higher number can reduce I/O
load and increase performance for persistent messages.

Table 3.2 Rabbit configuration options

Option name
Value type

Default Description

tcp_listeners

Array of
{"ip_address",
port_number}

[{"0.0.0.0",
5672},]

Defines which IP addresses and ports RabbitMQ
should listen on for non-SSL-encrypted traffic.

ssl_listeners

Array of
{"ip_address",
port_number}

NONE Defines which IP addresses and ports RabbitMQ
should listen on for SSL-encrypted traffic.

ssl_options

Array of {"key",
value}

NONE Specifies SSL-related options. Valid options are
cacertfile (CA certificate file), certfile (server
certificate file), keyfile (server key file) and
fail_if_no_peer_cert (require client to have a
valid certificate: True/False).

vm_memory_high_watermark

Decimal
percentage

0.4 Controls how much memory RAM RabbitMQ is allowed
to consume. It’s specified in terms of a decimal num-
ber representing the percentage of installed memory
Rabbit is allowed to use (0.4 = 40%).
 www.it-ebooks.info

http://www.it-ebooks.info/

43Asking permission
Though the configuration files allow you to change a lot of different aspects about
how RabbitMQ operates, one thing they don’t do is control access to RabbitMQ itself.
For that RabbitMQ has an entire specialized subsystem dedicated to permissions. Let’s
start getting familiar with permissions by learning how to create a user.

3.2 Asking permission
If you’re familiar with access control lists on various operating systems, understanding
RabbitMQ’s permission system will come readily to you. Like most permission systems,
it starts with users who are then granted
rights, as shown in figure 3.2.

 The nice thing about the RabbitMQ
permission system is that a single user
can be granted permissions across multi-
ple vhosts. This can greatly simplify the
management of access control for an
application that needs to talk across mul-
tiple security domains (using virtual
hosts for separation). Enough talk; let’s
create a user!

3.2.1 Managing users

Within RabbitMQ, users are the basic
unit of access control. They can be
granted different levels of access to one
or more vhosts, and use a standard user-
name/password pair to authenticate the
user. Adding, deleting, and listing them is
simple and is accomplished using
rabbitmqctl. Let’s create a new user for
the check-cashing app.

msg_store_file_size_limit

Integer (bytes) 16777216 The maximum size of the message store DB before
RabbitMQ garbage collects the contents of the store.

queue_index_max_journal_entries

Integer 262144 The maximum number of entries in the message store
journal before they’re flushed into the message store
DB and committed.

Table 3.2 Rabbit configuration options (continued)

Option name
Value type

Default Description

RabbitMQ

vhost1

vhost2

vhost3

Permissions

read,write

read

user:

read_queue

install_app

user:

read,write,config

Figure 3.2 How RabbitMQ permissions work:
your users get varying levels of permissions (read,
write, and/or config) for their applications
connected to RabbitMQ hosts
 www.it-ebooks.info

http://www.it-ebooks.info/

44 CHAPTER 3 Running and administering Rabbit
 From the ./sbin directory of your RabbitMQ installation run

$./rabbitmqctl add_user cashing-tier cashMe1
Creating user "cashing-tier" ...
...done.

This will create a new Rabbit user with the username cashing-tier and give it the
password cashMe1. If you wanted to remove the user, you’d simply run

$./rabbitmqctl delete_user cashing-tier
Deleting user "cashing-tier" ...
...done.

Please note that when you delete a user, any access control entries referencing that
user will be deleted automatically from the Rabbit permissions database. rabbitmqctl
will not warn you that related access control entries are being removed when you
delete the user. So be careful when removing users; otherwise you may find yourself
re-creating a bunch of access control entries.

 Frequently, what you need to know is which users currently exist on your Rabbit
server. You do this by passing the list_users command to rabbitmqctl:

$./rabbitmqctl list_users
Listing users ...
cashing-tier
guest
...done.

You might be asking yourself, “Great. But how do I change an existing user’s pass-
word? Do I have to re-create the user and lose all my access control entries?” Fear not;
rabbitmqctl has you covered. Simply run the change_password command, specify
the user whose password you want to change, and what the new password should be:

$./rabbitmqctl change_password cashing-tier compl3xPassword
Changing password for user "cashing-tier" ...
...done.

Ba-da bing! cashing-tier’s new password is now compl3xPassword. As you can see,
managing users in RabbitMQ is simple. The complexity comes in when you start
assigning those users to access control entries.

3.2.2 Rabbit’s permissions system

Starting with version 1.6.0, RabbitMQ implemented an access control list (ACL) style
of permissions system. Prior to this, users could only be granted or denied access to
entire vhosts (within those vhosts, they could do anything). The new system allows for
a great deal of granularity, and gives the ability to grant users read, write, and config-
ure permissions. What’s the difference between the three?

 Read—Any operation related to consuming messages, including “purging” an
entire queue (also required for binding operations to succeed)

 Write—Publishing messages (also required for binding operations to succeed)
 Configure—Creation and deletion of queues and exchanges
 www.it-ebooks.info

http://www.it-ebooks.info/

45Asking permission
Table 3.3 shows a list of the different AMQP commands and the permissions they
require (current as of RabbitMQ 2.0.0).

 An access control entry consists of four parts:

 The user being granted access.
 The vhost on which the permissions apply.
 The combination of read/write/configure permissions to grant.
 The permission scope—whether the permissions apply only to client-named

queues/exchanges, server-named queues/exchanges, or both. Client-named
means your app set the name of the exchange/queue; server-named means
your app didn’t supply a name and let the server assign a random one for you.

It’s important to remember that access control entries can’t span vhosts. For example,
if you wanted to grant the same permissions to the user cashing-tier on vhost oak
and vhost sycamore, you’d need to create two access control entries (one for each
vhost). Enough theory though. Let’s create an access control entry!

 For this example, assume you have a vhost named sycamore, and you want to grant
cashing-tier full access (configure, write and read permissions). To do this you want
rabbitmqctl’s set_permissions command:

$./rabbitmqctl set_permissions -p sycamore \
cashing-tier ".*" ".*" ".*"
Setting permissions for user "cashing-tier" in vhost "sycamore" ...
...done.

Let’s take the set_permissions command apart, piece by piece:

 -p sycamore—This tells set_permissions which vhost the entry should apply to.
 cashing-tier—The user being granted the permissions.
 ".*" ".*" ".*"—These are the granted permissions. The values map to con-

figure, write, and read respectively.

Table 3.3 AMQP operations-to-RabbitMQ permissions map

 AMQP command Configure Write Read

exchange.declare exchange

exchange.delete exchange

queue.declare queue

queue.delete queue

queue.bind queue exchange

basic.publish exchange

basic.get queue

basic.consume queue

queue.purge queue
 www.it-ebooks.info

http://www.it-ebooks.info/

46 CHAPTER 3 Running and administering Rabbit
The permission values are the most interesting part of the command. Each of the
three values is a regular expression. In this case, you used ".*" for every permission
(configure, write, and read). ".*" means match any queue or exchange name, which
allows cashing-tier to execute any configure, write, or read commands against any
queue or exchange. Another example may help clear this up.

 Let’s say for a minute that you need to grant cashing-tier access to the oak vhost.
You want to allow the user to be able to execute a read command against any queue or
exchange, while restricting writes only to queues or exchanges whose names starts
with checks-. Also, you want to prevent configure operations entirely. To do this you’ll
want to craft three regular expressions:2

 ".*" to match any queue or exchange
 "checks-.*" to match only queues and exchanges starting with checks-
 "" to match no queues or exchanges (this is how you deny a specific permission

type to a user)

Putting it all together, you’d execute a set_permissions that looks like this:

$./rabbitmqctl set_permissions -p oak \
-s all cashing-tier "" "checks-.*" ".*"
Setting permissions for user "cashing-tier" in vhost "oak" ...
...done.

You can verify that the permissions have correctly applied to the oak vhost by using
rabbitmqctl’s list_permissions command:

$./rabbitmqctl list_permissions -p oak
Listing permissions in vhost "oak" ...
cashing-tier checks-.* .* all
...done.

The empty column between cashing-tier and "checks-.*" on the output indicates
the empty ("") value you passed for configure permissions. As you can see, the per-
missions did correctly apply to the oak vhost and your queues/exchanges are secured
as you want. What if you wanted to remove these permissions? You can remove a user’s
permissions on any vhost by using rabbitmqctl’s clear_permissions command:

$./rabbitmqctl clear_permissions -p oak cashing-tier
Clearing permissions for user "cashing-tier" in vhost "oak" ...
...done.

By running list_permissions you can see that the permissions are now gone:

$./rabbitmqctl list_permissions -p oak
Listing permissions in vhost "oak" ...
...done.

It’s important to note that clear_permissions will remove all permissions for the user
on the specified vhost. If you only want to modify the existing permissions for a user,

2 RabbitMQ permissions accept standard Perl-compatible regular expression (PCRE) syntax.
 www.it-ebooks.info

http://www.it-ebooks.info/

47Checking up
just execute set_permissions with the new permission values. If you want to see what
permissions a user has across all vhosts on your RabbitMQ server, use rabbitmqctl’s
list_user_permissions command:

$./rabbitmqctl list_user_permissions cashing-tier
Listing permissions for user "cashing-tier" ...
oak checks-.* .* all
sycamore .* .* .* all
...done.

Permissions in RabbitMQ are simple to create and very flexible. The flexibility allows
you to create complex permission structures for your vhosts, which can be a benefit
when you need it, but can be difficult to interpret if they become too complex. Where
possible, try to use vhost separation as your primary method of securing one app from
another, and keep the number of access control entries per vhost to a minimum. This
will help you to avoid unexpected permission behavior that can be difficult to debug.

 Now that you can connect and secure your Rabbit server, maybe you’d like to see
what's going on inside. Perhaps you need to know how many provisioning messages
are in your user creation queue. Maybe you’d like to see if your exchanges are on the
right vhost. One of the most important parts of a healthy RabbitMQ server is being
able to monitor its internals. So let’s find out how to check up on our Rabbits!

3.3 Checking up
So far you’ve learned about RabbitMQ management—how to start and stop the server,
add users, manage permissions, and so forth—but what if you want to check what’s
there on the server, or how many queues you have? That logs-exchange you created
in the previous chapter: was it topic or fanout? Are there any messages left to be con-
sumed in the msg-inbox-logs queue? All these questions can be answered by the
mighty rabbitmqctl!

3.3.1 Viewing statistics

As you might’ve noticed when we played with the rabbitmqctl script before, it accepts
many options and commands. One that you’ll see often is the -p option. It specifies
the virtual host or path for which you want information. If you omit that option,
rabbitmqctl will take / as the default path.

 To prepare the ground for experimenting with rabbitmqctl, let’s create an
exchange and bind it to a couple of queues so you can have some sample data to play
with. As you know, most of the examples in this book will be in PHP or Python. You
already set up Python, so now it’s time to code this simple script in PHP. Let’s see what
you need to install to get your development environment ready. First you need to get a
PHP package that suits your operating system. Since PHP is popular, you shouldn’t
have problems there and chances are that your operating system already comes with
PHP preinstalled. If you still need to install it, we recommend that you pick up one of
the 5.3.x versions because PHP got a lot of improvements related to memory manage-
ment and garbage collection since the 5.3 release. Once you get PHP set up, it’s time
 www.it-ebooks.info

http://www.it-ebooks.info/

48 CHAPTER 3 Running and administering Rabbit
to download the PHP AMQP library that we’ll use during the course of this book. The
library is called php-amqplib and can be obtained at https://github.com/videlalvaro/
php-amqplib. Create a folder for your PHP examples and then download the library
there:

$ mkdir php
$ cd php
$ wget https://github.com/videlalvaro/php-amqplib/tarball/v1.0 \
--no-check-certificate

$ tar -xzvf v1.0
$ mv videlalvaro-php-amqplib-b0b8696 php-amqplib

First you created a folder called php and then changed directory into that folder. Then
you obtained the library tarball by using wget and decompressed the file that you got
from GitHub. Finally you moved the library to a most suitable location to save some
typing later.

 Now that you have php-amqplib downloaded, create the PHP script to initialize
your queues and exchanges. Create a new file called rabbitmqctl-examples.php and
add the code from the following listing.

<?php

require_once('./php-amqplib/amqp.inc');

define('HOST', 'localhost');
define('PORT', 5672);
define('USER', 'guest');
define('PASS', 'guest');

$conn = new AMQPConnection(HOST, PORT, USER, PASS);
$channel = $conn->channel();

$channel->exchange_declare('logs-exchange',
'topic', false, true, false);

$channel->queue_declare('msg-inbox-errors',
false, true, false, false);

$channel->queue_declare('msg-inbox-logs',
false, true, false, false);

$channel->queue_declare('all-logs', false,
true, false, false);

$channel->queue_bind('msg-inbox-errors',
'logs-exchange', 'error.msg-inbox');

$channel->queue_bind('msg-inbox-logs',
'logs-exchange', '*.msg-inbox');

?>

This script is fairly simple and we won’t go into detail about the AMQP methods that
we call here because we have a whole chapter dedicated to AMQP usage. For now let’s

Listing 3.1 rabbitmqctl examples

Obtain connection
and channel

B

Declare exchangeC

Declare queuesD

Bind queues
to exchangeE
 www.it-ebooks.info

https://github.com/videlalvaro/php-amqplib
https://github.com/videlalvaro/php-amqplib
http://www.it-ebooks.info/

49Checking up
try to understand the basics of this script. First you connect to the broker and obtain a
channel B so you have a way to communicate with RabbitMQ. Once you have the
channel, you declare an exchange called logs-exchange C and then create three
queues: msg-inbox-errors, msg-inbox-logs, and all-logs D. Finally you bind only
two of the three queues to the logs-exchange using the error.msg-inbox binding
rule in the first case and *.msg-inbox as the binding rule in the second example E.
The goal of the script is to have something to display when you run the rabbitmqctl
commands for listing exchanges, queues, and bindings. Just make sure that the path
in the require_once line points to the place where you have the amqp.inc library
installed. Execute the code with the following command:

$ php ./rabbitmqctl-examples.php

If everything went well then you’re ready to keep experimenting with rabbitmqctl.

LISTING QUEUES AND MESSAGE COUNTS

Let’s start with the list_queues command. On the terminal, change to the sbin
folder (or the folder where rabbitmqctl is located) and type

$./rabbitmqctl list_queues

The output of this command will depend on the queues that you have declared on
your server, but you should see something similar to this:

Listing queues ...
msg-inbox-logs 0
msg-inbox-errors 0
all-logs 3
...done.

There you see the queue name and the number of messages in each queue. As we
said, this information is for the default vhost. If you want to get it for a different vhost,
try adding the -p option like this:

$./rabbitmqctl list_queues -p sycamore

The queues for the sycamore vhost should be displayed.
 Now let’s see which other options you have for this command. If you run the

rabbitmqctl command with no options, the usage help will be displayed. Among all
the help text, you’ll see this:

list_queues [-p <VHostPath>] [<QueueInfoItem> ...]

You already saw what VHostPath means. Scroll down a bit and you’ll see what options
are accepted as QueueInfoItem:

<QueueInfoItem> must be a member of the list [name, durable,
auto_delete, arguments, pid, owner_pid, exclusive_consumer_pid,
exclusive_consumer_tag, messages_ready, messages_unacknowledged,
messages_uncommitted, messages, acks_uncommitted, consumers,
transactions, memory]. The default is to display name and (number of)
messages.
 www.it-ebooks.info

http://www.it-ebooks.info/

50 CHAPTER 3 Running and administering Rabbit
This means that if you want to know more information about the queues, like the
name, number of messages, or number of consumers and memory used, you can issue
this command:

$./rabbitmqctl list_queues name messages consumers memory
Listing queues ...
msg-inbox-logs 0 2 34632
msg-inbox-errors 0 1 34632
all-logs 3 0 43664
...done.

As expected, rabbitmqctl returned the name of the queue, msg-inbox-logs ; the num-
ber of messages, 0; the number of attached consumers, 0; and memory used, 43664
bytes.

 You can also check the properties used to declare the queue:

$./rabbitmqctl list_queues name durable auto_delete
Listing queues ...
msg-inbox-logs true false
msg-inbox-errors true false
all-logs true false
...done.

There you can see that the queues are durable and the auto_delete property was set
to false.

 Of course nothing can stop you from playing with the other command options.
You can experiment by yourself on the command line.

VIEWING EXCHANGES AND BINDINGS

It’s time to get information about the exchanges. In this case the command to obtain
the default information is

$./rabbitmqctl list_exchanges
Listing exchanges ...
logs-exchange topic
amq.rabbitmq.log topic
amq.match headers
amq.headers headers
amq.topic topic
amq.direct direct
amq.fanout fanout

direct
...done.

By default, this command returns the exchange name and the exchange type. You can
see that several exchanges are declared already, such as amq.topic, amq.direct and
amq.fanout. Those exchanges are mandated by the AMQP specification. On top of the
list you see your own logs-exchanges and the type is topic. If you look carefully at
the bottom of the results, you’ll see that it says direct but there’s no exchange name.
That’s the anonymous exchange that we mentioned in chapter 1. As you’ll soon see,
every queue is bound by default to that exchange.
 www.it-ebooks.info

http://www.it-ebooks.info/

51Checking up
 Let’s run the rabbitmqctl command with no arguments and find out the
expected options for list_exchanges:

$./rabbitmqctl

...

<ExchangeInfoItem> must be a member of the list [name, type,
durable, auto_delete, arguments]. The default is to display name
and type.

...

The information that you can get is related to the options that you used to declare the
exchanges. Let’s take a look at those:

$./rabbitmqctl list_exchanges name type durable auto_delete
logs-exchange topic true false
amq.topic topic true false
amq.direct direct true false
amq.fanout fanout true false

direct true false

You can tell by the options passed to this command that the logs-exchange exchange
is durable and that it won’t be automatically deleted by the server.

 After checking information about queues and exchanges, you naturally may want
to see their bindings. Type this at the command line:

$./rabbitmqctl list_bindings
Listing bindings ...

all-logs all-logs []
msg-inbox-errors msg-inbox-errors []
msg-inbox-logs msg-inbox-logs []

logs-exchange all-logs # []
logs-exchange msg-inbox-logs *.msg-inbox []
logs-exchange msg-inbox-errors error.msg-inbox []
...done.

This command doesn’t accept extra options except for -p, which specifies the vhost
path. The output consists of rows containing the exchange name, queue name, rout-
ing key, and arguments. The first three rows look special, like something is missing…
That’s the anonymous exchange again. Those rows are showing that each queue is
bound to the anonymous exchange using the queue name as the routing key. You also
have the logs-exchange—a topic exchange—with three queues bound to it. The first
one, all-logs, is bound using the # routing key—the wildcard. The other two queues
are bound using *.msg-inbox and error.msg-inbox as routing keys respectively.

 We’ve covered many commands from rabbitmqctl and—as you could see when
running it without options—many more commands are available. You’ll see some of
them when we talk about clustering and monitoring RabbitMQ.
 www.it-ebooks.info

http://www.it-ebooks.info/

52 CHAPTER 3 Running and administering Rabbit
3.3.2 Understanding RabbitMQ’s logs

In the previous section you learned how to use the rabbitmqctl script to get informa-
tion about what’s on the server, so let’s see how can you check what’s actually going on
in the server—what kinds of events are happening. RabbitMQ logs events for many
reasons, such as connections attempts, user creation, and errors when decoding
requests. The cool thing about RabbitMQ is that you can get all this data and react to
it in real time, using AMQP exchanges, queues, and bindings. If you want to go the
classic way, then you can also see the log files on the filesystem. Let’s do that first and
then you can build an AMQP consumer that will display RabbitMQ logs; later you
could tweak it and set up a monitoring system for RabbitMQ.

READING THE LOGS ON THE FILESYSTEM

The setting that you care when checking the logs is the LOG_BASE environment vari-
able. The default value, as it appears in the rabbitmq-server script, is this:

LOG_BASE=/var/log/rabbitmq

Inside that folder RabbitMQ will create two log files: RABBITMQ_NODENAME-sasl.log
and RABBITMQ_NODENAME.log, where RABBITMQ_NODENAME will be something like
rabbit@localhost or just rabbit depending on how you configured your system.

 What’s the difference between the sasl log and the other one? SASL (System Applica-
tion Support Libraries) is a set of libraries that are part of the Erlang-OTP distribution.
They help the developer to have a set of standards when developing their Erlang apps.
One of those is the logging format. So, when RabbitMQ logs Erlang-related informa-
tion, it’ll go to the rabbit-sasl.log files. For example, there you can find Erlang’s
crash reports that can be helpful when debugging a RabbitMQ node that doesn’t want
to start.

 Now if you want to see the events happening at the server, you could tail -f the
rabbit.log file. There you can see things like this:

=INFO REPORT==== 10-Sep-2010::13:50:58 ===
accepted TCP connection on 0.0.0.0:5672 from 192.168.1.253:44550

=INFO REPORT==== 10-Sep-2010::13:50:58 ===
starting TCP connection <0.29749.52> from 192.168.1.253:44550

=INFO REPORT==== 10-Sep-2010::13:50:58 ===
closing TCP connection <0.29749.52> from 192.168.1.253:44550

=INFO REPORT==== 10-Sep-2010::13:51:08 ===
Rolling persister log to
"/var/lib/rabbitmq/mnesia/rabbit/rabbit_persister.LOG.previous"

This information can be useful to debug your consumers/producers; you can see if
they got connected, if the connection got closed abruptly, and so forth. Also you can
find out if someone is connecting to your broker from an IP address that shouldn’t be
allowed.

 Apart from network traffic information, in the rabbit.log file you’ll see events
like operations on users, exchanges, queues, and so on. So if for some reason your
 www.it-ebooks.info

http://www.it-ebooks.info/

53Checking up
AMQP client fails to encode a request, or there are some conflicts when declaring a
queue, you could see those events logged here.

ROTATING THE LOGS

The last bit of information to know about the log files is how to rotate them. First you
need to know that whenever the broker starts, it’ll create them afresh and will append
a number to the old ones. You’ll get files like rabbit.log.1. If you want to rotate the
logs manually or via cronjob, you can do it using—you guessed right—rabbitmqctl.
There’s a command that you can run like this,

$./rabbitmqctl rotate_logs suffix

where suffix is a word, usually a number, that you want to append to the end of the
rotated log files. You can try something like this:

$./rabbitmqctl rotate_logs .1

And then you should see the following files in the log folder:

$ ls /var/log/rabbitmq
rabbit@mrhyde-sasl.log
rabbit@mrhyde-sasl.log.1
rabbit@mrhyde.log
rabbit@mrhyde.log.1

ACCESSING THE LOGS IN REAL TIME VIA AMQP

Now let’s see how can you get all this information in real time using AMQP. Perhaps
when you were listing exchanges using rabbitmqctl you spotted an exchange called
amq.rabbitmq.log whose type is topic. RabbitMQ will publish its logs to that
exchange using the severity level as a routing key—you’ll get error, warning, and
info. Based on what you learned from the previous chapter, you can create a con-
sumer to listen to those logs and react accordingly. For the sake of the example you’ll
just output the logs to the console.

 Before coding the consumer, let’s do some refactoring. Create a file called config
.php in a folder called config and put the code from the following listing inside.

<?php
define('HOST', 'localhost');
define('PORT', 5672);
define('USER', 'guest');
define('PASS', 'guest');
define('VHOST', '/');
?>

From now on we’ll assume that the file config.php and the amqp.inc library are already
included, so we won’t mention them on future code examples. We’ll also assume that
you initialized the connection and you obtained a communication channel. With that
in mind, the code for the PHP consumers is shown in the following listing.

Listing 3.2 Default configuration file
 www.it-ebooks.info

http://www.it-ebooks.info/

54 CHAPTER 3 Running and administering Rabbit

list($errors_queue, ,) = $ch->queue_declare();
list($warnings_queue, ,) = $ch->queue_declare();
list($info_queue, ,) = $ch->queue_declare();

$exchange = 'amq.rabbitmq.log';

$ch->queue_bind($errors_queue, $exchange, "error");
$ch->queue_bind($warnings_queue, $exchange, "warning");
$ch->queue_bind($info_queue, $exchange, "info");

$error_callback = function($msg){
echo 'error: ', $msg->body, "\n";
$msg->delivery_info['channel']->basic_ack(

$msg->delivery_info['delivery_tag']);
};

$warning_callback = function($msg){
echo 'warning: ', $msg->body, "\n";
$msg->delivery_info['channel']->basic_ack(

$msg->delivery_info['delivery_tag']);
};

$info_callback = function($msg){
echo 'info: ', $msg->body, "\n";
$msg->delivery_info['channel']->basic_ack(

$msg->delivery_info['delivery_tag']);
};

$ch->basic_consume($errors_queue, "", false,
false, false, false,
$error_callback);

$ch->basic_consume($warnings_queue, "", false,
false, false, false,
$warning_callback);

$ch->basic_consume($info_queue, "", false,
false, false, false,
$info_callback);

while(count($ch->callbacks)) {
$ch->wait();

}

Let’s see what’s going on this script. At B you declare three queues. As you can see,
you didn’t provide any options to the declare command, so RabbitMQ will assign a
random name to your queue. Besides that, the queue will be exclusive to your con-
sumer, and it’ll be auto_deleted when you kill the script. In this way you can attach your
consumer to RabbitMQ at any time, spy what’s going on, and then detach, and every-
thing will be cleaned up for you. You won’t need to delete the queues later. Also you
get the return value from this command and keep the queue name under the vari-
ables $errors_queue, $warnings_queue, and $info_queue.

 You use those variables at C to bind the queues to the amq.rabbitmq.log
exchange. You use different routing keys depending on which logs you want to route
to your queues. Then at D you define three callback functions to process your

Listing 3.3 Log listeners

Declare three
listening queuesB

Bind queues to
log exchangeC

Create callback
functionsD

Prepare
consumersE

Wait for messagesF
 www.it-ebooks.info

http://www.it-ebooks.info/

55Fixing a bad Rabbit: troubleshooting
messages. They do basically the same thing: output the log with the log warning as
prefix. You could modify them to perform more advanced tasks.

 Then at E you send the basic_consume commands and set up your callbacks to
start receiving messages form the server. Finally at F you loop, waiting for incoming
messages. If you run this script you should start seeing logs like this:

info: closing TCP connection <0.25403.2> from 127.0.0.1:54197
info: accepted TCP connection on 0.0.0.0:5672 from 127.0.0.1:54204

If you were wondering what was the name of the queues that you just created, go to
another terminal window and list the queues with rabbitmqctl. You’ll see something
like this:

Listing queues ...
amq.gen-kkcRbifmFzl4cVI6FLA4fQ== 0
amq.gen-4dngVZQA3QZOUf1obu391w== 0
amq.gen-NeTS98PHQygG3S2ciSzOww== 0
...done.

The nice thing about this approach for creating queues is that you don’t have to worry
about your queue names.

 As you saw in this section, RabbitMQ is pretty informative about what’s going on in
the server. You have two ways of checking what’s happening; one way is by the tradi-
tional file logs, and the other is using the more advanced AMQP exchanges, which can
give you flexibility when reacting to events and can make it easier for you to filter logs.

3.4 Fixing a bad Rabbit: troubleshooting
So far everything has been going fine, but what happens when your Rabbit doesn’t
want to get domesticated? No matter what you try, it just doesn’t want to start, or is
running but doesn’t want to reply to your messages. Let’s see what you can do to trou-
bleshoot those problems.

3.4.1 badrpc,nodedown and other Erlang-induced problems

One thing that puts RabbitMQ neophytes away are the weird error messages that it
returns when something fails. What we learned over time is that most of those cryptic
messages come from the underlying system RabbitMQ runs on: Erlang. We’re not say-
ing here that Erlang is a problem (far from it); our point is that messages like
badrpc,nodedown are generated on the Erlang virtual machine, and with a little
knowledge of how things work on the Erlang side, we can easily overcome these kinds
of problems.

ERLANG COOKIES

One common error that you can get when you start working with RabbitMQ is
badrpc,nodedown. It usually happens when you try to use the rabbitmqctl command,
but instead of getting the expected result, you get that error message as a reply. At first
you might think that RabbitMQ isn’t running, but executing the following commands
will prove that wrong:
 www.it-ebooks.info

http://www.it-ebooks.info/

56 CHAPTER 3 Running and administering Rabbit
$ ps ax | grep rabbit
34373 ?? S 0:01.67 /usr/local/lib/erlang/erts-5.8.5/bin/beam.smp -W
... omitted output ...
dir "/var/lib/rabbitmq/mnesia/rabbit@mrhyde" -noshell -noinput

A server process is running, so what’s going on? Let’s try to understand how the
rabbitmqctl command works. rabbitmqctl will start up an Erlang node, and from
there it’ll try to communicate with the RabbitMQ node using the Erlang distribution
system. For this to work, you need two things: the proper Erlang cookie and the proper
node name. So what’s an Erlang cookie? An Erlang cookie acts as a secret token that two
Erlang nodes exchange in order to authenticate themselves. Since you can execute
commands on the remote node once you’re connected to it, there’s a need to make
sure that the peer is trusted. Erlang stores such tokens in a file called .erlang.cookie,
which is usually located in the user’s home directory. You can execute this command
to see its contents:

$ cat ~/.erlang.cookie

In order for rabbitmqctl to communicate with the RabbitMQ node, it needs to share
the same cookie. If you’re running RabbitMQ as the same user that you use to execute
the rabbitmqctl command, then you won’t have any problem, but in production
you’ll probably want to create a rabbitmq user and run the server with that user. This
means that you must share the cookie with the rabbitmq user or you have to switch to
that user to be able to execute rabbitmqctl successfully. When we talk about clustering
several RabbitMQ servers, we’ll discuss Erlang cookies again.

ERLANG NODES

What about nodes; what’s the problem with them? When you start an Erlang node, you
can give it two mutually exclusive options, name and sname, which will specify the node
name. That node name can be long or short, hence the s in sname. If you start your
node with a long name, it will get something like rabbit@hostname.network.tld. If
you use short names, you’ll see something similar to this: rabbit@hostname. The latter
is the default way of starting RabbitMQ. When you want rabbitmqctl to be able to com-
municate with RabbitMQ, you have to get those options to match on both sides. Just for
an experiment, see what happens if you edit your rabbitmqctl and change where it
says -sname rabbitmqctl$ to -name rabbitmqctl$. Save and run the following:

./rabbitmqctl list_queues
Listing queues ...

You’ll get a nice error message like this:

=ERROR REPORT==== 21-Sep-2010::16:01:46 ===
** System running to use fully qualified hostnames **
** Hostname mrhyde is illegal **
Error: unable to connect to node rabbit@mrhyde: nodedown
diagnostics:
- nodes and their ports on mrhyde: [{rabbit,54174}...]
- current node: 'rabbitmqctl1027@mrhyde.network.tld'
- current node home dir: /Users/mrhyde
- current node cookie hash: oNANSQ6MP0092ATN9U7Hcc==
 www.it-ebooks.info

http://www.it-ebooks.info/

57Fixing a bad Rabbit: troubleshooting
Change the option back to read sname and everything should work as normal. Again,
later when we talk about clustering, we’ll have to tweak this option.

MNESIA AND HOST NAMES

Next we have to take care of Mnesia, the Erlang database that was there even before
NoSQL was cool. RabbitMQ uses Mnesia to store information about queues,
exchanges, bindings, and so on. One of the things that RabbitMQ does at startup time
is launch the Mnesia database. Since this step is essential for the server to behave cor-
rectly, if Mnesia fails to start, then RabbitMQ will fail too.

 There are a couple of reasons why Mnesia may fail to start. The first and most com-
mon is a permission problem on the MNESIA_BASE directory. The user that’s running
the RabbitMQ server needs write permissions on that folder. Another common prob-
lem is when you see an error message like this:

starting database ...{"init terminating in
do_boot",{{nocatch,{error,

{cannot_start_application,rabbit,
{{timeout_waiting_for_tables [...]

Here Mnesia failed to load the tables, as you can see from the message. This happens
if the hostname has changed or if the server is running in clustered mode and the
other peer is unreachable during startup. Why do you have to care about the host-
name? Mnesia creates a database schema based on the machine hostname. If you list
the contents of the MNESIA_BASE folder, you’ll see a folder called rabbit@hostname. If
hostname changes due to some network reconfiguration, then Mnesia won’t be able to
load the old schema. Also keep in mind that RabbitMQ uses the word rabbit as node
name. If you changed it using the Erlang sname option, then Mnesia will encounter
the same problem again.

 For the same reason you can see that if you rename the rabbit@hostname folder,
then Mnesia won’t be able to find the old database files. It’ll create the rabbit@host-
name folder again and start a database from scratch. Keep in mind that you still can
find the old database files in the folder that you renamed.

 Mnesia deserves a book for itself, so if you want to learn more about it, you can
read the user guide at http://www.erlang.org/doc/apps/mnesia/users_guide.html.

ERLANG TROUBLESHOOTING TIPS

To end this section, let’s do a simple exercise in Erlang that will help you understand
what we just talked about. You’ll connect an Erlang node to your running RabbitMQ
server. You could use this knowledge to monitor a running broker, execute Erlang
functions on it remotely, and much more.

 Providing that you started RabbitMQ using short names, run the following command:

$ erl -sname test

Depending on your hostname and Erlang version, you should see something like this:

Erlang R13B04 (erts-5.7.5) [source] [64-bit] [smp:2:2] ...
Eshell V5.7.5 (abort with ^G)
(test@mrhyde)1>
 www.it-ebooks.info

http://www.erlang.org/doc/apps/mnesia/users_guide.html
http://www.it-ebooks.info/

58 CHAPTER 3 Running and administering Rabbit
This means you started your Erlang node using test as node name. What you’re see-
ing is the Erlang Read Eval Print Loop or REPL for short. There you can input com-
mands, execute Erlang code, and so forth. Let’s find out your node name:

(test@mrhyde)1> node().
test@mrhyde

There you typed node() at the REPL and got back test@mrhyde as a result. Your Erlang
node will be known to other Erlang applications by that name. As an example, if you
start your own Mnesia database, that will be the name used for the schema folder.

 Now let’s check which other nodes are running on your machine:

(test@mrhyde)2> net_adm:names().
{ok,[{"rabbit",59106},{"test",59127}]}

There you called the names function from the net_adm module. As you can see,
RabbitMQ is running on your machine, using rabbit as the node name and 59106 as
the port. Wait … that’s not the port you use to connect to RabbitMQ from an AMQP
client. What’s going on? Here’s when another piece comes into play: the Erlang Port
Mapper Daemon (epmd). Whenever you start a distributed Erlang node, it’ll register
with the epmd process, giving it the address and port assigned to it by the OS kernel.
Then when another Erlang node comes to life, it’ll do the same. Finally if the latter
wants to connect to your first node, it’ll go through epmd to obtain the other node
address. In that way you don’t need to track that information yourself. Then, that port
number (59106 in the example) is the one assigned by the OS to the Erlang VM where
RabbitMQ is running.

 Now that you know that you can see the RabbitMQ node, let’s try to establish a con-
nection to it:

(test@mrhyde)3> net_adm:ping('rabbit@mrhyde').
pong

You use the ping function to try to reach the other node, giving as argument the
'node@hostname' that you want to connect to. If the answer is pong, then you suc-
ceeded; if you get pang as reply, that means you couldn’t connect to the other node.
Keep in mind that for all this to work you have to share the same Erlang cookie.

 Let’s confirm that you’re connected to the rabbit node:

(test@mrhyde)4> nodes().
[rabbit@mrhyde]

Executing the function nodes() will display a list—those square brackets delimit lists
in Erlang—with the nodes that you’re connected to.

 Finally, let’s execute a function on the remote rabbit node:

(test@mrhyde)8> rpc:call('rabbit@mrhyde',
erlang,
system_info,
[process_count]).

106
 www.it-ebooks.info

http://www.it-ebooks.info/

59Summary
There you used Erlang’s rpc module to call a function on the rabbit@mrhyde node.
The function is erlang:system_info and you use it to obtain the number of Erlang
processes running on that node. You could use this to monitor the health of your
RabbitMQ system. If the process_count goes above the value process_limit, then
your server will crash. This is unlikely to happen—on some machines the limit is
1048576—but it’s nice to keep this in mind when things goes wrong.

 Using rpc:call and providing the node, module, function, and arguments as
parameters, you can execute other functions on the remote rabbit and obtain differ-
ent information. For a final example, let’s gather information about the running
Mnesia system on the remote rabbit node:

rpc:call('rabbit@mrhyde', mnesia, info, []).

The REPL will print out several lines of information regarding Mnesia, such as the
tables created by RabbitMQ, the memory used to hold the information, and more.

 Finally, to close the Erlang REPL, execute the q function and you should be back
on the terminal command prompt:

(test@mrhyde)11> q().
ok

Keeping aside the fact that Erlang deserves a book on its own, you can use the tech-
niques described here to troubleshoot your RabbitMQ installation. To name an
example, if you start up the Erlang VM with the same parameters as the rabbitmqctl
script, then you should be able to connect to the rabbit node. If that’s not the case,
you can start finding out what hostname your machine is getting. Then you can con-
tinue by listing the names of the nodes registered with the epmd daemon, and so on.
With such simple tools you can be troubleshooting and monitoring your RabbitMQ
servers in no time.

3.5 Summary
In this chapter we covered a lot of practical techniques that help you with your every-
day working with RabbitMQ. You saw how to perform server management tasks, such
as working with the RabbitMQ permission system to add and remove users. We went
through RabbitMQ configuration files and we covered how to work with the rabbit-
mqctl command—the Swiss army knife for working with the server. Then you saw how
to get statistics out of the server to see the queues and exchanges that you’ve created
and the relationships between them. Last but not least, we went through some of the
strange Erlang errors that RabbitMQ may throw at you from time to time. Since
Erlang is a fundamental piece in the server structure, you learned a bit about the lan-
guage in order to perform more advanced management tasks, giving you a solid foun-
dation of what means what in RabbitMQ and Erlang parlance. With all this knowledge
in place, let’s go to chapter 4 to see some real-world examples of how to power your
applications with messaging.
 www.it-ebooks.info

http://www.it-ebooks.info/

Solving problems
with Rabbit:

coding and patterns
At this point you know how to install, configure, and even run Rabbit in produc-
tion. It’s about time we got to some coding. First, you need to understand problems
you’re trying to solve when you code messaging into your apps. Like a lot of people
who discover RabbitMQ, your lovable authors weren’t looking for a message queue;
we were looking to solve a decoupling problem. How do you take a time-intensive
task and move it out of the app that triggers it (thereby freeing that app to service
other requests)? Also, how do you glue together applications written in different
languages like PHP and Erlang so that they act as a single system? These seem like

This chapter covers
 Designing applications toward messaging

 Messaging patterns

 Fire-and-forget models

 RPC with RabbitMQ
60

 www.it-ebooks.info

http://www.it-ebooks.info/

61A decoupling story: what pushes us to messaging
two different problems but they have a common kernel: decoupling the request from
the action. Or put another way, both problems demand moving from a synchronous
programming model to an asynchronous one.

 Normally, when programmers hear asynchronous programming they either go run-
ning for the hills or think “Cool. Like Node.js right?” Sometimes both. The problem
with normal approaches to asynchronous programming is that they’re all-or-nothing
propositions. You rewrite all of your code so none of it blocks or you’re just wasting
your time. RabbitMQ gives you a different path. It allows you to fire off a request for
processing elsewhere so that your synchronous application can go back to what it was
doing. When you start using messaging, you can achieve most of the benefits of pure
asynchronous programming without throwing your existing code or knowledge away.
In this chapter, we’ll show you what asynchronous coding means in the Rabbit world.
In particular, we’ll show you how to use Rabbit to solve a number of real-world prob-
lems from picture processing (parallel processing) and alerting (notifications) to
using RabbitMQ for distributed remote procedure calls (APIs) that are as simple as
pie. We’ll start by teaching some fundamental messaging paradigms and then diving
into the code. Let’s get decoupling!

4.1 A decoupling story: what pushes us to messaging
You do it all the time. You write your latest and greatest web app (scheduling Chihua-
hua walking), and decide the fastest way to go is to take web orders and stuff them
directly into a database. It makes sense. How much time can stuffing a small record
into a database take? Not to mention, it’s so simple to code. The problem is, what hap-
pens when you go nationwide and you’re now scheduling 100,000 Chihuahuas an
hour? Or better yet, you decide you want to store your data in two places (gotta
archive those requests). Guess what? It’s time to rip out all of that carefully debugged
code. Coupling an app directly to storage is usually a recipe for rip-and-replace later,
and that’s where messaging can help you.

4.1.1 An asynchronous state of mind (separating requests and actions)

How often do you operate in a synchronous fashion? If you order a pizza, do you wait
for it to show up before you do anything else? Of course not. You watch TV or read a
book, or maybe give your sweetie some quality conversation time. Rarely do you put
your life on hold waiting for a response to your requests. You multitask, so your lives
can scale and you can get more done. Your apps need the same approach.

 Why do you design your apps to be synchronous in the first place? Mostly, because
you think about the whole job instead of the smaller tasks that make it up. You think “my
app needs to schedule a Chihuahua appointment.” Instead the reality is that your app
needs to receive a scheduling request; then it needs to store that request in a database;
then it has to alert the closest dog walker; and finally it needs to let the customer know
they’re scheduled. Even if you make your app multithreaded, you’ve severely limited
the rate at which you can take orders because each thread has to wait for the record to
be stored and the dog walker to be alerted. Rather, you should look at those four steps
 www.it-ebooks.info

http://www.it-ebooks.info/

62 CHAPTER 4 Solving problems with Rabbit: coding and patterns
as falling into two separate apps: an app that takes the request, and an app that pro-
cesses the request. To hijack a great analogy from Gregor Hohpe, we could call it the
Coffee Bean model (Coffee Bean & Tea Leaf is a chain of coffee houses in California).

 When you place an order for your chai latte, you don’t wait at the cash register until
your order is ready. Instead, Coffee Bean splits the order taking operation from the
order preparation operation. The order taker collects your request (and your dinero),
and transmits a message to the baristas telling them what you ordered. You then wait
for your order to be prepared, freeing up the order taker to take another order. The
most important part of the operation is getting your money collected, and so by sepa-
rating order taking from order processing, Coffee Bean has maximized the number of
orders they can take per minute. Similarly, if the backlog of coffee waiting to be pre-
pared gets too high, they can add more baristas to reduce the backlog without chang-
ing the number of order takers. By decoupling the process (separating requests and
actions), they’ve increased the amount of work they can accomplish with the same
number of workers and made it easy to scale up when they need to. Messaging does the
same thing for your app.

 So let’s reanalyze your Chihuahua
app with decoupling in mind. Fig-
ure 4.1 shows the steps in complet-
ing a dog walking order.

 If you want to increase the scalabil-
ity and flexibility of your app, you
need to split it into two different apps:
dog _walk_order and dog_walk_process,
as in figure 4.2. dog_walk_order sits on
the internet and receives web requests
to schedule walkings. When it receives
a request, dog_walk_order creates a
new AMQP message and publishes
that into the chihuahua_scheduling
exchange on Rabbit. dog_walk_order
can then put Customer A on hold and
go receive other requests. Meanwhile,
dog_walk_process listens to a Rabbit
queue and receives the message con-
taining customer A’s scheduling or-
der. It then gets to work creating the
required database entry for the order
and firing off a text message to your
main dog walker, Gustav. Once Gustav
has been sent his text message, dog
_walk_process sends a message back

Dog walking order app

or
de

r
re

qu
es

t

or
de

r
pr

oc
es

si
ng

Alert the dog walker
they've got
a customer.

Store the request in a
database or other

permanent storage.

Receive the
scheduling
request.

Confirm to the
customer that the

request was
successfully filled.

Figure 4.1 Steps for completing a dog walking order
 www.it-ebooks.info

http://www.it-ebooks.info/

63A decoupling story: what pushes us to messaging
to dog_walk_order that customer A’s request was successfully processed. During the
whole time that dog_walk_process was dealing with Customer A’s order, dog_walk
_order was able to receive 100 new walking requests. Had they still been one app, you
would’ve received only one walking request during that whole interval.

 By putting RabbitMQ between two parts of your app that were once tightly cou-
pled, you’ve made it possible to continually receive requests, where before you could
only process one at a time. But you’ve also opened up a whole other world of benefits.
What if you get so much load that one order processing server is no longer enough?

4.1.2 Affording scale: a world without load balancers

One of the great things about using messaging is that it’s simple to add processing
capacity to your apps. Let’s say you’ve just expanded your service to Japan, and now
you’re receiving 1,000,000 walking orders a second. Though your frontend order taker
is more than able to keep up with the load, your order processor is keeling over. Taking
a customer's order no longer keeps you from taking other orders, but those customers
are getting fed up waiting for you to confirm their reservations. You need more order
processors. Just like at Coffee Bean, you can add more baristas. In your case, you spool
up additional dog_walk_process servers and attach them to the queue that receives the
orders. Presto! Without one line of code change, you added 10x processing capacity by
spooling up 10 new dog_walk_process servers. The best part is that RabbitMQ will
evenly distribute the requests among the processing servers due to the automatic round-
robin behavior we talked about in section 2.2. No expensive load balancers required.

RabbitMQ

Dog walking order processing app

Dog walking order request app

Receive the
scheduling
request

Store the request in
a database or other
permanent storage

Alert the dog walker
they've got
a customer

Schedule
request
message

Confirm to the
customer that the

request was
successfully filled

Request
confirmed
message

Figure 4.2 Splitting the dog
walking program into two apps
 www.it-ebooks.info

http://www.it-ebooks.info/

64 CHAPTER 4 Solving problems with Rabbit: coding and patterns
 That’s important for any organization, not just cash-conscious startups. Load bal-
ancing hardware is expensive, which means you’re normally limited to how many
places you can use it to decouple and scale your apps. If instead you can use AMQP
and Rabbit, then you can add decoupling and load balancing anywhere you want for
free. Not to mention, you can do more complex routing, such as send a message to
more than one destination in addition to round-robin load balancing. Load balancers
will always have a place on the frontend distributing requests coming in from the
internet, but if you can heavily leverage messaging, you can reduce your reliance on
them inside the firewall and greatly increase the number of places you decouple your
apps. Decoupled apps are scalable apps.

4.1.3 Zero-effort APIs: why be locked into just one language?

We’ve skipped over one of the best benefits of using AMQP to decouple your apps:
APIs for free. Today everyone is talking about web APIs that allow you to integrate an
app’s functionality into any other app. Generally, this takes a bit of effort because you
end up writing a lot of code to translate incoming HTTP requests into your app’s func-
tion calls. If you write your app using AMQP to connect the parts, you actually get an
API for no additional effort—an API that uses messaging.

 Let’s say you’ve expanded your Chihuahua walking business into dog washing. You
have two new apps to support the new service: dog_wash_request and dog_wash_process.
Then you get a great idea: offer a free dog walk with every wash. Since both the wash-
ing and walking scheduling apps use AMQP, all you need to do is update dog_wash
_request to generate an additional AMQP message that contains the dog walk schedul-
ing information. dog_wash_request can instantly take advantage of dog_walk_process.
This means no recoding of the scheduling code and no need to duplicate that code
inside the dog washing apps. Equally important, there’s no requirement that the walk-
ing and washing apps be written in the same language.

 When you wrote the dog walking apps, you may have chosen Erlang as the best lan-
guage for the job. But in the months since, you’ve discovered how much you like
Clojure for building high-concurrency applications. So you wrote the dog washing
apps in Clojure. If you were using Erlang’s built-in communication protocol for con-
necting dog_walk_request to dog_walk_process, it’d be difficult for the dog washing
apps to talk to dog_walk_process since they’re not written in Erlang. But because
AMQP is language-agnostic and has native language bindings for dozens of languages,
you can easily connect a Clojure request receiver to an Erlang request processor over
Rabbit. Using AMQP to connect your applications gives you the flexibility to use the
right language for each part of the job, and even to change your mind later and con-
nect in new applications written in completely different languages. RabbitMQ makes
it easy to connect any and all parts of your infrastructure in any way you want.

 So, the first thing you should always ask is, how can break you apps apart? Or
rather, which parts of your app are order takers and which parts are order processors?
With that in mind, let’s dive into some real-world examples of using Rabbit and mes-
saging to solve real problems and answer those questions.
 www.it-ebooks.info

http://www.it-ebooks.info/

65Fire-and-forget models
4.2 Fire-and-forget models
When we look at the types of problems messaging can solve, one of the main areas
that messaging fits is fire-and-forget processing. Whether you need to add contacts to
a mailing list or convert 1,000 pictures into thumbnails, you’re interested in the jobs
getting done but there’s no reason they need to be done in real-time. In fact, you usu-
ally want to avoid blocking the user who triggered the jobs. We describe these types of
jobs as fire-and-forget: you create the job, put it on the exchange, and let your app get
back to what it was doing. Depending on your requirements, you may not even need
to notify the user when the jobs complete.

 Two general types of jobs fit into this pattern:

 Batch processing—Work and transformations that need be completed on a large
data set. This can be structured as a single job request or many jobs operating
on individual parts of the data set.

 Notifications—A description of an event that has occurred. This can be anything
from a message to be logged, to an actual alert that should be sent to another
program or an administrator.

We’re going to show you two different real-world examples of fire-and-forget apps that
fit into these two categories. The first is an alerting framework that will allow the apps
in your infrastructure to generate administrator alerts without worrying about where
they need to go or how to get them there. The second example is a perfect demon-
stration of batch processing: taking a single image upload and converting into multi-
ple image sizes and formats. When you’re done with this section you’ll have the most
fundamental type of RabbitMQ programming under your belt: triggering work with
messages that need no reply. Let’s start generating some alerts!

4.2.1 Sending alerts

No matter what type of apps you write, getting notifications when things go awry is
critical. Typically you run some sort of service monitor like Nagios to let you know
when your app is down or services that it relies upon are unavailable. But what about
getting notified when your app is experiencing an unusual number of requests for
user logins, all from a single IP? Or perhaps you’d like to allow your customers to be
notified when unusual events occur to their data? What you need is for your app to
generate alerts, but this opens up a whole new set of questions and adds a lot of com-
plexity to your app. What events do you alert on, and more important, how do you
alert? SMS? IM? No matter how you slice it, you’re looking at adding a lot of new sur-
face area to your code for bugs to hide in. For example, what happens when the SMS
gateway is down? All of your web apps that need to alert now need error-handling
code to deal with the SMS server being unavailable.

 Worry not, for RabbitMQ is riding to your rescue. The only thing about alerting
that inherently needs to be done in your web apps is generating the contents of the
alert. There’s no reason why your web app needs to know whom the alert should go
 www.it-ebooks.info

http://www.it-ebooks.info/

66 CHAPTER 4 Solving problems with Rabbit: coding and patterns
to, how to get it there, or what to do when the alert deliveries go awry. All you need to
do is write a new alerting server app that receives alert messages via Rabbit, and then
enhance your web app to publish these alert messages where appropriate.

 How should you design this new alerting framework? Particularly, what type of
AMQP exchange should you use? You could use a fanout exchange and then create a
queue for each alert transmission type (IM, Twitter, SMS, and so on). The advantage is
that your web app doesn’t have to know anything about how the alerts will be deliv-
ered to the ultimate receiver. It just publishes and moves on. The disadvantage is that
every alert transmitter gets a copy, so you get flooded with an IM, a text message, and a
Twitter direct message every time an alert happens.

 A better way to organize your alerting system would be to create three severity lev-
els for your alerts: info, warning, and critical. But with the fanout exchange, any alert
published would get sent to all three severity level queues. You could instead create
your exchange as a direct exchange, which would allow your web app to tag the alert
messages with the severity level as the routing key. But what would happen if you
chose a topic exchange? Topic exchanges let you create flexible tags for your messages
that target them to multiple queues, but only the queues providing the services you
want (unlike the fanout exchange). If you were to use a topic exchange for your alert-
ing framework, you wouldn’t be limited to just one severity level per alert. In fact, you
could now tag your messages not only with a severity level, but also the type of alert it
is. For example, let’s say Joe Don Hacker is hitting your statistics server with 10,000
requests per second for map data on your dog walking reservations. In your organiza-
tion, you need an alert about this to go both to the infrastructure admins (who get all
alerts flagged as critical), and to your API dev team (who get all alerts tagged
rate_limiting). Since you’ve chosen a topic exchange for the alerting framework,
your web app can tag the alert about such underhanded activity with criti-
cal.rate_limiting. Presto! The alert message is automatically routed by RabbitMQ
to the critical and rate_limiting queues, because of the exchange bindings you’ve
created: critical.* and *.rate_limiting. Figure 4.3 shows how the flow of your
alerting system will work.

 To build this alerting framework you’ll need the Pika library you installed as a part
of your Hello World in chapter 2. If you skipped that part, here are some quick steps
to get Pika installed (assuming you don’t have easy_install yet either):

$ wget http://peak.telecommunity.com/dist/ez_setup.py
...

(25.9 KB/s) - ez_setup.py saved [10285/10285]

$ python ez_setup.py
...
Installed /Library/Python/2.6/site-packages/setuptools-0.6...
$ easy_install pika
...
Installed /Library/Python/2.6/site-packages/pika-0.9.6-py2.6.egg
Processing dependencies for pika
Finished processing dependencies for pika
 www.it-ebooks.info

http://www.it-ebooks.info/

67Fire-and-forget models
Next you need to set up the RabbitMQ user and password the applications will use to
publish and receive alert messages. Let’s call the user alert_user and give it the pass-
word alertme. Let’s also grant alert_user read/write/configure permissions on the
default vhost /.

 From the ./sbin directory of your RabbitMQ install, run the following:

$./rabbitmqctl add_user alert_user alertme
Creating user "alert_user" ...
...done.
$./rabbitmqctl set_permissions alert_user ".*" ".*" ".*"
Setting permissions for user "alert_user" in vhost "/" ...
...done.

With the setup out of the way, you’re ready to work on the most important part of your
alerting system: the AMQP consumer that will receive the alert messages and transmit
them to their destinations. Create a file called alert_consumer.py and put the code
in the following listing inside.

import json, smtplib
import pika

if __name__ == "__main__":
AMQP_SERVER = "localhost"

Listing 4.1 Connect to the broker

Alert consumer

critical.* *.rate_limit

critical_notify

rate_limit_notify
api.team@ourcompany.com

ops.team@ourcompany.com

critical.
rate_limit

Alert producer

*i i l *

RabbitMQ

critical.
rate_limit

critical.
rate_limit

Figure 4.3
Alerting system flow

Broker
settings
 www.it-ebooks.info

http://www.it-ebooks.info/

68 CHAPTER 4 Solving problems with Rabbit: coding and patterns
AMQP_USER = "alert_user"
AMQP_PASS = "alertme"
AMQP_VHOST = "/"
AMQP_EXCHANGE = "alerts"

creds_broker = pika.PlainCredentials(AMQP_USER, AMQP_PASS)
conn_params = pika.ConnectionParameters(AMQP_SERVER,

 virtual_host = AMQP_VHOST,
 credentials = creds_broker)

conn_broker = pika.BlockingConnection(conn_params)

channel = conn_broker.channel()

The first thing this code does is import the libraries you’ll need to make the consumer
tick, and tell Python where the main body of your program is (if __name__ ==
"__main__":). Next, you establish the settings you need to make a successful connec-
tion to your broker (user, name, password, virtual host, and so forth). The settings
assume you have RabbitMQ running locally on your development workstation and are
using the username and password you just created. For simplicity, let’s use the default
virtual host / where you’re going to create an exchange called alerts. Here’s where
the real action starts:

channel.exchange_declare(exchange=AMQP_EXCHANGE,
type="topic",
auto_delete=False)

You’re declaring the alerts exchange as a topic exchange with the type="topic"
parameter that’s passed to channel.exchange_declare. The auto_delete parameter
you’re also passing to the exchange and queue declarations ensures they’ll stick
around when the last consumer disconnects from them.

 Remember that we talked about two tagging patterns for alerts:

 .* for tagging alerts with their severity level (say, critical)
 *. for tagging alerts with a specific alert type such as rate_limiting

What you need to do is create bindings that implement these rules so that the alert
messages go to the queues you want. For your example, let’s create a binding that
routes any messages with tags starting with critical. to the critical queue. Let’s
also create a different binding that routes any messages with tags ending in .rate
_limit to the rate_limit queue. Go ahead and create the critical and rate_limit
queues and bind them, as shown in the following listing.

channel.queue_declare(queue="critical", auto_delete=False)
channel.queue_bind(queue="critical",

exchange="alerts",
routing_key="critical.*")

channel.queue_declare(queue="rate_limit", auto_delete=False)
channel.queue_bind(queue="rate_limit",

exchange="alerts",
routing_key="*.rate_limit")

Listing 4.2 Declare and bind queues and exchanges for the alert topics

Establish
connection
to broker

critical queue
and critical.*
topic binding

rate_limit queue
and *.rate_limit
topic binding
 www.it-ebooks.info

http://www.it-ebooks.info/

69Fire-and-forget models
You’ll notice that the binding rule created for critical alerts is critical.* and not
critical*. This is because RabbitMQ uses . as a separator for different parts of a tag.
If you were to use critical* as the rule, only messages tagged exactly critical*
would match. What you want is to match critical.mywebapp, critical.rate_limit,
or anything that starts with critical.; hence the binding rule should be critical.*.
When using topic exchanges, it’s important to be careful to design your tagging pat-
terns to use . to separate the parts of the tag you want to match separately on.

 You could’ve also passed durable=True to the queue declarations and bindings,
which would ensure that they survived a restart of RabbitMQ. Since restarting your
consumer will automatically create the exchange, queues, and bindings it needs, you
don’t need to worry about durability for your alerting system. The other reason you’re
not concerned about making the queues durable is because you’re not going to flag
your alert messages as durable either. Your system could be handling very high vol-
umes of alerts, so you want to ensure the highest performance and not use durable
messaging, which is persisted to relatively slow disk.

 You might be thinking, “We have exchanges, queues, and bindings … where do we
turn an alert message into an actual alert?” You do that by setting up your consumer
subscriptions and starting the listener loop, as in the following listing.

channel.basic_consume(critical_notify,
queue="critical",
no_ack=False,
consumer_tag="critical")

channel.basic_consume(rate_limit_notify,
queue="rate_limit",
no_ack=False,
consumer_tag="rate_limit")

print "Ready for alerts!"
channel.start_consuming()

Let’s take the channel.basic_consume call apart and explain what each parameter
does:

 critical_notify is the callback. It’s the function that will be called when a
message is received for your subscription to the critical queue. The Pika
library will call critical_notify when a message is received on this subscrip-
tion, passing in the channel, message headers, message body, and message
method from the message.

 queue="critical" specifies the queue you want to receive messages from.
 no_ack=False tells RabbitMQ you want to explicitly acknowledge received mes-

sages. This will keep Rabbit from sending new messages from the queue until
you’ve processed and acknowledged the last one you received.

 consumer_tag is an identifier that will identify this subscription uniquely on
the AMQP channel you created with channel = conn_broker.channel(). The

Listing 4.3 Attach the alert processors
 www.it-ebooks.info

http://www.it-ebooks.info/

70 CHAPTER 4 Solving problems with Rabbit: coding and patterns

De
me

from
consumer tag is what you’d pass to RabbitMQ if you wanted to cancel your
subscription.

Once you’ve established the consumer subscriptions, you only need to call channel
.start_consuming() to start your consumer listening for messages. You may have
noticed that the callback functions (critical_notify and rate_limit_notify) you
specified for your subscriptions haven’t been defined yet. Let’s go ahead and specify
one of those in the following listing.

def critical_notify(channel, method, header, body):
"""Sends CRITICAL alerts to administrators via e-mail."""

EMAIL_RECIPS = ["ops.team@ourcompany.com",]

message = json.loads(body)

send_mail(EMAIL_RECIPS, "CRITICAL ALERT", message)
print ("Sent alert via e-mail! Alert Text: %s " + \

"Recipients: %s") % (str(message), str(EMAIL_RECIPS))

 channel.basic_ack(delivery_tag=method.delivery_tag)

When a consumer callback is called, Pika passes in four parameters related to the
message:

 channel—The channel object you’re communicating on with Rabbit. If you
have multiple channels open, it’ll be the one associated with the subscription
the message was received on.

 method—A method frame object that carries the consumer tag for the related
subscription and the delivery tag for the message itself.

 header—An object representing the headers of the AMQP message. These carry
optional metadata about the message.

 body—The actual message contents.

In critical_notify the first thing to check is the content_type header. Your alerts
will be JSON encoded, so you’ll check the content type to make sure it’s application/
json. The content_type is optional, but it’s useful when you want to communicate
encoding information about the message between producer and consumer. After
you’ve verified the content type, you decode the message body from JSON to text and
construct an email to the Ops Team (ops.team@ourcompany.com) containing the
alert text. Once the email alert has been successfully sent, you send an acknowledge-
ment back to RabbitMQ that you’ve received the message. The acknowledgement is
important because RabbitMQ won’t give you another message from the queue until
you’ve acknowledged the last one you received. By putting the acknowledgement as
the last operation, you ensure that if your consumer were to crash, RabbitMQ would
assign the message to another consumer.

 With all of the pieces of your consumer explained, let’s look at the whole thing put
together in the following listing.

Listing 4.4 Critical alerts processor

code
ssage
 JSON

Transmit
email to
SMTP
server

Acknowledge
message
 www.it-ebooks.info

http://www.it-ebooks.info/

71Fire-and-forget models

D
m

wledge
ge

wledge
age

Br
set

Es
conn

to

import json, smtplib
import pika

def send_mail(recipients, subject, message):
"""E-mail generator for received alerts."""
headers = ("From: %s\r\nTo: \r\nDate: \r\n" + \

"Subject: %s\r\n\r\n") % ("alerts@ourcompany.com",
subject)

smtp_server = smtplib.SMTP()
smtp_server.connect("mail.ourcompany.com", 25)
smtp_server.sendmail("alerts@ourcompany.com",

recipients,
headers + str(message))

smtp_server.close()

def critical_notify(channel, method, header, body):
"""Sends CRITICAL alerts to administrators via e-mail."""

EMAIL_RECIPS = ["ops.team@ourcompany.com",]

message = json.loads(body)

send_mail(EMAIL_RECIPS, "CRITICAL ALERT", message)
print ("Sent alert via e-mail! Alert Text: %s " + \

"Recipients: %s") % (str(message), str(EMAIL_RECIPS))

channel.basic_ack(delivery_tag=method.delivery_tag)

def rate_limit_notify(channel, method, header, body):
"""Sends the message to the administrators via e-mail."""

EMAIL_RECIPS = ["api.team@ourcompany.com",]

message = json.loads(body)

#(f-asc_10) Transmit e-mail to SMTP server
send_mail(EMAIL_RECIPS, "RATE LIMIT ALERT!", message)

print ("Sent alert via e-mail! Alert Text: %s " + \
"Recipients: %s") % (str(message), str(EMAIL_RECIPS))

channel.basic_ack(delivery_tag=method.delivery_tag)

if __name__ == "__main__":
AMQP_SERVER = "localhost"
AMQP_USER = "alert_user"
AMQP_PASS = "alertme"
AMQP_VHOST = "/"
AMQP_EXCHANGE = "alerts"

creds_broker = pika.PlainCredentials(AMQP_USER, AMQP_PASS)
conn_params = pika.ConnectionParameters(AMQP_SERVER,

 virtual_host = AMQP_VHOST,
 credentials = creds_broker)

conn_broker = pika.BlockingConnection(conn_params)

channel = conn_broker.channel()

channel.exchange_declare(exchange=AMQP_EXCHANGE,

Listing 4.5 Alert consumer—alert_consumer.py, start to finish

Notify
processors

ecode
essage

from
JSON

Transmit
email to
SMTP
server

Ackno
messa

Decode
message
from JSON

Ackno
mess

oker
tings

tablish
ection
broker

Declare the
exchange
 www.it-ebooks.info

http://www.it-ebooks.info/

72 CHAPTER 4 Solving problems with Rabbit: coding and patterns

Build que
and bind

for to
type="topic",
auto_delete=False)

channel.queue_declare(queue="critical", auto_delete=False)
channel.queue_bind(queue="critical",

exchange="alerts",
routing_key="critical.*")

channel.queue_declare(queue="rate_limit", auto_delete=False)
channel.queue_bind(queue="rate_limit",

exchange="alerts",
routing_key="*.rate_limit")

channel.basic_consume(critical_notify,
queue="critical",
no_ack=False,
consumer_tag="critical")

channel.basic_consume(rate_limit_notify,
queue="rate_limit",
no_ack=False,
consumer_tag="rate_limit")

print "Ready for alerts!"
channel.start_consuming()

You now have an elegant consumer that will translate alert AMQP messages into email
alerts targeted at different groups simply by manipulating the message tag. Adding
additional alert types and transmission methods is simple. All you need to do is create
a consumer callback to provide the new alert processing and connect it to a queue
that’s populated via a binding rule for the new alert type. Your consumer wouldn’t be
very useful without alerts for it to process. So let’s see what it takes to produce alerts
that your consumer can act on.

 Our goal when we started this section was to make producing alerts simple and
uncomplicated for existing apps. If you look at the following listing, you’ll see that,
though the consumer takes some 90 lines of code to process an alert, the alert itself
can be generated in less than 20 lines.

import json, pika
from optparse import OptionParser

opt_parser = OptionParser()
opt_parser.add_option("-r",

"--routing-key",
dest="routing_key",
help="Routing key for message " + \
" (e.g. myalert.im)")

opt_parser.add_option("-m",
"--message",
dest="message",
help="Message text for alert.")

args = opt_parser.parse_args()[0]

creds_broker = pika.PlainCredentials("alert_user", "alertme")

Listing 4.6 Alert generator example—alert_producer.py

ues
ings
pics

Make alert
processors

Read in command-
line arguments

Establish
connection
to broker
 www.it-ebooks.info

http://www.it-ebooks.info/

73Fire-and-forget models
conn_params = pika.ConnectionParameters("localhost",
 virtual_host = "/",
 credentials = creds_broker)
conn_broker = pika.BlockingConnection(conn_params)

channel = conn_broker.channel()

msg = json.dumps(args.message)
msg_props = pika.BasicProperties()
msg_props.content_type = "application/json"
msg_props.durable = False

channel.basic_publish(body=msg,
exchange="alerts",
properties=msg_props,
routing_key=args.routing_key)

print ("Sent message %s tagged with routing key '%s' to " + \
"exchange '/'.") % (json.dumps(args.message),

args.routing_key)

The sample producer can be run from the command line to generate alerts with any
contents and routing tags you like. The first part of the program simply extracts the
message and the routing key from the command line. From there you’re connecting
to the RabbitMQ broker identically to the way you did in the alert consumer. Where
things get interesting is when you publish the message:

msg = json.dumps(args.message)
msg_props = pika.BasicProperties()
msg_props.content_type = "application/json"
msg_props.durable = False

channel.basic_publish(body=msg,
exchange="alerts",
properties=msg_props,
routing_key=args.routing_key)

Five lines of code is all it takes for you to create the alert message and tag it with the
appropriate routing key (say, critical.mywebapp). After you JSON-encode the alert’s
message text, you create a BasicProperties object called msg_props. This is where
you can set the AMQP message’s optional content type header, and also where you’d
make the message durable if you wanted persistency. Finally, in one line of code you
publish the message to the alerts exchange with the routing key that classifies what
type of alert it is. Since messages with routing keys that don’t match any bindings will
be discarded, you can even tag alerts with routing keys for alert types you don’t sup-
port yet. As soon as you do support those alert types, any alert messages with those
routing keys will be routed to the right consumer. The last bit to note about the con-
sumer is the block_on_flow_control flag you’re passing to channel.basic_publish.
This tells Pika to hold off on returning from basic_publish if RabbitMQ’s flow con-
trol mechanism tells it to stop publishing. When RabbitMQ tells Pika it’s okay to pro-
ceed, it’ll finally return, allowing more publishing to occur. This makes your producer
play nicely with RabbitMQ so that if Rabbit becomes overloaded, it can throttle the

Publish alert
message to
broker
 www.it-ebooks.info

http://www.it-ebooks.info/

74 CHAPTER 4 Solving problems with Rabbit: coding and patterns
producer to slow it down. If you’re publishing alerts from another program that can’t
afford to be blocked, be sure to set block_on_flow_control to false.

 In only 100 lines of code total, you’ve given your web apps a flexible and scalable
way to issue alerts that then get transmitted asynchronously to their recipients. You’ve
also seen how beneficial the fire-and-forget messaging pattern can be when you need
to transmit information to be processed quickly but don’t need to know the result of
the processing. For example, you could easily extend the alert consumer to add an
additional processor that uses the binding pattern *.* to log a copy of all alerts to a
database. But alerting and logging are far from the only uses of the fire-and-forget
messaging pattern. Let’s look at an example where you need to perform CPU-intensive
processing on the contents of the message, and how RabbitMQ can help you move
that into an asynchronous operation.

4.2.2 Parallel processing

Say you started running your own social network website and you just deployed a shiny
new feature: picture uploads. People want to share their holiday pictures with friends
and family—perhaps you’ve seen this somewhere. Also, to improve the interaction
among users, you want to notify their friends when one of their contacts has uploaded
a new picture. A week after the new feature release, the marketing guys come to your
desk asking you to give some points to the users, a reward for the pictures they upload
to encourage them to keep submitting pictures and improve the activity on the site.
You agree and add a few lines of code, and now you hook a reward system into the
upload picture process. It looks a bit nasty for your coder eyes, but it’s working as
expected and the boss is happy with the results.

 Next month the bandwidth bill arrives and the ops guy is angry because the band-
width usage has doubled. The external API offered to clients is displaying full-size
images when it should be offering links to small thumbnails. So you’d better get your
uploading code generating those thumbnails too. What to do? The easy way would be
to add one more hook in there and execute the thumbnail generation directly from
the upload controller, but wait … If for every picture upload you have to execute a pic-
ture resize operation, this means the frontend web servers will get overloaded, so you
can’t just do that. And users of your website don’t want to wait for your picture pro-
cessing script to get a confirmation that their upload is okay. This means you need a
smarter solution, something that allows you to run tasks in parallel and in a different
machine than the one serving requests to the users.

 You can see that resizing a picture, rewarding the user, and notifying friends are
three separate tasks. Those tasks are independent in that they don’t have to wait for
each other’s results to be able to run, which means that you can refactor your code
not only to process the image resize separately, but also to do those other things in
parallel. Also, if you achieve such design, you can cope with new requirements easily.
You need to log every picture upload? You just add a new worker to do the logging,
and so on.
 www.it-ebooks.info

http://www.it-ebooks.info/

75Fire-and-forget models
 This sounds nice, almost like a dream, but all this parallelization stuff seems hard
to accomplish. How much do you have to code to achieve message multicast? Not
much; enter the fanout exchange.

 As we said when we described the exchange types, the fanout exchange will put a
copy of the message into the bound queues, as simple as that, and that’s what you
need for your upload picture module. Every time the user uploads a picture, instead
of doing all the processing work right away, you’ll publish a message with the picture
metainformation and then let your asynchronous workers do the rest in parallel. Rab-
bitMQ will ensure that each consumer gets a copy of the message. It’s the worker’s
duty to process it accordingly.

 The messages will contain the following metainformation about the picture: the
image ID of the picture, the user ID, and the path to locate the picture on the filesystem.
You’ll use JSON as the data exchange format. This will make it easier in the future if
you need to support several languages for the different tasks. Your messages will look
like this:

{
'image_id': 123456,
'user_id': 6543,
'image_path': '/path/to/pic.jpg'

}

Figure 4.4 shows that you’ll declare an upload-pictures exchange and will bind three
queues to it: resize-picture, add-points, and notify-friends. From this design you
can tell that adding a new kind of task, like logging, is just a matter of declaring a new
queue and binding it to the upload-pictures exchange. Your focus as developers will
be to code each of the workers and the publishing logic; RabbitMQ will do the rest.

Fanout
exchange

resize-picture add-pointsnotify-friends logs

Added later

New message

Added later

upload-pictures

image_id: 123456
image_path: pic.jpg
user_id: 123456

Picture upload

Figure 4.4 Uploading pictures
 www.it-ebooks.info

http://www.it-ebooks.info/

76 CHAPTER 4 Solving problems with Rabbit: coding and patterns

Publis
messag

Decla
que
So, let’s start by adding the publisher logic into the upload picture module, as in the
following listing. You omit the logic for taking the picture from the POST request and
moving it to some place on the filesystem.

<?php

$channel->exchange_declare('upload-pictures',
'fanout', false, true, false);

$metadata = json_encode(array(
'image_id' => $image_id,
'user_id' => $user_id,
'image_path' => $image_path
));

$msg = new AMQPMessage($metadata,
array('content_type' => 'application/json',

'delivery_mode' => 2));

$channel->basic_publish($msg, 'upload-pictures');
?>

Let’s see what you did here. The code for obtaining an AMQP channel isn’t present
since we covered that in previous examples. At B you declare the upload-pictures
exchange, with a fanout type and with durable properties. Then at C you create the
message metadata encoded as JSON. The $image_id, _$user_id, and $image_path
were initialized during the upload process. At D you create a new instance of the mes-
sage specifying the deliver_mode as 2 to make it persistent. Finally at E you publish
the message to the upload-pictures exchange. You don’t need to provide a routing
key since the messages will be fanned-out to all the bound queues.

 Next let’s create one of the consumers, the one for adding points to the users after
each upload. Check inside add-points-consumer.php for the complete code, since
the following listing omits bits that we’ve covered before, like including the AMQP
libraries or instantiating the connection and the channel.

<?php

$channel->exchange_declare('upload-pictures',
'fanout', false, true, false);

$channel->queue_declare('add-points',
false, true, false, false);

$channel->queue_bind('add-points', 'upload-pictures');

$consumer = function($msg){};

$channel->basic_consume($queue,
$consumer_tag,
false,

Listing 4.7 Upload pictures publisher

Listing 4.8 Add points consumer

Declare
exchange

B

Encode image
metadata as
JSON

C

Instantiate
AMQP

D

h
e

E

Declare
exchange

B

Cre
ue

Bind
queue

D

Code
omittedE
 www.it-ebooks.info

http://www.it-ebooks.info/

77Fire-and-forget models

Consu
call

g

Dec
J

meta
false,
false,
false,
$consumer);

?>

The code is straightforward. At B you declare the topic exchange as when publishing
the message; then at C you create the add-points queue where the message will be
delivered by RabbitMQ. You bind that queue at D to the exchange using the empty
routing key. At E you omit the code for your callback function for now; at F you
send the basic_consume command to prepare the consumer. You also omit the wait
loop and the channel and connection cleanup code. The following listing shows the
callback function.

<?php

function add_points_to_user($user_id){
echo sprintf("Adding points to user: %s\n", $user_id);

}

$consumer = function($msg){

if($msg->body == 'quit'){
$msg->delivery_info['channel']->

basic_cancel($msg->delivery_info['consumer_tag']);
}

$meta = json_decode($msg->body, true);

add_points_to_user($meta['user_id']);

$msg->delivery_info['channel']->
basic_ack($msg->delivery_info['delivery_tag']);

};

?>

In listing 4.9 you have the code for actually processing the message. At B you add a
dummy function that for now just echoes that it’s giving points to the user. In a real-
world application you’d include the logic for increasing the user points, say on a Redis
database. Then at C you define the consumer callback function. The tricky bit of
code at D is a hook to stop consuming messages. If the message body equals quit,
then you stop the consumer. This simple trick is sure to close the channel and the con-
nection in a clean way. Then at E you pass the message body to the json_decode
function to obtain the metadata. You give true as the second parameter to make sure
PHP will decode the JSON object as an associative array. At F you call the add_points
_to_user function, passing as parameters the user_id that you obtained from the
decoded message.

 Let’s test the implementation. You’ll just copy the code from the publisher and
modify the logic for creating the message to have a simple test script. In this case
you’ll take three arguments from the command line: image ID, user ID, and image path.

Listing 4.9 Add points callback function

Start
consuming
messages

F

Add points to
user function

B

Cmer
back

D Stop
consumin
messages

ode
SON
data

E

Process
data

F

Acknowledge
message
 www.it-ebooks.info

http://www.it-ebooks.info/

78 CHAPTER 4 Solving problems with Rabbit: coding and patterns
You’ll encode them and send them over RabbitMQ to the consumer that you created
before. We won’t explain the following listing because it’s the same as you saw before
in listing 4.7.

<?php
require_once('../lib/php-amqplib/amqp.inc');
require_once('../config/config.php');

$conn = new AMQPConnection(HOST, PORT, USER, PASS, VHOST);
$channel = $conn->channel();

$channel->exchange_declare('upload-pictures',
'fanout', false, true, false);

$metadata = json_encode(array(
'image_id' => $argv[1],
'user_id' => $argv[2],
'image_path' => $argv[3]

));

$msg = new AMQPMessage($metadata, array(
'content_type' => 'application/json',
'delivery_mode' => 2));

$channel->basic_publish($msg, 'upload-pictures');

$channel->close();
$conn->close();
?>

Save this code in a file called fanout-publisher.php and open two terminal windows.
In the first window, launch the add-points-consumer.php script:

$ php add-points-consumer.php

In the other window, execute the publisher, passing some random parameters to simu-
late a request:

$ php fanout-publisher.php 1 2 /path/to/pic.jpg

If everything went well, you can switch to the first terminal to see the following
message:

Adding points to user: 2

So far nothing impressive. Let’s add another consumer to see a fanout exchange and
parallel processing in action. Put the code from the following listing in the file
resize-picture-consumer.php.

<?php

require_once('../lib/php-amqplib/amqp.inc');
require_once('../config/config.php');

Listing 4.10 Upload pictures test

Listing 4.11 Resize picture consumer
 www.it-ebooks.info

http://www.it-ebooks.info/

79Fire-and-forget models
$conn = new AMQPConnection(HOST, PORT, USER, PASS, VHOST);
$channel = $conn->channel();

$channel->exchange_declare('upload-pictures',
'fanout', false, true, false);

$channel->queue_declare('resize-picture',
false, true, false, false);

$channel->queue_bind('resize-picture', 'upload-pictures');

$consumer = function($msg){

if($msg->body == 'quit'){
 $msg->delivery_info['channel']->

basic_cancel($msg->delivery_info['consumer_tag']);
}

$meta = json_decode($msg->body, true);

resize_picture($meta['image_id'], $meta['image_path']);

$msg->delivery_info['channel']->
basic_ack($msg->delivery_info['delivery_tag']);

};

function resize_picture($image_id, $image_path){
echo sprintf("Resizing picture: %s %s\n",

$image_id, $image_path);
}

$channel->basic_consume($queue,
$consumer_tag,
false,
false,
false,
false,
$consumer);

while(count($channel->callbacks)) {
$channel->wait();

}

$channel->close();
$conn->close();
?>

The code in listing 4.11 is basically the same from listing 4.8. The interesting bits are
at B and C where you create and bind the resize-picture to the upload-picture
exchange. You can see that this uses the same exchange as the previous example. As
always with AMQP, the messages are published to one exchange and then, depending
on the bindings, they can be routed to one or several queues (or none at all).

 The code continues straightforwardly; inside the consumer callback you call the
resize_picture D function passing the image_id and image_path that you got from
the metadata. Finally the function resize_picture E echoes a message to tell you
that it’s resizing the image. As before, on a real setup, here you’d want to have the
code to actually resize the image.

Declare resize
picture queueB

Bind queue
to exchangeC

Resize
pictureD

Resize
picture
function

E

 www.it-ebooks.info

http://www.it-ebooks.info/

80 CHAPTER 4 Solving problems with Rabbit: coding and patterns
 Now, open a third window on the terminal and type

$ php resize-picture-consumer.php

Then go back to the window where you have the publisher script and run it again:

$ php fanout-publisher.php 1 2 /path/to/pic.jpg

If everything went fine, then you should see on each consumer window the following
messages:

Adding points to user: 2

and

Resizing picture: 1 /path/to/pic.jpg

Based on the examples from the add points to user consumer, you can see that if you
integrate RabbitMQ into your solution, then scaling the code to new requirements is
simple. To add the image resize consumer you just need a function that’s based on the
image ID and path, and is able to load the picture from the filesystem, resize it (prob-
ably using some tool like Imagemagick), and then update the record on the database
based on the image ID. The same goes for notifying the user’s friends. Taking the user
ID as a parameter, you can retrieve the user’s contacts from the database and then
send a notification, perhaps in the form of an email, to each of those friends.

 What you can learn from this example is that the power of messaging with
RabbitMQ resides in how you combine exchanges and queues together. If you need
some way to filter out messages, then you can use a topic exchange as in the previous
section. Does one action in your application trigger several others that can run in par-
allel? Then use topic exchanges. If you want to “spy” on a flow of messages and then
quit without leaving traces, then use anonymous queues set to be autodeleted. Once
you get used to thinking about messaging patterns, you’ll start seeing how simple
some programming tasks can become.

 But the advantages of this design over the one where everything happens in the
same module don’t stop here. Imagine now that the pictures are being resized too
slowly; you need more computing power and you don’t want to change the code.
That's easy to solve. You can launch more consumer processes and RabbitMQ will take
care of distributing the messages accordingly. Even if they’re on different machines,
it’s no problem. Try to imagine now how you’d scale the original code, where every-
thing happened sequentially while you were serving the request to the user. As you
saw, parallel processing with RabbitMQ is simple.

4.3 Remember me: RPC over RabbitMQ
and waiting for answers
There are many ways of doing remote procedure calls (RPC)—everything from UNIX
RPC to REST APIs and SOAP. What all of these traditional methods of RPC have in com-
mon is a tight linkage between the client and server. The client directly connects to
 www.it-ebooks.info

http://www.it-ebooks.info/

81Remember me: RPC over RabbitMQ and waiting for answers
the server, makes a request, and then blocks, waiting for a response from the server.
This model has a lot of benefits in that its point-to-point nature makes the topology
simple at small scale. But that simple topology also limits its flexibility and increases its
complexity when it becomes time to scale up. For example, how do your clients dis-
cover where to find servers with the services they want when there are multiple serv-
ers? SOAP and most enterprise RPCs have come up with complex supplementary
protocols and service directories that layer on additional complexity and points of fail-
ure, all in the name of being able to serve APIs from multiple RPC servers without tight
coupling between the clients and the server. Also, what happens if the RPC server your
client is talking to crashes? It’s up to the client to reconnect, and if the server is com-
pletely down, to rediscover a new server offering the same services—and the client still
has to retry the API call once all that’s done.

 What if, instead of complex directories and multiple protocols, you could do RPC
over one protocol? What if your client could issue an API call without worrying about
which server was going to serve it, and what to do if the server failed? Using an MQ
broker to do RPC can give you all of these things. When you use RabbitMQ for RPC,
you’re simply publishing a message. It’s up to RabbitMQ to use bindings to route the
message to the appropriate queue where it’ll be consumed by the RPC server.
RabbitMQ does all the hard work of getting the message to the right place, load bal-
ancing RPC messages across multiple RPC servers, and even retasking an RPC message
to another server when the server it was assigned to crashes. All of this without compli-
cated WS-* protocols, or any routing intelligence on the part of the client. The ques-
tion is, how do you get replies back to the client? After all, your experience so far with
RabbitMQ has been fire-and-forget.

4.3.1 Private queues and sending acknowledgements

Since AMQP messages are unidirectional, how can an RPC server reply back to the
original client with a result? With RabbitMQ in the middle, the RPC server doesn’t
even know the identity of the calling client unless there’s an application-specific ID in
the message payload. Thankfully, the guys at RabbitMQ have an elegant solution: use
messages to send replies back. On every AMQP message header is a field called
reply_to. Within this field the producer of a message can specify the queue name
they’ll be listening to for a reply. The receiving RPC server can then inspect this
reply_to field and create a new message containing the response with this queue
name as the routing key.

 You might be saying yourself, “That sounds like a lot of work to create a unique
queue name every time. How do we keep other clients from reading the replies?”
Once again, RabbitMQ rides to the rescue. You might remember from chapter 1 that
if you declare a queue with no queue name, RabbitMQ will assign one for you. This
name happens to be a unique queue name, and when declared with the exclusive
parameter ensures that only you can read from the queue. All your RPC clients have to
do is declare a temporary, exclusive, anonymous queue, and include the name of that
 www.it-ebooks.info

http://www.it-ebooks.info/

82 CHAPTER 4 Solving problems with Rabbit: coding and patterns
queue in the reply_to header of their RPC message, and the server now has a place to
send the response. Note that we didn’t say anything about binding the reply queue to
an exchange. This is because when the RPC server publishes its reply message to
RabbitMQ without an exchange specified, RabbitMQ knows that it’s targeted for a
reply queue and that the routing key is the queue’s name.

 Enough talk; let’s look at how you get RPC working with RabbitMQ in real code.

4.3.2 Simple JSON RPC with reply_to

The first thing you need is an RPC server. Before we dive into the code, it might help
to take a look at the flow of your RPC client and server, shown in figure 4.5.

 In the following listing you’ll build a simple API server that implements a ping call.
This call’s only function is to receive the ping invocation from the client, and send a
Pong! reply with the timestamp included by the client in the original call.

API client

RabbitMQ

ping

API server

ping

amq.gen-9ith
1Dx...

amq.gen-9ith1Dx...

Pong!
reply_callback

rate_limit_notify

ping

amq.gen-9ith
1Dx...

Figure 4.5 RPC client and server flow
 www.it-ebooks.info

http://www.it-ebooks.info/

83Remember me: RPC over RabbitMQ and waiting for answers

Esta
conne

to b

import pika, json

creds_broker = pika.PlainCredentials("rpc_user", "rpcme")
conn_params = pika.ConnectionParameters("localhost",
 virtual_host = "/",
 credentials = creds_broker)
conn_broker = pika.BlockingConnection(conn_params)
channel = conn_broker.channel()

channel.exchange_declare(exchange="rpc",
type="direct",
auto_delete=False)

channel.queue_declare(queue="ping", auto_delete=False)
channel.queue_bind(queue="ping",

exchange="rpc",
routing_key="ping")

def api_ping(channel, method, header, body):
"""'ping' API call."""
channel.basic_ack(delivery_tag=method.delivery_tag)
msg_dict = json.loads(body)
print "Received API call...replying..."
channel.basic_publish(body="Pong!" + str(msg_dict["time"]),

exchange="",
routing_key=header.reply_to)

channel.basic_consume(api_ping,
queue="ping",
consumer_tag="ping")

print "Waiting for RPC calls..."
channel.start_consuming()

We’ve covered the setup and connection to RabbitMQ, so let’s skip forward to the
interesting part where the exchange and queues for receiving the API calls are created:

channel.exchange_declare(exchange="rpc",
type="direct",
auto_delete=False)

channel.queue_declare(queue="ping", auto_delete=False)
channel.queue_bind(queue="ping",

exchange="rpc",
routing_key="ping")

What you’ve done here is set up a typical direct exchange and created a queue and
binding. For the API, you’re following a pattern where the name of the RPC function
call is what you use as the binding pattern (and queue name for those calls). In this
case, the ping API call is created by binding the ping queue to the rpc exchange using
ping as the binding pattern. All your clients need to do is put ping as their routing key
and their arguments into the message body. You could also use more complex routing
of RPC requests by using a topic exchange. Next you need to set up your consumer
subscription:

Listing 4.12 API server—rpc_server.py

blish
ction
roker

Declare
exchange
and ping
call queue

Wait for RPC
calls and reply
 www.it-ebooks.info

http://www.it-ebooks.info/

84 CHAPTER 4 Solving problems with Rabbit: coding and patterns

Esta
conne

to b
def api_ping(channel, method, header, body):
"""'ping' API call."""
channel.basic_ack(delivery_tag=method.delivery_tag)
msg_dict = json.loads(body)
print "Received API call...replying..."
channel.basic_publish(body="Pong!" + str(msg_dict["time"]),

exchange="",
routing_key=header.reply_to)

channel.basic_consume(api_ping,
queue="ping",
consumer_tag="ping")

api_ping will now be invoked every time a message is assigned to you by RabbitMQ via
the ping queue. All of this is similar to what you’ve done so far in the book. What
you’ll notice is different is the basic_publish command you issue after acknowledg-
ing the call message. Wait a minute! How are you able to publish a reply on the same
channel you were consuming on? Didn’t we say that was impossible?! Actually, in this
case it’s possible because the Pika library won’t start consuming again until your
api_ping function returns. More important to focus on is the configuration of the
basic_publish command. It’s using the reply_to from the header as the routing key
for the reply message. Also, unlike any other publish you’ll ever do with RabbitMQ,
there’s no exchange you’re publishing to. Those are the only two special components
you need to know about making RPC work over Rabbit: publish the reply using the
reply_to as the target, and publish without an exchange specification.

 How about the RPC client? What does it look like and how do you set up your reply
queue? Let’s take a peek at the following listing.

import time, json, pika

creds_broker = pika.PlainCredentials("rpc_user", "rpcme")
conn_params = pika.ConnectionParameters("localhost",
 virtual_host = "/",
 credentials = creds_broker)
conn_broker = pika.BlockingConnection(conn_params)
channel = conn_broker.channel()

msg = json.dumps({"client_name": "RPC Client 1.0",
"time" : time.time()})

result = channel.queue_declare(exclusive=True, auto_delete=True)
msg_props = pika.BasicProperties()
msg_props.reply_to=result.method.queue

channel.basic_publish(body=msg,
exchange="rpc",
properties=msg_props,
routing_key="ping")

print "Sent 'ping' RPC call. Waiting for reply..."

def reply_callback(channel, method, header, body):
"""Receives RPC server replies."""

Listing 4.13 API client—rpc_client.py

blish
ction
roker

Issue RPC
call and
wait for
reply
 www.it-ebooks.info

http://www.it-ebooks.info/

85Remember me: RPC over RabbitMQ and waiting for answers
print "RPC Reply --- " + body
channel.stop_consuming()

channel.basic_consume(reply_callback,
queue=result.method.queue,
consumer_tag=result.method.queue)

channel.start_consuming()

The heart of making RPC work on the client side is this bit here:

result = channel.queue_declare(exclusive=True, auto_delete=True)
msg_props = pika.BasicProperties()
msg_props.reply_to=result.queue

In those three lines you create your reply queue and set the reply_to header on the
message to the name of the new queue. When you declare the reply queue, make sure
to set exclusive=True and auto_delete=True. This ensures that no one else can pil-
fer your messages (though the queue name created by Rabbit is unique), and that
when you disconnect from the queue after receiving your reply, the queue will be
automatically deleted by Rabbit. All that’s left is to publish the API call message and
subscribe your callback function to the reply queue:

channel.basic_publish(body=msg,
exchange="rpc",
properties=msg_props,
routing_key="ping")

print "Sent 'ping' RPC call. Waiting for reply..."

def reply_callback(channel, method, header, body):
"""Receives RPC server replies."""
print "RPC Reply --- " + body
channel.stop_consuming()

channel.basic_consume(reply_callback,
queue=result.method.queue,
consumer_tag=result.method.queue)

There’s nothing magical about that. Once you have the reply queue set up, you can
consume from it like any other queue. Just be sure not to start consuming from the
queue until after you publish your API call message. Otherwise, the channel will be in
consume mode and you’ll get an error when you try to publish. So what does it look
like on the client and server sides when you run your RPC app?

Client) Sent 'ping' RPC call. Waiting for reply...
Server) Received API call...replying...
Client) RPC Reply --- Pong! (Client Name: RPC Client 1.0)

(RPC Call Issued Time: 1288111236.43)

You can see that the server’s reply really was based on the client’s call because the
timestamp included in the server’s reply is the one that was in the body of the client’s
call message. From here you can easily extend the API by creating new queues and
bindings for new API methods. The best part is there’s no reason why any one RPC
 www.it-ebooks.info

http://www.it-ebooks.info/

86 CHAPTER 4 Solving problems with Rabbit: coding and patterns
server needs to respond to all of the API calls. You could easily write a new RPC server
that performs image processing, for example, and run it even on a different physical
box than the ping API server. Your clients won’t know the difference, and you’re free
to scale your APIs any way you see fit. RabbitMQ does the magic of making it all act
like one API fabric. No special protocols. No service directories.

4.4 Summary
In this chapter we’ve covered the fundamental ways of writing apps that take advan-
tage of RabbitMQ and the messaging patterns behind them. We’ve discussed every-
thing from fire-and-forget patterns, like alerting and image processing, to true
bidirectional communication powering RPC APIs. With these fundamental messaging
architectures under your belt you’re free to start designing your own sophisticated
patterns that combine the fundamentals into unique solutions that accomplish your
specific goals. Now that you’re starting to build RabbitMQ into the heart of your appli-
cation architecture, it’s time we looked at how to run RabbitMQ in resilient configura-
tions that ensure it’s always available when your apps need it.
 www.it-ebooks.info

http://www.it-ebooks.info/

Clustering and dealing
with failure
So you just finished your phenomenal new web app powered by RabbitMQ’s queu-
ing magic. The user interface displays real-time notifications fed from your back-
end API, and Rabbit is routing to each API client only the notifications they’re inter-
ested in. Everything looks great, and Rabbit has made you look like a programming
guru to your boss. Time to deploy to production; you can just throw up a RabbitMQ
instance on a production server and call it a day, right? Not so fast. Your real-time
magic may look great to your customers now, but what happens when your Rab-
bitMQ server has its memory corrupted, or the server loses a power supply? Your
high-performance app just became the company’s black eye—and your problem.
Guess it’s time we talked about making RabbitMQ resilient to failure, so when

This chapter covers
 Architecture of a RabbitMQ cluster

 Setting up a cluster on your laptop

 Creating a cluster with physical servers

 Upgrading cluster nodes

 Working with mirrored queues
87

 www.it-ebooks.info

http://www.it-ebooks.info/

88 CHAPTER 5 Clustering and dealing with failure
Murphy’s Law wreaks havoc with your apps, you can trust RabbitMQ to keep chugging
as the heart of your application.

 There are two sides to making RabbitMQ highly available. One is setting up your
Rabbits so that you can survive the failure of any one Rabbit and your applications can
keep functioning without a hiccup. The other side is dealing with performance as your
application scales. A single RabbitMQ instance maybe able to handle the message
throughput generated by your Chihuahua walking service today, but what happens
when you hit 1,000,000 dog walking requests a second? You’re going to need a cluster
of Rabbits to keep your applications humming along. Luckily, RabbitMQ comes with
built-in clustering that can satisfy both problems and make sure your app always has a
Rabbit to talk to, no matter whether server failure or massive success hits you. We’re
going to cover RabbitMQ’s amazing clustering in this chapter. By the time we’re done
you’ll understand how a cluster works under the hood, and how to create them in envi-
ronments ranging from a small cluster on your development laptop to a real multi-
server cluster in production. You’ll even know how to upgrade your cluster when new
versions of Rabbit come out. Enough talking about it; let’s dive in and see how you can
take a few Rabbits and turn them into a fire-breathing, message-passing cluster!

5.1 Batteries included: RabbitMQ clustering
One of RabbitMQ’s best features is its built-in clustering. This sets it apart from almost
every other open source messaging broker, and the fact that you can have a cluster up
and running in 5 minutes sets it apart from every broker period. Start with one Rabbit
today and add more Rabbits on-the-fly with zero downtime to add high availability or
more performance. But RabbitMQ clustering isn’t a complete panacea. So what does
RabbitMQ clustering give you?

 The clustering built in to RabbitMQ was designed with two goals in mind: allowing
consumers and producers to keep running in the event one Rabbit node dies, and lin-
early scaling messaging throughput by adding more nodes. RabbitMQ adeptly satisfies
both requirements by leveraging the Open Telecom Platform (OTP) distributed communi-
cation framework provided by Erlang. You can lose a RabbitMQ node and your appli-
cations can reconnect to any other node in the cluster and continue producing and
consuming as if nothing had happened. Similarly, if your Rabbit cluster is straining
under the load of your messaging volume, adding more nodes will linearly add capac-
ity to add more performance. What RabbitMQ clustering doesn’t necessarily do is pro-
vide guarantees against message loss.

 Even if you do everything right (set your messages, queues, and exchanges to dura-
ble, and so forth), when a Rabbit cluster node dies, the messages in queues on that
node can disappear. This is because RabbitMQ doesn’t replicate the contents of
queues throughout the cluster by default. Without specific configuration, they live
only on the node that owns the queue. Wait a minute … you mean queues only live on
one node in the cluster? Yes and no. To get a better understanding, let’s take a look at
the architecture of a RabbitMQ cluster.
 www.it-ebooks.info

http://www.it-ebooks.info/

89Architecture of a cluster
5.2 Architecture of a cluster
Up to this point we’ve been vague about the internals of RabbitMQ. Sure, you know
what queues and exchanges are—how to bind them together and why you’d want to
use the various types. But what’s really going on under the covers? How does
RabbitMQ keep track of all the various primitives you’re using and how they fit
together to give you a messaging broker?

 At all times RabbitMQ is keeping track of four kinds of internal metadata:

 Queue metadata—Queue names and their properties (are they durable or auto-
delete?)

 Exchange metadata—The exchange’s name, the type of exchange it is, and what
the properties are (durable and so on)

 Binding metadata—A simple table showing how to route messages to queues
 Vhost metadata—Namespacing and security attributes for the queues, exchanges,

and bindings within a vhost

With a single node, RabbitMQ stores all of this information in memory while writing it
to disk for any queues and exchanges (and their bindings) marked durable. Writing it
to disk is what ensures that your queues and exchanges will be re-created when you
restart a RabbitMQ node. When you add clustering into the mix, RabbitMQ now has
to keep track of a new type of metadata: cluster node location and the nodes’ relation-
ships to the other types of metadata already being tracked. Clustering also adds the
choice about whether to store metadata on disk (the default in a standalone node) or
in RAM only. But before we dive into cluster nodes and how they store their metadata,
you should first understand how queues and exchanges behave in a cluster.

5.2.1 Queues in a cluster

The minute you join one node to another to form a cluster, something dramatically
changes: not every node has a full copy of every queue. In a single node setup, all of
the information about a queue (metadata, state, and contents) is fully stored in that
node (see figure 5.1). But in a cluster when you create queues, the cluster only creates
the full information about the queue (metadata, state, contents) on a single node in
the cluster1 rather than on all of them (queues are created on the node to which the
client declaring the queue is connected). The result is that only the owner node for a
queue knows the full information about that queue. All of the non-owner nodes only
know the queue’s metadata and a pointer to the node where the queue actually lives.
So when a cluster node dies, that node’s queues and associated bindings disappear.
Consumers attached to those queues lose their subscriptions, and any new messages
that would’ve matched that queue’s bindings become black-holed.

1 RabbitMQ 2.6.0 and newer provide mirrored queues that allow queue contents to survive cluster node failure.
We’ll cover mirrored queues in their own section in this chapter.
 www.it-ebooks.info

http://www.it-ebooks.info/

90 CHAPTER 5 Clustering and dealing with failure
Not to worry: you can have your consumers reconnect to the cluster and recreate the
queues, right? Only if the queues weren’t originally marked durable. If the queues
being re-created were marked as durable, redeclaring them from another node will
get you an ugly 404 NOT_FOUND error. This ensures messages in that queue on the
failed node don’t disappear when you restore it to the cluster. The only way to get that
specific queue name back into the cluster is to actually restore the failed node. But if
the queues your consumers try to re-create are not durable, the redeclarations will suc-
ceed and you’re ready to rebind them and keep trucking. The nagging question is,
why doesn’t RabbitMQ replicate queue contents and state across all nodes by default?
There are two reasons:

1 Storage space—If every cluster node had a full copy of every queue, adding nodes
wouldn’t give you more storage capacity. For example, if one node could store
1 GB of messages, adding two more nodes would just give you two more copies
of the same 1 GB of messages.

2 Performance—Publishing messages would require replicating those messages to
every cluster node. For durable messages, that would require triggering disk
activity on all nodes for every message. Your network and disk load would
increase every time you added a node, keeping the performance of the cluster
the same (or possibly worse).

Cluster

RabbitMQ
standalone

node

Queue 1
contents

Queue 1
metadata

RabbitMQ
node

Queue 1
metadata

RabbitMQ
node

Queue 1
metadata

Queue 1
contents

RabbitMQ
node

Queue 1
contents

Queue 1
metadata

Queue 1
metadata

queue name
durable?

auto-delete?
owner node

Figure 5.1 Queue behavior in standalone and cluster configurations
 www.it-ebooks.info

http://www.it-ebooks.info/

91Architecture of a cluster
By making only one node in a cluster responsible for any particular queue, only the
responsible node experiences disk activity for that queue’s messages. All of the other
nodes need to pass the messages they receive for that queue to its owner node. As a
result, adding more nodes to a Rabbit cluster means you have more nodes across
which to spread queues, giving you an increase in performance for every node you
add. This makes RabbitMQ clustering excellent for scaling up as your load increases.
You might be wondering whether exchanges play by the same rules. They don’t, and
the reason is because exchanges are a figment of your imagination.

5.2.2 Distributing exchanges

Up to now we’ve always described exchanges as if they were a living entity like queues.
The truth is that, unlike queues which get their own process, exchanges are just a
name and a list of queue bindings. When you publish a message “into” an exchange,
what really happens is the channel you’re connected to compares the routing key on
the message to the list of bindings for that exchange, and then routes it. The channel
does the actual routing of the message to the queue as specified by the matching bind-
ing. Why does this matter? It’s important to understand that the channel is the actual
router because that explains why exchanges don’t suffer from the same limitations as
queues in a cluster.

NOTE The way to understand how message routing works under the hood in
RabbitMQ is to think of every queue being a running process on a node
where each process has its own process ID (PID). Exchanges are simply a list
of routing patterns and the queue process IDs where matching messages
should be sent. When you publish a message that matches a binding in an
exchange, the channel is actually what does the matching, and once matched
establishes a connection to the queue PID and transfers the message to it. The
process ID of the queue is essentially its Erlang address in the cluster.

Since an exchange is simply a lookup table rather than the actual router of messages,
it’s much easier to replicate exchanges throughout the cluster (see figure 5.2). For
example, when you create a new exchange, all RabbitMQ has to do is add that lookup
table to all of the nodes in the cluster. Every channel on every node then has access to
the new exchange. So where the full information about a queue is by default on a sin-
gle node in the cluster, every node in the cluster has all of the information about every
exchange. For availability this is great, because it means you don’t have to worry about
redeclaring an exchange when a node goes down. Just have your producers on the
failed node reconnect to the cluster and they can begin publishing immediately into
the exchange. But what happens to messages that have been published into a channel
but haven’t finished routing yet when the node fails?

 The basic.publish AMQP command doesn’t return the status of the message.
This means the channel might still be routing the message when the channel’s node
fails, though your producer has moved on to creating the next message. In this situa-
tion you risk losing those messages. The solution is to use an AMQP transaction, which
 www.it-ebooks.info

http://www.it-ebooks.info/

92 CHAPTER 5 Clustering and dealing with failure
blocks until the message is routed to a queue, or to use publisher confirms to keep track
of which messages are still unconfirmed when the connection to a node dies. Both
solutions will also help you detect when a message is unroutable because a node has
failed and the queue it’s destined for no longer exists. When combined with the fact
that exchanges are fully replicated throughout the cluster, transactions and publisher
confirms can help ensure your apps can keep publishing and never lose a message.

 Now that you understand how queues and exchanges behave in a cluster, it’s time
to look at how RabbitMQ keeps track of them all and the nodes powering them.

5.2.3 Am I RAM or a disk?

Every RabbitMQ node, whether it’s a single node system or a part of a larger cluster, is
either a RAM node or a disk node. A RAM node stores all of the metadata defining the
queues, exchanges, bindings, users, permissions, and vhosts only in RAM, whereas a
disk node also saves the metadata to disk (see figure 5.3). Single-node systems are only
allowed to be disk nodes; otherwise every time you restarted RabbitMQ it would forget
all of the configuration of the system. But in a cluster, you can choose to configure
some of your nodes as RAM nodes. Why would you want to only store metadata in
RAM? Because it makes operations like queue and exchange declarations faster.

 When you declare a queue, exchange, or binding in a cluster, the operation won’t
return until all of the cluster nodes have successfully committed the metadata
changes. For a RAM node, this means writing the changes into memory, but for a disk
node this means an expensive disk write that must complete before the node can say
“I’ve got it!” If you had a five-node cluster and all of the nodes were disk nodes, you’d
have to wait for all five nodes to write the metadata to disk before a queue declaration
could return. For a broker where the queues are long-lived that isn’t a big deal. But

RabbitMQ
cluster

Queue 1 metadata

RabbitMQ
cluster

Queue 1 metadata

RabbitMQ
cluster

Queue 1 contents

Queue 1 metadata

Exchange A
routing_key1
routing_key 2
routing_key 3

Exchange A
routing_key1
routing_key 2
routing_key 3

Exchange A
routing_key1
routing_key 2
routing_key 3

replicate
exchange
metadata

replicate

queue

metadata

Figure 5.2 Exchange and queue
distribution in a cluster
 www.it-ebooks.info

http://www.it-ebooks.info/

93Architecture of a cluster
what if you’re doing heavy RPC? If every RPC client is creating and destroying hun-
dreds of reply queues every second, you start to see where disk nodes can kill perfor-
mance. So how do you balance the performance of RAM nodes against the need to
have some disk nodes that allow the cluster configuration to survive cluster restarts?

 RabbitMQ only requires that one node in a cluster be a disk node. Every other
node can be a RAM node. Keep in mind that when nodes join or leave a cluster, they
need to be able to notify at least one disk node of the change. If you only have one
disk node and that node happens to be down, your cluster can continue to route mes-
sages but you can’t do any of the following:

 Create queues
 Create exchanges
 Create bindings
 Add users
 Change permissions
 Add or remove cluster nodes

In other words, your cluster can keep running if its sole disk node is down but you’ll be
unable to change anything until you can restore that node to the cluster. The solution
is to make two disk nodes in your cluster so at least one of them is available to persist
metadata changes at any given time. The only operation all of the disk nodes need to
be online for is adding or removing cluster nodes. When RAM nodes restart, they con-
nect to the disk nodes they’re preconfigured with to download the current copy of the
cluster’s metadata. If you only tell a RAM node about one of your two disk nodes and
that disk node is down when the RAM node’s power cable gets knocked loose, the RAM
node won’t be able to find the cluster when it reboots. So when you join RAM nodes,
make sure they’re told about all of your disk nodes (the only metadata RAM nodes

RabbitMQ
disk node

queue.declare
my_queue

Store

my_queue

Store my_queue

RAM

Disk

RabbitMQ
RAM node

queue.declare
my_queue

Store
my_queue

RAM

definition

definition

definition

Figure 5.3 Metadata writes
in RAM and disk nodes
 www.it-ebooks.info

http://www.it-ebooks.info/

94 CHAPTER 5 Clustering and dealing with failure
store to disk are the addresses of disk nodes in the cluster). As long as the RAM node
can find at least one disk node, it can restart and happily rejoin the cluster.

 Enough theory. Let’s put a cluster together!

5.3 Setting up a cluster on your laptop
Understanding how RabbitMQ handles clustering internally is the hard part; setting a
cluster up is easy! It’s so easy that you can set up a fully functional cluster on your
development system. This is great because it means that as you write your code, you
can test failure scenarios and see how they’ll actually be handled in production. From
chapter 1 you should already have a RabbitMQ node installed on your development
machine. Before you start configuring your cluster you first need to make sure that
your existing Rabbit node is not running. To stop the node, change to your RabbitMQ
installation’s directory and run sbin/rabbitmqctl stop.2 You should see a message
like this to tell you that the node is stopped:

Stopping and halting node rabbit@Phantomedone.

Now that the node is stopped, you can bootstrap the cluster. Normally you’d start a
node using the rabbitmq-server command and call it a day. But without any addi-
tional arguments, this command will default the Rabbit node to use the node name
rabbit and 5672 for the listener port. If you were to try to start three nodes on the
same machine this way, the second and third nodes would crash on startup due to
node name and port collisions. The way we’ll work around this is by using the
RABBITMQ_NODENAME and RABBITMQ_NODE_PORT environment variables to specify
unique settings for the node name and port before every invocation of rabbitmq-
server. In this case, you’ll start the ports at 5672 and increment by one for every node
you start. Similarly, the first node will be named rabbit but the second and third
nodes will be named rabbit_1 and rabbit_2. You can use different node names and
ports as long as they’re unique for each node. Let’s spin up three nodes on your devel-
opment system and get started, as in the following listing (make sure to remove [pre-
2.7.0] or disable [2.7.0 and later] any plugins in your RabbitMQ install first).

NOTE We haven’t talked about RabbitMQ plugins yet, but it’s possible that
you’ve enabled a few by now. If you have, you’ll want to disable those before
starting the cluster nodes. This is because plugins like the RabbitMQ manage-
ment plugin will listen on dedicated ports to provide their services (like a web
UI for the management plugin). We haven’t covered yet how to tell some
plugins to listen on alternate ports, so when your second and subsequent
nodes start their plugins, they’ll clash with the ones running on the first node
and the nodes will crash.

2 It’s also possible to configure cluster membership using the RabbitMQ central config file instead of
rabbitmqctl. We won’t cover this method as it can be error-prone and difficult to debug.
 www.it-ebooks.info

http://www.it-ebooks.info/

95Setting up a cluster on your laptop
$ RABBITMQ_NODE_PORT=5672 RABBITMQ_NODENAME=rabbit \
./sbin/rabbitmq-server -detached

Activating RabbitMQ plugins ...
0 plugins activated:

$ RABBITMQ_NODE_PORT=5673 RABBITMQ_NODENAME=rabbit_1 \
./sbin/rabbitmq-server -detached

Activating RabbitMQ plugins ...
0 plugins activated:

$ RABBITMQ_NODE_PORT=5674 RABBITMQ_NODENAME=rabbit_2 \
./sbin/rabbitmq-server -detached

Activating RabbitMQ plugins ...
0 plugins activated:

You’ll now have three Rabbit nodes running on your development system called
rabbit, rabbit_1, and rabbit_2 (each will have the system’s hostname appended at
the end with an @). But each is still a standalone node with its own metadata and no
idea that the others exist. The first node of a cluster is the one that brings the initial
metadata into the cluster and doesn’t need to be told to join. Rather, the second and
subsequent nodes are joined to it and acquire its metadata. To join the second and third
nodes, you first need to stop the RabbitMQ app running on their Erlang nodes and
reset (empty) their metadata so they can be joined and acquire the metadata of the clus-
ter. The rabbitmqctl utility will let you communicate with each node and accomplish
each of these tasks. Start by stopping the RabbitMQ app on the second node:

$./sbin/rabbitmqctl -n rabbit_1@Phantome stop_app
Stopping node rabbit_1@Phantome ...
...done.

Next, you need to reset the second node’s metadata and state to be empty:

$./sbin/rabbitmqctl -n rabbit_1@Phantome reset
Resetting node rabbit_1@Phantome ...
...done.

Now that you have a stopped (and empty) Rabbit app, you’re ready to join it to the
first cluster node:

$./sbin/rabbitmqctl -n rabbit_1@Phantome cluster rabbit@Phantome \
rabbit_1@Phantome

Clustering node rabbit_1@Phantome with [rabbit@Phantome,
rabbit_1@Phantome] ...

...done.

Finally you can start the second node’s app again so it can start being a functioning
member of the cluster:

$./sbin/rabbitmqctl -n rabbit_1@Phantome start_app
Starting node rabbit_1@Phantome ...
...
broker running
...done.

Listing 5.1 Starting a three-node cluster on your development system
 www.it-ebooks.info

http://www.it-ebooks.info/

96 CHAPTER 5 Clustering and dealing with failure
You may have noticed that when you issued the cluster command to the second node
you got the response Clustering node rabbit_1@Phantome with [rabbit@Phan-
tome,rabbit_1@Phantome]. That’s odd; besides the first node you’re also clustering
the second node with itself? That’s right and the reason is because you want rabbit_1
to be a disk node. When you join a new node to a cluster, you have to list all of the disk
nodes in the cluster as arguments to the cluster command. This is how a RAM node
knows where to get its initial metadata and state if it reboots. If one of the disk nodes
you’re telling the new node about is itself, rabbitmqctl is smart enough to realize that
you want the new node to also be a disk node. The other key piece of information you
passed to rabbitmqctl is the -n rabbit_1@Phantome argument. This tells rabbit-
mqctl that you want it to execute the command you’re specifying against a node other
than the default node (rabbit@). You can use the -n argument to specify any Rab-
bitMQ node either on your development system or on any other system reachable
from your network.

NOTE Remember that the way Erlang nodes authenticate that they’re allowed
to talk to each other is via their Erlang cookie. Since rabbitmqctl uses the
Erlang OTP communication mechanism to talk to the Rabbit nodes, the
machine you’re running rabbitmqctl on and the Rabbit nodes you want to
talk to must be using the same Erlang cookie. Otherwise you’ll get an error.

At this point you have a two-node Rabbit cluster running on your development system
along with a third standalone Rabbit node waiting to be clustered. Let’s not leave that
third node standing out in the cold! Joining the third node, as shown in the following
listing, is almost identical to joining the second node.

$./sbin/rabbitmqctl -n rabbit_2@Phantome stop_app
Stopping node rabbit_2@Phantome ...
...done.
$./sbin/rabbitmqctl -n rabbit_2@Phantome reset
Resetting node rabbit_2@Phantome ...
...done.
$./sbin/rabbitmqctl -n rabbit_2@Phantome cluster rabbit@Phantome \

rabbit_1@Phantome
Clustering node rabbit_2@Phantome with [rabbit@Phantome,

rabbit_1@Phantome] ...
...done.
$./sbin/rabbitmqctl -n rabbit_2@Phantome start_app
Starting node rabbit_2@Phantome ...
...
broker running
...done.

When you ran the same commands to join the third node, all that changed was the
-n argument to specify the third node. You may also notice that you specified rab-
bit and rabbit_1 as arguments to the cluster command but not rabbit_2. As a

Listing 5.2 Joining the third node to the cluster
 www.it-ebooks.info

http://www.it-ebooks.info/

97Distributing the nodes to more machines
result, rabbit_2 will know about the two disk nodes in your cluster, but won’t be a
disk node itself. Instead, by not specifying it as an argument, rabbit_2 will become
a RAM node.

 With all of your nodes running and successfully clustered, let’s look at your handi-
work and ask rabbitmqctl what your cluster looks like:

$./sbin/rabbitmqctl cluster_status
Cluster status of node rabbit@Phantome ...
[{nodes,[{disc,[rabbit2@Phantome,rabbit@Phantome]}]},
{running_nodes,[rabbit2@Phantome,rabbit@Phantome]}]

...done.

The important part is the nodes section:

{nodes,[{disc,[rabbit_1@Phantome,rabbit@Phantome]},
{ram,[rabbit_2@Phantome]}]},

rabbitmqctl is telling you that three nodes are joined to your cluster:

 Two disk (“disc”) nodes: rabbit and rabbit_1
 One RAM node: rabbit_2

The running_nodes section tells you which of those cluster nodes is currently run-
ning. Right now you could connect to any of the three running_nodes and start creat-
ing queues, publishing messages, or performing any of the other AMQP tasks you’ve
worked with up to this point. But before you start using the cluster to learn how to
write programs that can reconnect and otherwise deal with node failure, you should
take your newly acquired cluster-building skills and see how to apply them to create a
cluster across more than one computer.

5.4 Distributing the nodes to more machines
Running a RabbitMQ cluster on more than one physical machine isn’t much more
difficult than building a cluster on your development system. The first thing you need
to know is that RabbitMQ clustering is sensitive to latency and should only be used
over a local area network. Using it to provide geographic availability/routing over a
WAN will cause timeouts and strange cluster behavior, so it’s ill-advised. With that in
mind, we’ll create a distributed cluster on a local area network that looks like this:

 Three nodes on three separate physical machines (Amazon EC2 micro
instances/servers)

 Each node running RabbitMQ 2.7.0 on Ubuntu 10.04 LTS 64-bit
 Erlang R13B04

First you need to load your three machines with their operating systems and a running
copy of RabbitMQ 2.7.0 (use the instructions from chapter 1 on each system).
Though we’re using Ubuntu here, this section should work on any UNIX-based oper-
ating system. Also, in order to make setting up the three systems easy, we’re creating
the servers using Amazon Web Services EC2 servers (http://aws.amazon.com/ec2).
 www.it-ebooks.info

http://aws.amazon.com/ec2
http://www.it-ebooks.info/

98 CHAPTER 5 Clustering and dealing with failure
Our EC2 servers are micro instances with 613 MB of RAM and 8 GB of storage. So you
can focus on the actual clustering instead of server setup, we’ve made our Amazon
Machine Image (AMI) available that has Ubuntu and RabbitMQ already installed and
ready to be clustered. To use it, launch three new servers in the EC2 US West - N. Cali-
fornia region and search for AMI ID ami-69ebb42c when selecting the image for your
new servers. Presto! You should have three shiny new micro EC2 servers running
Ubuntu 10.04 LTS and a pristine copy of RabbitMQ 2.7.0.3

 In our setup, our servers are called ip-10-170-29-145, ip-10-170-30-18, and ip-
10-170-29-88 (see figure 5.4). These are the hostnames that Amazon Web Services
automatically assigned to our servers when we created them from our AMI. Yours will
be different, so use the hostnames assigned to your servers instead.

 At this point, what you need to do is copy the Erlang cookie from ip-10-170-29-
145 to the other nodes so that they can communicate. If the nodes don’t have the
same Erlang cookie string, then joining the cluster will fail when the Erlang nodes
attempt to authenticate each other. If you’re using our AMI, the Erlang cookie will be
found in /var/lib/rabbitmq/.erlang.cookie. Copy the string contained in the
cookie and paste it into /var/lib/rabbitmq/.erlang.cookie on the other two nodes.
Then restart the RabbitMQ process on the other two nodes by running sudo /etc/
init.d/rabbitmq-server restart. This is actually the hardest part of building the
distributed cluster. Now you’re ready to actually join the clusters together. First join
ip-10-170-30-18 to the cluster.

3 If you build EC2 servers using our AMI, be sure to use ubuntu as the username when you SSH into the servers.

EC2 server 1
10.1.59.1

RabbitMQ
rabbit@10.1.59.1

Queue 1

EC2 server 2
10.1.63.4

RabbitMQ
rabbit@10.1.63.4

Queue 2

EC2 server 3
10.1.70.10

RabbitMQ
rabbit@10.1.70.10

Queue 3

Exchange A

RabbitMQ cluster

Figure 5.4 Distributing a Rabbit cluster on EC2 servers
 www.it-ebooks.info

http://www.it-ebooks.info/

99Distributing the nodes to more machines
ubuntu@ip-10-170-30-18:~# sudo rabbitmqctl stop_app
Stopping node 'rabbit@ip-10-170-30-18' ...
...done.
ubuntu@ip-10-170-30-18:~# sudo rabbitmqctl reset
Resetting node 'rabbit@ip-10-170-30-18' ...
...done.
ubuntu@ip-10-170-30-18:~# sudo rabbitmqctl cluster \

rabbit@ip-10-170-29-145 \
rabbit@ip-10-170-30-18

Clustering node 'rabbit@ip-10-170-30-18' with
['rabbit@ip-10-170-29-145',
'rabbit@ip-10-170-30-18'] ...

...done.
ubuntu@ip-10-170-30-18:~# sudo rabbitmqctl start_app
Starting node 'rabbit@ip-10-170-30-18' ...
...done.

You’ll notice that you’ve made rabbit@ip-10-170-30-18 a disk node, but also that the
RabbitMQ node itself is called rabbit instead of rabbit_1 like the second node was in
the development machine cluster. On separate physical systems, the first RabbitMQ
node on that system will always be called rabbit. Only when you have multiple Rabbit
nodes on the same system will the nodes start to be named rabbit_1, rabbit_2, and so
on. With the second node under your belt, let’s add the third node, ip-10-170-29-88:

ubuntu@ip-10-170-29-88:~$ sudo rabbitmqctl stop_app
Stopping node 'rabbit@ip-10-170-29-88' ...
...done.
ubuntu@ip-10-170-29-88:~$ sudo rabbitmqctl reset
Resetting node 'rabbit@ip-10-170-29-88' ...
...done.
ubuntu@ip-10-170-29-88:~$ sudo rabbitmqctl cluster \

rabbit@ip-10-170-29-145 \
rabbit@ip-10-170-30-18

Clustering node 'rabbit@ip-10-170-29-88' with
['rabbit@ip-10-170-29-145',
'rabbit@ip-10-170-30-18'] ...

...done.
ubuntu@ip-10-170-29-88:~$ sudo rabbitmqctl start_app
Starting node 'rabbit@ip-10-170-29-88' ...
...done.

If you run sudo rabbitmqctl cluster_status on any of the nodes you should see
that you now have a three-node cluster:

Cluster status of node rabbit@ip-10-170-29-88 ...
[{nodes,[{disc,['rabbit@ip-10-170-30-18','rabbit@ip-10-170-29-145']},

{ram,['rabbit@ip-10-170-29-88']}]},
{running_nodes,['rabbit@ip-10-170-29-145','rabbit@ip-10-170-30-18',

'rabbit@ip-10-170-29-88']}]
...done.

At this point you’ve built two different RabbitMQ clusters: one distributed across mul-
tiple servers, and one all on a single machine. But one thing we haven’t covered is
removing nodes from the cluster. What happens if you want to make a cluster smaller
or replace a node with one that has better hardware? In either case what you need to
do is tell the node to leave the cluster. It’s similar to joining a node to the cluster, just
 www.it-ebooks.info

http://www.it-ebooks.info/

100 CHAPTER 5 Clustering and dealing with failure
without the rabbitmqctl cluster step. Let’s remove ip-10-170-29-88 from the clus-
ter and turn it back into a standalone node:

ubuntu@ip-10-170-29-88:~$ sudo rabbitmqctl stop_app
Stopping node 'rabbit@ip-10-170-29-88' ...
...done.
ubuntu@ip-10-170-29-88:~$ sudo rabbitmqctl reset
Resetting node 'rabbit@ip-10-170-29-88' ...
...done.
ubuntu@ip-10-170-29-88:~$ sudo rabbitmqctl start_app
Starting node 'rabbit@ip-10-170-29-88' ...
...done.

The key command is rabbitmqctl reset. We’ve said before that reset empties the
node of its metadata and restores it to an empty state. This is true, but when the node
being reset is a part of a cluster, the command also communicates with the disk nodes
in the cluster to tell them that the node is leaving. This is important because otherwise
the cluster will consider the node failed and expect it to be eventually restored. It’s
particularly critical to formally leave the cluster when the node is a disk node. As you
recall, disk nodes are required for every metadata change, but all the disk nodes are
required for a node to join or leave the cluster. So if you don’t formally remove a disk
node, the cluster will consider it failed and will wait for it to be restored before it
allows any new nodes to join the cluster. As a result, simply yanking a disk node from
the cluster without formally removing it can render the cluster permanently unable to
change. So be careful to always reset nodes when removing them from the cluster.

 If you check the status of the cluster from the removed node you’ll see that it now
considers itself standalone:

Cluster status of node rabbit@ip-10-170-29-88 ...
[{nodes,[{disc,['rabbit@ip-10-170-29-88']}]},
{running_nodes,['rabbit@ip-10-170-29-88']}]

...done.

Also, if you check the cluster status from any of the other nodes remaining in the clus-
ter, you’ll see they no longer consider ip-10-170-29-88 a part of the cluster:

Cluster status of node rabbit@ip-10-170-30-18 ...
[{nodes,[{disc,['rabbit@ip-10-170-30-18','rabbit@ip-10-170-29-145']}]},
{running_nodes,['rabbit@ip-10-170-29-145','rabbit@ip-10-170-30-18']}]

...done.

With building a distributed cluster and formally removing nodes under your belt, let’s
talk about what upgrading a cluster to a new version of RabbitMQ means.

5.5 Upgrading cluster nodes
Generally, upgrading to new versions of RabbitMQ on standalone systems is easy. You
just unpack the new version and run it.4 The old data will be retained and you’ll be

4 Upgrading from versions earlier than 2.1.0 is a manual upgrade procedure because the RabbitMQ storage
formats changed between 1.x and 2.0 and then again between 2.1.0 and 2.1.1. If you move between versions
of RabbitMQ that have incompatible storage formats, RabbitMQ will automatically copy the old storage files
to a backup location and create new empty files.
 www.it-ebooks.info

http://www.it-ebooks.info/

101Mirrored queues and preserving messages
running the latest and greatest version of RabbitMQ. But upgrading a cluster is less
straightforward. Cluster upgrades are semi-automatic. Simply unpacking new versions
of RabbitMQ on your cluster nodes and restarting them will kill any configuration and
data in the cluster. If you don’t have anything stored in the cluster that can’t be re-
created this isn’t much of a problem. If you do, then upgrading is more of an involved
process.

 First you’ll need to back up the current configuration via the RabbitMQ manage-
ment plugin using the instructions in chapter 6. Then shut down any producers and
wait for your consumers to drain all of the queues (use rabbitmqctl to watch queue
statuses until all of them are empty).5 Now, shut down the nodes and unpack the new
version of RabbitMQ into your existing installation directories. At this point, select
one of the disk nodes to be your upgrader node. When it starts, this node will upgrade
the persisted cluster data to the new version. Then you can start the remaining cluster
disk nodes, which will acquire the upgraded cluster data. Finally, start the cluster RAM
nodes and you’ll have your cluster running the shiny new version of RabbitMQ and all
of your metadata/configuration will have been retained.

 With upgrades and the operation of a traditional cluster under your belt, it’s time
to look at how to extend that cluster to preserve the contents of queues during node
failure.

5.6 Mirrored queues and preserving messages
When we started talking about clustering, you may remember that we said queues only
live on one node in the cluster by default. That’s still true, and if you’re using any ver-
sion of RabbitMQ before 2.6.0, that’s the only option you have. But with version 2.6.0,
the folks at Rabbit gave us a built-in active-active redundancy option for queues: mir-
rored queues. Like a normal queue, the primary copy of a mirrored queue only lives
on one node (the master), but unlike a normal queue, mirrored queues have slave cop-
ies on other nodes in the cluster. In the event that the queue’s master node becomes
unavailable, the oldest slave will be elected as the new master. This sounds like the
high availability panacea we’ve been looking for since we ventured into clustering, but
there are a few caveats you need to be aware of. Before we dive into the caveats, let’s
look at how you can write consumer apps that take advantage of mirrored queues.

5.6.1 Declaring and using mirrored queues

As with many aspects of AMQP, your application defines a queue as being mirrored
rather than rabbitmqctl. Declaring a mirrored queue is just like declaring a normal
queue; you pass an extra argument called x-ha-policy to the queue.declare call. To
see how this looks in actual code, let’s update the Hello World consumer program you
wrote in chapter 2 to declare a mirrored queue instead of a normal one. Changing the

5 Draining queues isn’t required with versions of RabbitMQ newer than 2.6.0, as the broker will upgrade them
automatically. But it’s still a good safety measure, just in case something goes awry with the upgrade.
 www.it-ebooks.info

http://www.it-ebooks.info/

102 CHAPTER 5 Clustering and dealing with failure
queue declaration to be mirrored instead of normal is as simple as replacing chan-
nel.queue_declare(queue="hello-queue") with this:

queue_args = {"x-ha-policy" : "all" }
channel.queue_declare(queue="hello-queue", arguments=queue_args)

queue_args is simply a dictionary (or hash) containing the additional arguments for
the queue declaration. In this case, you’re adding an argument called x-ha-policy
and setting its value to all. When set to all, x-ha-policy tells Rabbit that you want
the queue to be mirrored across all nodes in the cluster. This means that if a new node
is added to the cluster after the queue is declared, it’ll automatically begin hosting a
slave copy of the queue. To test your new mirrored queue consumer, fire it up in one
terminal and use rabbitmqctl in a separate terminal to see if the queue is really
mirrored:

(terminal 1)> python hello_world_mirrored_queue_consumer.py

(terminal 2)> rabbitmqctl list_queues name pid slave_pids
Listing queues ...
hello-queue <rabbit@Phantome.1.7429.1> [<rabbit2@Phantome.1.7...
...done.

This tells rabbitmq to show you the name, pid, and slave_pids fields when listing the
queues in the cluster. When dealing with mirrored queues, pid is the Erlang process
ID of the master copy of the queue, and slave_pids is a list of the slave copies and the
nodes they’re on. In this case, you have one master copy located at ID 1.7429.1 on
node rabbit@Phantome, and one slave copy located at ID 1.7431.1 on node
rabbit2@Phantome. Excellent; your Hello World consumer is now using a mirrored
queue! But what do you do if you don’t want your queue to be mirrored on every node
in the cluster, but instead only a few?

 This is where it gets trickier. Since the mirrored nature of a queue is specified by
the application at runtime, the guys at Rabbit HQ decided that you’d specify which
nodes your mirrored queue lives on at runtime as well. So, to make your mirrored
queue live on a subset of nodes in the cluster, you have to specify in your application
the exact node names of the cluster nodes you want the queue to live on (instead of
specifying all). This is the tricky part, because it means you’re hardcoding node
names into your application. If any of those nodes are down (or have been removed
from the cluster) when your application tries to declare the queue, the declaration
will fail. There’s no concept of an availability group in Rabbit that would abstract the
set of nodes you want your mirrored queue to live on into a general name that won’t
change if your ops team decides to reshuffle your Rabbit cluster. As a result, we highly
recommend you use the all setting for x-ha-policy whenever possible so that your
mirrored queue declarations aren’t hardcoded to specific node names that may
change. But suppose you absolutely need to specify a subset of cluster nodes for your
mirrored queue. How do you do it?

 You only need to make two changes to your mirrored queue declaration to make it
use a subset of nodes, instead of all the nodes in a cluster. First, you need to change
 www.it-ebooks.info

http://www.it-ebooks.info/

103Mirrored queues and preserving messages
x-ha-policy to nodes6 instead of all. This tells RabbitMQ you’re going to be giving it
a specific list of cluster node names to mirror the queue on. Then you add another
argument to the queue declaration called x-ha-policy-params, and set its value to
the list of node names you want to mirror the queue across. In code it looks like this:

queue_args = {"x-ha-policy" : "nodes",
"x-ha-policy-params" : ["rabbit@Phantome"]}

channel.queue_declare(queue="hello-queue", arguments=queue_args)

If you delete the mirrored queue (hello-queue) you created the first time you ran
your updated Hello World consumer and re-run it, you should see that the mirrored
queue now only lives on a single node in the cluster:

(terminal 1)> python hello_world_mirrored_queue_consumer.py

(terminal 2)> rabbitmqctl list_queues name pid slave_pids
Listing queues ...
hello-queue <rabbit@Phantome.1.7429.1> []
...done.

As expected, hello-queue only has a master copy and no slaves, even though there
are two nodes in this cluster. What would happen if you were to add a new slave node
to the queue at this point? The new slave copy would only contain messages received
by the mirrored queue after the slave was added. RabbitMQ doesn’t yet (as of 2.7.0)
synchronize the existing contents of a mirrored queue to newly added slave copies.
The theory goes that as messages are consumed from the existing master and slave
copies, all of the old messages that the new slave doesn’t know about will be removed
and the new slave copy will eventually have the same state as the existing queue copies.
But if you were to remove all of the nodes containing the existing master and slave
copies before these old messages were consumed, and the new slave copy was pro-
moted to be the master, you’d lose those old messages. As a result, until RabbitMQ
provides synchronization of a mirrored queue’s existing contents to new slaves, it’s
important to be able to tell whether all of the slaves have the same contents. To check
the synchronization status of a mirrored queue, just ask rabbitmqctl to tell you the
synchronised_slave_pids when listing queues:

> rabbitmqctl list_queues name pid slave_pids synchronised_slave_pids
Listing queues ...
hello-queue <rabbit@Phantome.1.7429.1> [<rabbit2@Phantome.1.74...

[<rabbit2@Phantome.1.74...
...done.

If the list of PIDs in the first and second bracketed lists (say, [<rabbit2@Phan-
tome.1.7431.1>]) are identical, then all of your slaves are synchronized. But if any of
the PIDs in the first bracketed list aren’t present in the second list, then the missing
slave PIDs don’t yet have identical contents to the older slave copies. If that’s the case,

6 In versions 2.6.0 and 2.6.1, the nodes queue copy distribution policy doesn’t work. It works correctly in ver-
sions 2.7.0 and newer.
 www.it-ebooks.info

http://www.it-ebooks.info/

104 CHAPTER 5 Clustering and dealing with failure
then you need to wait until the two bracketed lists become identical before you
remove nodes from the cluster. This will ensure you don’t lose any messages that are
only present on the nodes you may be removing. This is one of the caveats that we
alluded to when introducing mirrored queues. To get a better understanding of how
mirrored queues work (and the rest of the caveats), let’s dive into how mirrored
queues operate under the covers.

 So far you’ve learned how a cluster works (including mirrored queues) and how to
deploy one either on a single development machine or distributed across a local area
network. You even know how to upgrade a cluster without losing all of your configura-
tion forever. What you don’t know how to do is write code that can deal with cluster
node failure and auto-reconnect to other nodes in the cluster.

5.6.2 Under the hood with mirrored queues

In a Rabbit cluster with nonmirrored queues, the channel does the job of routing
messages to the appropriate queues in the cluster. When you add mirrored queues
into the mix, the channel does the exact same thing, except instead of just delivering
the messages to the appropriate queues specified by the routing bindings, it also deliv-
ers the messages to the slave copies of the mirrored queues (as shown in figure 5.5).
In some ways you could view a mirrored queue as having a hidden fanout exchange
that instructs the channel to also deliver to the queue’s slave copies.

 Understanding that the channel is what publishes the message in parallel to both
the master and slave copies of a mirrored queue can also help you understand how
transactions and publisher confirms are affected by mirrored queues. When dealing
with nonmirrored queues, you only receive a publisher confirm back (or a successful
transaction) after the channel has routed the message to all of the queues specified by
the bindings that the message matched. When you switch to using mirrored queues,

RabbitMQ
node

Q1

RabbitMQ
node

RabbitMQ
node

Q2
(mirrored)

Master
copy

Q2
(mirrored)

Slave
copy

1

Message!

Consumer Consumer

Channel
message
distribution

Producer

Figure 5.5 Mirrored queue behavior
 www.it-ebooks.info

http://www.it-ebooks.info/

105Summary
Rabbit uses the same concept, but extends it to the slave copies of the queues as well.
So if you need to ensure a message isn’t lost, you can use a publisher confirmation on
the message and Rabbit will notify you when all of the queues and their slave copies
have safely accepted the message. But if a mirrored queue’s master fails before the
message has been routed to the slave that will be become the new master, the pub-
lisher confirmation will never arrive and you’ll know that the message may have been
lost. But that only covers how publishers handle the failure of a mirrored queue’s mas-
ter node. What happens to consumers attached to the failed master copy?

 If a mirrored queue loses a slave node, any consumers attached to the mirrored
queue don’t notice the loss. That’s because technically they’re attached to the queue’s
master copy. But if the node hosting the master copy fails, all of the queue’s consum-
ers need to reattach to start listening to the new queue master. For consumers that
were connected through the node that actually failed, this isn’t hard. Since they’ve
lost their TCP connection to the node, they’ll automatically pick up the new queue
master when they reattach to a new node in the cluster. But for consumers that were
attached to the mirrored queue through a node that didn’t fail, RabbitMQ will send
those consumers a consumer cancellation notification telling them they’re no longer
attached to the queue master. If your AMQP client library understands consumer can-
cellation notifications, it’ll raise an exception and your app will know it’s no longer
attached to the queue and needs to reattach. On the other hand, if your client library
doesn’t understand consumer cancellations, you’re in a bind. The client has no way of
telling your app that its consumption loops point to a master queue copy that no lon-
ger exists. So your app will sit there dumb and happy, thinking there’s nothing in the
queue to consume. Unfortunately, there’s no clever way around this situation (such as
Rabbit closing the consumer’s channel to force an exception). So if your client library
doesn’t understand consumer cancellation notifications, you should avoid mirrored
queues until it does. Otherwise, you could end up with a wake-up call in the middle of
the night from your monitoring system telling you that your queues are chock full of
unconsumed messages.

 After cancellation notifications, the only remaining item to watch out for with mir-
rored queues is messages that have been consumed but not acknowledged. When the
master node of a mirrored queue fails, Rabbit has to make a decision about any mes-
sages that have been delivered to consumers, but not yet acknowledged by them. Even
though the messages were delivered to a consumer, Rabbit can’t tell the difference
between acknowledgements that were lost during the failover and messages that
weren’t acknowledged at all. So to be safe, consumed but unacknowledged messages
are requeued to their original positions in the queue (or to the back of the queue in
versions before 2.7.0).

5.7 Summary
When you started this chapter, you were completely at the mercy of a single Rabbit
node to keep your apps powered and communicating. Now you no longer need to
 www.it-ebooks.info

http://www.it-ebooks.info/

106 CHAPTER 5 Clustering and dealing with failure
fear Rabbit failure, because your RabbitMQ cluster will keep your infrastructure pow-
ered and humming along. More important, you understand the ins and outs of how
clustering is implemented internally so you can make intelligent design choices for
your RabbitMQ architectures. These choices can maximize uptime and scalability
while minimizing your vulnerability to message loss. But clustering RabbitMQ is only
half the battle. Even with a hard charging Rabbit cluster at the heart of your infra-
structure, your apps still only connect to one node. If that one cluster node dies,
they’re adrift about where to connect next in the cluster so they can keep operating
without a hiccup. Clustering is Rabbit’s end of the high-availability bargain. It’s time to
talk about how to write your apps so they can survive individual node failure and hold
up their end of that bargain.
 www.it-ebooks.info

http://www.it-ebooks.info/

Writing code that
survives failure
Building a RabbitMQ cluster to ensure availability and performance is only half the
battle of ensuring a resilient messaging infrastructure. The other half is writing
applications that expect node failure and knowing how to reconnect to the cluster
when it happens. There are a number of strategies for handling reconnection to
the cluster, but the one we’ll focus on is using a load balancer to handle node selec-
tion. By using a load balancer you not only reduce the complexity of the failure
handling code in your apps, but you also ensure even connection distribution
across your cluster. But even with a load balancer, there’s more to writing an app
that can handle node failure than establishing a new connection to the cluster.
Your apps also need to be prepared to re-create exchanges and queues that may

This chapter covers
 Understanding load balancing

 Installing and configuring HAProxy to load balance
Rabbit

 Writing code that reconnects and intelligently
survives failure
107

 www.it-ebooks.info

http://www.it-ebooks.info/

108 CHAPTER 6 Writing code that survives failure
not have survived the failure of the original node. This is particularly true when using
two standalone Rabbit nodes in an active/standby configuration (which we’ll cover in
chapter 7). Before you start writing failure-handling code in your apps, we’ll look at
what it takes to use a load balancer with RabbitMQ.

6.1 Load balancing your Rabbits
Depending on your background, you might be wondering what the heck a load bal-
ancer is. A load balancer presents a single IP address behind which lie multiple servers.
Let’s say you have three web servers powering your website named web1.acme.com,
web2.acme.com, and web3.acme.com. Without a load balancer, your customers would
have to manually go to web1 and if it was down try web2 or web3 instead. Not only is
this a lot to ask of your customers, it also gives you no control over how much load is
on each of the servers at any given time. If you have a load balancer, you could create
an IP address on the load balancer that you name www.acme.com. Then when a cus-
tomer connects to www, the load balancer transparently proxies the connection to
web1, web2, or web3 based on whichever has the lowest connection load. If web1 were
to fail, the load balancer is also smart enough to detect this and stop sending connec-
tions to web1, instead making web2 and web3 pick up the load. To your customer, it
looks like you have one huge server called www and that’s all they need to care about.
All of the load balancing and failed server detection is handled by the load balancer
transparently (see figure 6.1).

 When using a load balancer with RabbitMQ, your cluster nodes are the servers
behind the load balancer and your producers and consumers are the customers. Your
apps only need to know the frontend IP of the load balancer; it’ll transparently con-
nect them to the cluster node with the lowest connection load. If you want to grow
your cluster for more performance, you don’t need to change any of your apps—you
just need to join the new node to the cluster and then add the node to the load

Customer

Customer sees: www

web1 web2 web3

Figure 6.1 Load balancing multiple
web servers to appear as one
 www.it-ebooks.info

http://www.it-ebooks.info/

109Load balancing your Rabbits
balancer’s configuration. There’s no change to your applications. Without a load bal-
ancer, your apps would have to be manually configured with knowledge of every clus-
ter node’s IP. They’d also have to handle cluster node selection and failed server
detection on their own. Since each app would be handling its own node selection,
you’d have no way to evenly spread the load across the cluster. The load distribution
would be essentially random. So by using a load balancer in front of your Rabbit clus-
ter, you let it handle the complexities of node selection, failed server detection, and
load distribution (see figure 6.2).

 Many different load balancers are out there, but they fall into one of two catego-
ries: hardware appliances or software. Hardware appliances are beefy dedicated net-
work systems that can handle millions of connections a second without blinking an
eye. They also usually offer advanced clustering so that two load balancers can act as a
single unit to remove the load balancer as a single point of failure. If you have a hard-
ware load balancer already, there’s no reason why you can’t use it to load balance
RabbitMQ clusters. Just use your appliance in layer 4 load balancing mode. But for
most situations, a software load balancer is more than adequate. You’re more likely to
hit the upper limit of the number of nodes a cluster can support than to outstrip a
software load balancer’s ability to feed the cluster. Of the many software load balanc-
ers out there, we’ll use HAProxy. It’s freely available, is extremely reliable, and handles
heavy loads across the internet for sites like StackOverflow. Also, it’ll run on nearly any
UNIX-based platform and is extremely easy to configure. Instead of talking about how

localhost

RabbitMQ
rabbit@localhost

localhost:5672

Queue 1

RabbitMQ
rabbit_1@localhost

localhost:5673

Queue 2

RabbitMQ
rabbit_2@localhost

localhost:5674

Queue 3

Exchange A

Consumer
app

Producer
app

Exchange A Exchange A

Client sees: localhost:5670

cluster cluster

Figure 6.2 Load balancing a RabbitMQ cluster
 www.it-ebooks.info

http://www.it-ebooks.info/

110 CHAPTER 6 Writing code that survives failure
great HAProxy is, let’s show you by installing it and configuring it to load balance a
RabbitMQ cluster.

6.1.1 Installing HAProxy

Installing HAProxy is simple. Most modern Linux distributions have HAProxy avail-
able in their packaging systems, but we’ll build it from source. The first step is to
download HAProxy to your development system and unpack the archive:

$ wget http://haproxy.1wt.eu/download/1.4/src/haproxy-1.4.14.tar.gz
Resolving haproxy.1wt.eu... 88.191.124.161
Connecting to haproxy.1wt.eu|88.191.124.161|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 812238 (793K) [application/x-gzip]
Saving to: `haproxy-1.4.14.tar.gz'

100%[=============================>] 812,238 192K/s in 4.1s

2011-03-29 19:16:56 (192 KB/s) - `haproxy-1.4.14.tar.gz' saved

$ sudo tar xfz haproxy-1.4.14.tar.gz

With the source unpacked you need to run make to build the HAProxy executable.
Before you can run make, you need to select the target platform. If you’re building on
a Linux 2.6 system you’ll want to set TARGET=linux26 to enable epoll support. For all
other UNIX-based systems, TARGET=generic is usually the right choice. Without fur-
ther ado, let’s kick off the build.

NOTE epoll is a feature of the Linux 2.6 kernel that enables event-based net-
work software like HAProxy to be notified when new packets are waiting
instead of the software having to poll on a regular interval. This can reduce
CPU usage and improve performance on heavily loaded systems. FreeBSD has
a similar feature called kqueues which HAProxy can take advantage of by set-
ting TARGET=freebsd.

$ cd haproxy-1.4.14
$ sudo make TARGET=generic
...
gcc -g -o haproxy src/haproxy.o src/sessionhash.o src/b...

You should now have an executable named haproxy in the build directory. If every-
thing is built correctly you should be able to run haproxy --help to see its configura-
tion options. Finally, copy the haproxy executable to /usr/local/sbin so that it’s
available on your UNIX path. Now all you need is a configuration file for HAProxy so it
can begin load balancing the RabbitMQ cluster on your development system.

6.1.2 Configuring HAProxy

HAProxy uses a single configuration file to define everything from the frontend IPs
being advertised to the servers behind them. The following listing shows the configu-
ration you’ll use to load balance your local Rabbit cluster.
 www.it-ebooks.info

http://www.it-ebooks.info/

111Load balancing your Rabbits

Cl
n

to
ba
global
log 127.0.0.1 local0 info
maxconn 4096
stats socket /tmp/haproxy.socket uid haproxy mode 770 level admin
daemon

defaults
log global
mode tcp
option tcplog
option dontlognull
retries 3
option redispatch
maxconn 2000
timeout connect 5s
timeout client 120s
timeout server 120s

listen rabbitmq_local_cluster 127.0.0.1:5670
mode tcp
balance roundrobin
server rabbit 127.0.0.1:5672 check inter 5000 rise 2 fall 3
server rabbit_1 127.0.0.1:5673 check inter 5000 rise 2 fall 3
server rabbit_2 127.0.0.1:5674 check inter 5000 rise 2 fall 3

listen private_monitoring :8100
mode http
option httplog
stats enable
stats uri /stats
stats refresh 5s

In B you define the IP and port your clients will be connecting to. You use port 5670
so that it doesn’t conflict with the RabbitMQ cluster nodes themselves. Then you tell
HAProxy to use the round-robin algorithm C to distribute the load among the back-
ends (see figure 6.3).

 The most interesting part is D where we define the backends:

server rabbit 127.0.0.1:5672 check inter 5000 rise 2 fall 3
server rabbit_1 127.0.0.1:5673 check inter 5000 rise 2 fall 3
server rabbit_2 127.0.0.1:5674 check inter 5000 rise 2 fall 3

Each backend configuration directive has five parts:

 server <name> is the internal identifier given to the backend definition.
 <IP>:<port> is the IP and port number of the backend server to connect to.
 check inter <value> defines how often in milliseconds to check that the back-

end is available.
 rise <value> indicates how many successful health checks a backend must

complete after having failed before it is considered usable again.
 fall <value> specifies how many health checks a backend must fail before

HAProxy stops using it.

Listing 6.1 HAProxy configuration for local RabbitMQ cluster

Logging
options

Load
balancing
defaults

Front-end IP for
consumers and
producers

B

Load
balancing
optionsC

Duster
odes
 load
lance

Statistics
pageE
 www.it-ebooks.info

http://www.it-ebooks.info/

112 CHAPTER 6 Writing code that survives failure
The final configuration section is for the statistics page E. It’s optional but by
enabling it on port 8100 you can connect to http://localhost:8100 and see HAProxy’s
current status, including how many connections each RabbitMQ cluster node is cur-
rently serving. This can be useful when you want to see the load across your cluster or
how many nodes are currently up or down. There are many more configuration
options for HAProxy that allow everything from complex load balancing rules to iden-
tifying backend nodes as backup servers that are only used if all of the main backends
are down. Check out HAProxy’s manual to find out more at http://haproxy.1wt.eu/
download/1.4/doc/configuration.txt.

 Let’s start up HAProxy with your new configuration and make sure it works. Run
/usr/local/sbin/haproxy -f config_file where config_file is the configuration file
you just created. If everything went well you should be able to load a web page at
http://localhost:8100/stats that looks like figure 6.4.

 Now that you have a functioning load balancer on your development system, we’re
going dive into using it to build failover and resilience into your messaging apps.

6.2 Lost connections and failing clients between servers
When a cluster node fails, suddenly your app has a decision to make: where do I con-
nect next? To be able to answer that question effectively, you must have anticipated it
in your code long before it happens. Gracefully handling node failure requires a
change in mentality. Clustering doesn’t mean your app never experiences Rabbit

localhost

RabbitMQ
rabbit@localhost

localhost:5672

Queue 1
RabbitMQ

rabbit_1@localhost
localhost:5673

Queue 2
RabbitMQ

rabbit_2@localhost
localhost:5674

Queue 3

Exchange A

Consumer
#1

Consumer
#2

Exchange A Exchange A

cluster cluster

Consumer
#3

Consumer #1
Consumer #2 Consumer #3

Figure 6.3 Round-robin load balancing
 www.it-ebooks.info

http://haproxy.1wt.eu/download/1.4/doc/configuration.txt
http://haproxy.1wt.eu/download/1.4/doc/configuration.txt
http://localhost:8100/stats
http://www.it-ebooks.info/

113Lost connections and failing clients between servers
problems; it means when there is a problem, nodes have somewhere else to go and
keep running. So the first step is to step back and consider what assumptions you can
make before writing your code:

1 If I reconnect to a new server, what happens to my channels and all of the consumption
loops attached to them? They’re invalid now and point nowhere. You need to
rebuild both.

2 When I reconnect, can I assume that all of my exchanges, queues, and bindings are still
in the cluster? Can I just reconnect and immediately start consuming from my queues
again? The answer is, no. You can’t assume queues and bindings survived the
node failure. You must assume that all of the queues you were consuming from
were hosted on the node you were attached to—and no longer exist. The same
goes for those queues’ bindings, though exchanges are a different story. If
you’re using Rabbit’s built-in clustering you can assume exchanges will survive
node failure due to being replicated to every node. But if you’re using an
active/standby setup like we describe in the next section, you can’t even assume
exchanges will survive failover.

What you can take away from those questions is that you can’t assume anything about
the state of the cluster when you fail over to a new node. Though the Rabbit cluster
has given your app a new place to connect to, you can’t make any assumptions about
what does and doesn’t exist. In some respects, you should always treat failover as if you
were connecting to a completely unrelated RabbitMQ server, rather than a cluster
node with some shared state. As a result, whenever a node failure occurs, the first
order of business after detecting the failure and reconnecting is to rebuild the fabric

Figure 6.4 HAProxy statistics page
 www.it-ebooks.info

http://www.it-ebooks.info/

114 CHAPTER 6 Writing code that survives failure

Connect
RabbitM
of exchanges, queues, and bindings that your app needs to operate. Before we dive
into some code, let’s talk about what you’ll need to run it. Like the examples in chap-
ter 3, you’ll need a functional Python 2.6 installation and Pika 0.9.6 or greater
installed. In addition you’ll also need the following:

 A RabbitMQ cluster set up on your local development machine.
 HAProxy configured and running on the same machine, and listening on port

5670 for AMQP connections.

You’ll build a sample producer and consumer that can survive cluster node failure.
Building a cluster-aware consumer is the more difficult task because the consumer is
what builds your messaging fabric (exchanges, queues, and bindings). As a result, it’s
up to the consumer to rebuild that fabric after node failure. With a standard con-
sumer, your app’s body would look something like the following listing.

conn_broker = pika.BlockingConnection(conn_params)

channel = conn_broker.channel()
channel.exchange_declare(exchange="cluster_test",

type="direct",
auto_delete=False)

channel.queue_declare(queue="cluster_test",
auto_delete=False)

channel.queue_bind(queue="cluster_test",
exchange="cluster_test",
routing_key="cluster_test")

print "Ready for testing!"
channel.basic_consume(msg_rcvd,

queue="cluster_test",
no_ack=False,
consumer_tag="cluster_test")

channel.start_consuming()

With the connection parameters already established, you build B your connection to
the server. Then you establish the channel C and begin declaring D exchanges,
queues, and bindings (your messaging fabric). After the fabric is built, you create E a
consumption subscription (powered by the msg_rcvd function) and start consuming
messages. At this point if you were to experience node failure, your program would
crash with an unhandled exception. That’s because this code doesn’t know what to do
when a connection error occurs. What you need to do is wrap this code in an excep-
tion handler and initiate a reconnection when the failure occurs. But where do you
start wrapping? What parts of the main body need to be rerun after a failure event? All
of them. If you don’t assume any of the messaging fabric survives node failure, then all
of your main body needs to be executed every time an error occurs. If you rewrite the
main body with this in mind, it’ll look something like the following listing.

Listing 6.2 Standard consumer main body

 to
Q B

Custom
connection
behavior

C

Declare
exchanges,
queues,
& bindingsD

Start
consuming
messagesE
 www.it-ebooks.info

http://www.it-ebooks.info/

115Lost connections and failing clients between servers

r
to
while True:
try:

conn_broker = pika.BlockingConnection(conn_params)

channel = conn_broker.channel()
channel.exchange_declare(exchange="cluster_test",

type="direct",
auto_delete=False)

channel.queue_declare(queue="cluster_test",
auto_delete=False)

channel.queue_bind(queue="cluster_test",
exchange="cluster_test",
routing_key="cluster_test")

print "Ready for testing!"
channel.basic_consume(msg_rcvd,

queue="cluster_test",
no_ack=False,
consumer_tag="cluster_test")

channel.start_consuming()
except Exception, e:

traceback.print_exc()

By wrapping the main body in a try...except block you can now detect connection
failures F and prevent them from crashing the consumer. In this case, you trap out
any errors and print them to the screen. But this is only half of the solution. You’re no
longer crashing when a node fails but you still need to reconnect and rebuild the fab-
ric. To do that you wrap the entire main body (including the new try...except
block) with an infinite loop B. When the app first starts, it enters the loop and then
builds the connection C and the fabric D. Then it pauses the loop to start consum-
ing F. As long as there are no errors, this is as far as the outer loop will ever progress.
But the minute a node fails, a connection error is experienced. This causes control to
pass from the consumption code E to the outer exception handler F. The exception
handler then prevents the program from crashing by trapping the error, prints it to
the screen, and then passes control back to the outer loop. Now the loop starts the
whole connection process over from scratch B by building a new connection C and
fabric D just like before. It’s a simple change, but one that enables your program to
handle node failure within a RabbitMQ cluster. It’ll also handle a variant of node fail-
ure we haven’t discussed yet, but that you need to know about.

 So far when we’ve talked about a cluster node failing from your app’s perspective,
we’ve always said it’s the node the app is connected to. You might’ve assumed that as
long as the node connected to your app doesn’t fail, then your app has nothing to
worry about. That’s not entirely true. If you remember how queues operate in a clus-
ter, you’ll note that they only exist on one node. Since your app doesn’t know which
node a queue is on when it starts consuming, it’s possible that your app is connected
to node A in the cluster but is consuming from a queue on node B. So what happens
when node B fails? The app doesn’t experience a connection error but the queue it’s

Listing 6.3 Cluster-aware consumer main body

On fault,
econnect

RabbitMQ B

Establish
connection
to RabbitMQ

C

Declare
exchange,
queues,
bindingsD

Start
consuming
messages

E

Trap
connection
errors and
print them

F

 www.it-ebooks.info

http://www.it-ebooks.info/

116 CHAPTER 6 Writing code that survives failure

B
set

to
supposedly consuming from no longer exists. If you’re running a version of
RabbitMQ earlier than 2.4.0 you’re somewhat out of luck. Your consumer will sit
there dumb and happy, doing nothing forever (at least until you restart it). This limi-
tation is more a property of AMQP than RabbitMQ itself. But with RabbitMQ 2.4.0
came a new extension to AMQP called cancellation notification. With cancellation notifi-
cations, your consumer receives a notification when its subscription terminates for
any reason other than the consumer canceling it. In Pika this manifests as an excep-
tion raised in the consumption code. This will be trapped by your exception handler
and your reconnect/rebuild code will reestablish the connection and rebuild the fab-
ric. With all of the pieces in place, the following listing shows what the consumer
looks like all together.

import sys, json, pika, time, traceback

def msg_rcvd(channel, method, header, body):
message = json.loads(body)

print "Received: %(content)s/%(time)d" % message
channel.basic_ack(delivery_tag=method.delivery_tag)

if __name__ == "__main__":
AMQP_SERVER = sys.argv[1]
AMQP_PORT = int(sys.argv[2])

creds_broker = pika.PlainCredentials("guest", "guest")
conn_params = pika.ConnectionParameters(AMQP_SERVER,

port=AMQP_PORT,
virtual_host="/",

 credentials=creds_broker)

while True:
try:

conn_broker = pika.BlockingConnection(conn_params)

channel = conn_broker.channel()
channel.exchange_declare(exchange="cluster_test",

type="direct",
auto_delete=False)

channel.queue_declare(queue="cluster_test",
auto_delete=False)

channel.queue_bind(queue="cluster_test",
exchange="cluster_test",
routing_key="cluster_test")

print "Ready for testing!"
channel.basic_consume(msg_rcvd,

queue="cluster_test",
no_ack=False,
consumer_tag="cluster_test")

channel.start_consuming()
except Exception, e:

 traceback.print_exc()

Listing 6.4 Cluster-aware consumer

Print and
acknowledge
message

roker
tings

Establish
broker
connection

On fault,
reconnect
 RabbitMQ Establish

connection
to RabbitMQ

Custom
connection

behavior
Declare
exchange,
queues,
bindings

Start
consuming
messages

Trap connection
errors and print them
 www.it-ebooks.info

http://www.it-ebooks.info/

117Lost connections and failing clients between servers
As you can see, converting any consumer app to be cluster-aware isn’t difficult. It just
requires understanding what happens inside of RabbitMQ when a node fails and
accommodating those behaviors in your code. Now let’s fire up your consumer and
see what happens:

$ python cluster_test_consumer.py localhost 5670
Ready for testing!

Hmmm … you’re connected to the cluster through the load balancer and have built
your fabric (check out http://localhost:8100 to see which cluster node you’re con-
nected to). But your consumer isn’t doing anything interesting yet. What you need is a
cluster producer to give your consumer some content to display! The producer is
short-lived and doesn’t need any fancy failure-handling code. This is because every
invocation of the producer establishes a new connection from scratch, which enables
the load balancer to select a new functional node. The following listing shows what
your producer looks like.

import sys, time, json, pika

AMQP_HOST = sys.argv[1]
AMQP_PORT = int(sys.argv[2])

creds_broker = pika.PlainCredentials("guest", "guest")
conn_params = pika.ConnectionParameters(AMQP_HOST,

port=AMQP_PORT,
virtual_host = "/",
credentials = creds_broker)

conn_broker = pika.BlockingConnection(conn_params)

channel = conn_broker.channel()

msg = json.dumps({"content": "Cluster Test!",
"time" : time.time()})

msg_props = pika.BasicProperties(content_type="application/json")

channel.basic_publish(body=msg,
exchange="cluster_test",
properties=msg_props,
routing_key="cluster_test")

print "Sent cluster test message."

The first part of the producer B is setting up the connection like you’ve done before.
It’s determining the IP address and port of the RabbitMQ “server” from the first and
second command-line arguments passed to the producer. You’re also using the built-
in guest account that comes with every Rabbit install for authentication. Then you cre-
ate a JSON message C to send to your consumer that contains the phrase Cluster
Test! and the current timestamp. The last thing you do before publishing the mes-
sage is to set the content_type header of the message so that your consumer knows

Listing 6.5 Cluster-aware producer

Establish
connection
to broker

B

Connect to
RabbitMQ and
send message

C

 www.it-ebooks.info

http://www.it-ebooks.info/

118 CHAPTER 6 Writing code that survives failure
your message is JSON-encoded. Finally you publish the message and send it jetting
through Rabbit to your consumer. What does this look like on the command-line?

$ python cluster_test_producer.py localhost 5670
Sent cluster test message.

And if you check back on your running consumer …

$ python cluster_test_consumer.py localhost 5670
Ready for testing!
Received: Cluster Test!/1301531152

Bingo! The message was injected into one node of the cluster by your producer and
received on another node by your consumer! Now let’s see the real proof in the pud-
ding and restart the node that’s connected to your consumer. First, use http://local-
host:8100 to figure out which cluster node name your consumer is connected to. It
should be the node listed with a 1 in the Cur column under Sessions in the HAProxy
stats page. Then from your RabbitMQ installation directory, run ./sbin/rabbitmqctl
-n node_name stop_app, where node_name is the node name you identified in the
HAProxy stats. Now if you check back on your consumer, you should see some connec-
tion errors followed by a successful reconnection to the cluster:

$ python cluster_test_consumer.py localhost 5670
Ready for testing!
Traceback (most recent call last):

File "cluster_test_consumer.py", line 57, in <module>
channel.start_consuming()

File "/Library/Python/2.6/site-packages/pika-0.9.6-py2.6.egg/
pika/adapters/blocking_connection.py", line 293, in start_consuming

self.transport.connection.process_data_events()
File "/Library/Python/2.6/site-packages/pika-0.9.6-py2.6.egg/
pika/adapters/blocking_connection.py", line 87, in process_data_events

raise AMQPConnectionError
AMQPConnectionError
Ready for testing!

The second Ready for Testing! line indicates your consumer has successfully recov-
ered from the node failure and reconnected to the cluster. Now if you publish a new
message into the cluster you should see it echoed from your newly reconnected con-
sumer:

$ python cluster_test_consumer.py localhost 5670
Ready for testing!
Traceback (most recent call last):
File "cluster_test_consumer.py", line 57, in <module>

channel.start_consuming()
File "/Library/Python/2.6/site-packages/pika-0.9.6-py2.6.egg/
pika/adapters/blocking_connection.py", line 293, in start_consuming

self.transport.connection.process_data_events()
File "/Library/Python/2.6/site-packages/pika-0.9.6-py2.6.egg/
pika/adapters/blocking_connection.py", line 87, in process_data_events

raise AMQPConnectionError
AMQPConnectionError
 www.it-ebooks.info

http://www.it-ebooks.info/

119Summary
Ready for testing!
Received: Cluster Test!/1301531677

Everything works! You now have a fully clustered RabbitMQ setup, complete with a
load balancer to handle node selection and cluster-aware consumer and producers
that can keep trucking when a cluster node dies. At this point you could call it a day
with the satisfaction that you have RabbitMQ's built-in clustering under your belt. But
the built-in clustering doesn’t cover every use case. For example, what if you absolutely
can’t risk losing any messages in a durable queue when a node fails? Current versions
of RabbitMQ will restore the durable queue and its contents when its node rejoins the
cluster, but versions before 1.8.0 didn’t. This necessitated an alternate approach with
active and standby standalone RabbitMQ servers that could allow you to failover with-
out losing the old queue’s contents.

6.3 Summary
Clustering RabbitMQ is only half of what you need to make a resilient messaging infra-
structure. The other half is up to your applications. Now you know how to write them
to be resilient in the face of cluster node failure by reconnecting to new nodes and
rebuilding the fabric your apps need to keep operating. Equally as important, you can
now set up and use a load balancer to be the glue that determines which cluster nodes
have failed and intelligently route your apps to new nodes when they reconnect.
These techniques, when combined with a RabbitMQ cluster, give you a robust messag-
ing infrastructure that can get hit with a failure without your applications missing a
beat. But there are still a couple of unanswered questions about making Rabbit highly
available. For example, how can you design a Rabbit infrastructure where the durable
queues on that node aren’t unavailable to your apps when a node goes down? Also,
what about designing a Rabbit architecture that can survive losing a whole data center
and the clusters in it? For the answers to those questions, we need to break out our
shovels and dive into a couple of warrens.
 www.it-ebooks.info

http://www.it-ebooks.info/

Warrens and Shovels:
failover and replication
So far when we’ve talked about high availability, it’s always been in the context of
RabbitMQ’s built-in clustering. But clustering isn’t the only way to build resiliency
into your Rabbit infrastructure, and depending on your needs it’s not always the
right way either. Clustering makes you trade the benefit of all the nodes acting as
single unit to distribute the load for the drawback of not being able to use durable
queues on downed nodes until the nodes are restored. Also, clustering won’t give
you what you need to build a RabbitMQ architecture that’s distributed across more
than one data center. So though clustering might initially sound like a Swiss army
knife for our availability problems, you still need a couple of other tools in your
toolbox. That’s where warrens and Shovel come in.

 Leveraging the knowledge you’ve acquired so far, you’ll learn how to build
active/standby pairs of standalone RabbitMQ servers that let you trade scalability for

This chapter covers
 Understanding active/standby pairs (warrens)

 Creating warrens with load balancers

 Building long-distance replication using Shovel
120

 www.it-ebooks.info

http://www.it-ebooks.info/

121Warrens: another way of clustering
more flexibility when it comes to durable messaging. Then you’ll see how you can use
the Shovel plugin to replicate the contents of queues on a Rabbit server in one city over
long distances to a Rabbit server (or cluster) in another. When you’re done you’ll have
a complete toolbox for any high availability situation. Best of all, if you’ve designed your
apps with the new techniques you learned in the last chapter, you can use them
unchanged to take advantage of these new RabbitMQ topologies. Let’s get started by
jumping into understanding active/standby pairs, or as we call them, warrens.

7.1 Warrens: another way of clustering
In versions of RabbitMQ prior to 1.8.0 there was an “interesting” behavior when a clus-
ter node containing a durable queue went down. If a client re-created the durable
queue while the node was still down, then the contents of the old queue would be lost
when the downed node came back up. The restored node would essentially say “Oops,
this queue already exists; I don’t need my copy.” When the contents of the old queue
were valuable, this was a huge problem. Since version 1.8.0, a different behavior has
taken over. When a node with a durable queue goes down, that queue can’t be
re-created. Any client that attempts to redeclare the queue will receive a 404
NOT_FOUND AMQP error. When the downed node is restored, so is the durable queue
and its contents (providing the messages were delivered with delivery_mode 2). But
until that node is restored, any messages that would’ve been delivered to it are either
black-holed or errors are sent to the clients that set mandatory publish flags.

 If your application can’t risk losing messages or deal with the latency of continu-
ously republishing messages until their downed queue returns, then you need what we
call warrens. In our parlance, a warren is a pair of active/standby standalone servers
with a load balancer in front handling failover (see figure 7.1). The advantage to this
setup is that it’s truly shared-nothing. There’s no coordination between the active and
standby servers, so any problem affecting the active server won’t be automatically
transferred to the standby or vice versa. The separation between them is so complete
that you could run different versions of RabbitMQ on both. This would allow you to
roll out a new version of RabbitMQ into production while keeping the old version
around as a precaution. There are many reasons and situations where it’s advanta-
geous to have two completely independent RabbitMQ servers available to handle each
others load. Whatever the reason, a warren can be useful when Rabbit’s built-in clus-
tering doesn’t quite fit the bill.

 We’d be remiss if we didn’t mention that there’s another way to set up a warren for
high availability. A different school of thought says, “I want my standby node to have
all of the messages that were in the active node when it failed.” Our approach with
load balancers and shared-nothing architecture doesn’t give you this. Instead our
approach gives you an immediate place to start publishing and consuming messages
again, and when you restore the active node, it allows your consumers to reattach and
drain the messages that were in the queues when the active node went down. You
don’t lose any messages old or new, but you do have to wait for the active node to be
restored for the old messages to become available again. The other school of thought
 www.it-ebooks.info

http://www.it-ebooks.info/

122 CHAPTER 7 Warrens and Shovels: failover and replication
for building a warren says you should instead build it with shared storage between
your active and standby servers with RabbitMQ not running on the standby node (see
figure 7.2). Then when a failure of the active server happens you use Pacemaker1 to
transfer the RabbitMQ IP address to the standby node and then start up Rabbit on
that node to pick up your current metadata, contents, and state from the shared stor-
age. There are only a couple of problems with that setup in our opinion. First, the
storage is shared, so if some kind of corruption kills your active node, that corruption
will be present on the standby node too and prevent RabbitMQ from starting there.
Second, you need to be sure that the standby RabbitMQ has the same node name and
UID as RabbitMQ on the primary node. If either of these aren’t true, the standby
Rabbit won’t be able to access the files on the shared storage and fire up. Lastly, using
this setup for a warren means your standby Rabbit isn’t actually running. So there’s a
possibility that something will have changed on the standby node that will prevent
Rabbit from starting up when you need it. That’s a lot of complexity and we prefer
simple.

 Due to the fact that corruption gets replicated and the lack of a fully running
RabbitMQ on both nodes with the shared storage approach, we prefer the load
balancer–based warren and that’s the one we’ll show you. But if a shared storage war-
ren sounds appealing or fits your use case better, there’s a good tutorial on the
RabbitMQ website that explains how to set it up: http://www.rabbitmq.com/
pacemaker.html. Lastly, if you’ve built your app using the principle of “assume

1 Pacemaker is a set of cluster utilities for Linux that handle IP failover between active and standby nodes, as
well as automatically start up the protected application on the standby node when failure occurs. Pacemaker
is available from http://www.clusterlabs.org/.

Consumer

RabbitMQ
standalone server
rabbit_a@localhost

Queue 1

Exchange A

RabbitMQ
standalone server
rabbit_b@localhost

Queue 2

Exchange B

Secondary node
(only used if
primary fails)

Primary node

Figure 7.1 Load balancer-
based warren
 www.it-ebooks.info

http://www.clusterlabs.org/
http://www.rabbitmq.com/pacemaker.html
http://www.rabbitmq.com/pacemaker.html
http://www.it-ebooks.info/

123Setting up load balancer–based master/slave clusters
nothing” and you always rebuild your fabric when your app reconnects, then your app
can use the load balancer–based warren without any changes.

7.2 Setting up load balancer–based master/slave clusters
Actually setting up a load balancer–based warren is simple and builds on all of the
concepts you’ve acquired so far. First, you’ll start two RabbitMQ nodes on your devel-
opment system and name them rabbit_a and rabbit_b so they don’t conflict with
the local cluster nodes you already have running (run from your Rabbit installation
directory):

$ RABBITMQ_NODE_PORT=5675 RABBITMQ_NODENAME=rabbit_a \
./sbin/rabbitmq-server -detached
Activating RabbitMQ plugins ...
$ RABBITMQ_NODE_PORT=5676 RABBITMQ_NODENAME=rabbit_b \
./sbin/rabbitmq-server -detached
Activating RabbitMQ plugins ...

With your active/standby nodes running, you now need to set up a new HAProxy con-
figuration to treat rabbit_b as a backup server so it’ll only be used when rabbit_a
goes down. In fact the warren configuration for HAProxy (shown in the following list-
ing) looks remarkably similar to the cluster configuration.

Consumer

RabbitMQ
standalone server
rabbit@10.1.62.2

Queue 1

Exchange A

RabbitMQ
standalone server
rabbit@10.1.62.3

Queue 1

Exchange A
Pacemaker

(control virtual IP,
storage owner,
starts standby

rabbit)

Virtual IP: 10.1.61.1

Shared storage

Figure 7.2 Shared storage–based warren
 www.it-ebooks.info

http://www.it-ebooks.info/

124 CHAPTER 7 Warrens and Shovels: failover and replication

bal
o

Bac
n

HAProxy Config for Local RabbitMQ SLB Warren

global
 log 127.0.0.1 local0 info
 maxconn 4096
 stats socket /tmp/haproxy_2.socket uid haproxy mode 770 level admin
 daemon

defaults
 log global
 mode tcp
 option tcplog
 option dontlognull
 retries 3
 option redispatch
 maxconn 2000
 timeout connect 5s
 timeout client 120s
 timeout server 120s

listen rabbitmq_local_cluster 127.0.0.1:5680

 mode tcp
 balance roundrobin

 server rabbit_a 127.0.0.1:5675 check inter 5000 rise 2 fall 3

 server rabbit_b 127.0.0.1:5676 backup check inter 5000 rise 2 fall 3

listen private_monitoring :8101
 mode http
 option httplog
 stats enable
 stats uri /stats
 stats refresh 5s

Here the HAProxy local socket B and stats page D have been changed to avoid con-
flicts with the Rabbit cluster HAProxy instance. The more interesting change, though,
is C the addition of a new HAProxy configuration option: backup. When you add
backup to a backend server directive you’re telling HAProxy to only use that backend
server when all of the nonbackup servers are unavailable. If you check the warren’s
HAProxy stats page (see figure 7.3) by going to http://localhost:8101/stats, you’ll see
rabbit_b is a light blue color instead of the normal light green for an available server
(like rabbit_a). Light blue means rabbit_b is available but is a backup server (an
unavailable backup server is colored red like any other backend server).

 To test out your newly minted warren let’s start up the consumer from the cluster
section by running python cluster_test_consumer.py localhost 5680:

$ python cluster_test_consumer.py localhost 5680
Ready for testing!

You’re connected and ready for action. Test it by running python cluster_test

_producer localhost 5680:

Listing 7.1 HAProxy configuration for a load balancer–based warren

Logging options

Load
balancing
defaults

Frontend
IP for
consumers
and producers

B

Load
ancing
ptions

Active
node

Statistics pageD
C

kup
ode
 www.it-ebooks.info

http://www.it-ebooks.info/

125Setting up load balancer–based master/slave clusters
 [producer output]
Sent cluster test message.
 [consumer output]
Ready for testing!
Received: Cluster Test!/1301612486

Looks like everything is working like clockwork. It’s time to test failover. You’ll fail
rabbit_a by stopping its Erlang app. From your RabbitMQ installation directory run
./sbin/rabbitmqctl -n rabbit_a stop_app. Now remember you told HAProxy to
only health-check backend servers every 5 seconds (inter 5000) and then to require a
backend server to fail three times (fall 3) before it’s considered unavailable. So
you’ll need to wait 15 seconds before your consumer’s reconnections will succeed.
Once HAProxy has failed over to the standby RabbitMQ, you should see the following:

 $ python cluster_test_consumer.py localhost 5680
 Ready for testing!
 Received: Cluster Test!/1301612486
 Traceback (most recent call last):
 File "cluster_test_consumer.py", line 58, in <module>
 channel.start_consuming()
 File "/Library/Python/2.6/site-packages/pika-0.9.6-py2.6.egg/
 pika/adapters/blocking_connection.py", line 293, in start_consuming
 self.transport.connection.process_data_events()
 File "/Library/Python/2.6/site-packages/pika-0.9.6-py2.6.egg/
 pika/adapters/blocking_connection.py", line 87, in process_data_events
 raise AMQPConnectionError
 AMQPConnectionError
 ...
 Ready for testing!

Figure 7.3 HAProxy statistics page for your warren
 www.it-ebooks.info

http://www.it-ebooks.info/

126 CHAPTER 7 Warrens and Shovels: failover and replication
If you check the HAProxy stats page (http://localhost:8101/stats) you should see a 1
under the Cur heading in the Sessions section. That confirms that your consumer is
connected to the backup server. Now if you publish again with python

cluster_test_producer localhost 5680, does the message still reach the consumer?

 [producer output]
 Sent cluster test message.
 [consumer output]
 ...
 Ready for testing!
 Received: Cluster Test!/1301612545

Yes it does! You have a fully functional active/standby RabbitMQ warren with a load
balancer–based failover. The best part is that you can be assured that when the failover
occurs, you don’t have to worry about RabbitMQ failing to start on the standby node,
because it’s already running! Since Rabbit is running on both the active and standby
nodes at all times, you can monitor both all the time and know immediately if your
standby has become unavailable before it’s ever called on. That’s something else you
can’t do with a shared storage–warren.

 With clustering and warrens under your belt, you’re covered when it comes to han-
dling failure and scaling within your data center. But what do you do when you need
to replicate messages between Rabbits in different data centers? That’s when you need
a Shovel.

7.3 Long-distance communication and replication
RabbitMQ clustering is great for expanding your messaging performance inside one
data center, but where it breaks down is when you need to route messages from a
Rabbit server in one city to a Rabbit server in another. You might try to use clustering
to bridge your geo-diverse data centers, but you’ll run into a couple of show stoppers.
First and foremost, you have no control over the cluster nodes on which RabbitMQ
chooses to place your queues. So even if you had two cluster nodes in Chicago and a
third in Los Angeles, you’d have no way of ensuring that queue A is in one city and
queue C is in the other. Second, Erlang’s OTP communication framework doesn’t tol-
erate latency well. So those expensive WAN links between Chicago and LA are going to
cause havoc and all sorts of strange behavior within your cluster. Then there’s the fact
that RabbitMQ has no strategy to cope with network partitioning if that WAN link fails.
Right about now is when you might be wondering, “So how do you handle geo-diverse
infrastructures with RabbitMQ?” The answer is to use a Shovel. But before you can use
it, you need to know some background on how Shovel works.

7.3.1 Shoveling your Rabbits: an introduction to the Shovel plugin

Shovel is a plugin for RabbitMQ that enables you to define replication relationships
between a queue on one RabbitMQ server and an exchange on another. Originally
designed by LShift (one of the original parents of Rabbit Technologies), Shovel is now
maintained by RabbitMQ’s core development team. Like most RabbitMQ plugins,
 www.it-ebooks.info

http://www.it-ebooks.info/

127Long-distance communication and replication
Shovel is its own Erlang application that just happens to be loaded by Rabbit on
startup. Unlike most plugins, Shovel doesn’t deeply integrate with the Rabbit core—
when you define a replication relationship between two servers in Shovel you specify
the full URL of both servers including username and password (say, amqp://
guest:guest@localhost:5675/). In some respects, Shovel could’ve been written as a
standalone Erlang application instead of as a RabbitMQ plugin. But by virtue of being
a RabbitMQ plugin, you can rely on RabbitMQ to automatically start Shovel and the
defined replication relationships every time you boot Rabbit.

 Perhaps a real-world example would demonstrate how Shovel can help. Farmer
Jacques runs Avocados Supreme Limited, a large avocado farming company in South-
ern California. Jacques has a problem: for many years, Avocados Supreme has oper-
ated out of a single warehouse in Goleta, California, but recently the warehouse has
been operating at 80% and sometimes orders experience delays when inventory runs
out. To fix this, Jacques opens up a second warehouse down the road in Carpinteria
(see figure 7.4). The only purpose of the Carpinteria warehouse is to carry extra
inventory and ship orders when Goleta runs out.

 One of the crown jewels in the Avocados Supreme operation is their order-
processing system that uses RabbitMQ to link their website to fulfillment in the Goleta

Warehouse
RabbitMQ

#1

Web
site

Goleta Carpinteria

Warehouse
RabbitMQ

#2

Figure 7.4 Warehouse map topology
 www.it-ebooks.info

http://www.it-ebooks.info/

128 CHAPTER 7 Warrens and Shovels: failover and replication
warehouse. With the Carpinteria warehouse now online, Pierre (Avocado Supreme’s
technology architect) has been in a pickle trying to figure out how to link in the new
warehouse to receive orders Goleta can’t fulfill. Since he can’t use RabbitMQ cluster-
ing to bridge the two warehouses, Pierre had been planning on updating the website
to start publishing to RabbitMQ servers in both Goleta and Carpinteria. But Pierre’s
concerned that this will slow down ordering on the website since the web app now has
to publish to both Goleta (where the website is) and to Carpinteria (a much longer
round trip) before he can confirm the order to the customer (see figure 7.5). Not to
mention that Pierre now has to modify the web app to do this, when one of the rea-
sons why he chose messaging was the ability to route messages without changing the
frontend code. While Pierre is bemoaning his choices, he discovers Shovel.

 After doing some experimenting, Pierre discovers he can use Shovel to create a
new queue in Goleta that subscribes to the incoming_orders exchange that the web-
site publishes to. Then he can tell Shovel to consume these messages and republish
them over the WAN link to the incoming_orders exchange in the Carpinteria
RabbitMQ where they’ll be routed to the backup order fulfillment (see figure 7.6).
The best part is the website doesn’t have to slow down order confirmation at all. It can
keep publishing to the Goleta RabbitMQ that’s on the same LAN and give zippy order
confirmations back to avocado-loving customers. Then Shovel can asynchronously
replicate those orders to Carpinteria without the website ever being aware or affected
by the increased latency. It’s a perfect scenario for Pierre, who receives a beach vaca-
tion to Monterey for his brilliance.

RabbitMQ
Goleta

warehouse

RabbitMQ
Carpinteria
warehouse

Website

Avocado
order

Figure 7.5 Order processing without Shovel
 www.it-ebooks.info

http://www.it-ebooks.info/

129Long-distance communication and replication
So whether you need to replicate messages between RabbitMQ servers across the
country or across the street, Shovel is your go-to solution. So how do you install Shovel
and start the message-replicating magic?

7.3.2 Installing Shovel

Installing Shovel is straightforward. As of RabbitMQ 2.7.0, the rabbitmq-shovel and
amqp_client plugins are packaged with Rabbit; you just need to enable them (make
sure /etc/rabbitmq/ exists before you enable the plugins). From your RabbitMQ
working directory, run the following:

$./sbin/rabbitmq-plugins enable amqp_client
The following plugins have been enabled:
 amqp_client
Plugin configuration has changed. Restart RabbitMQ for
changes to take effect.
$./sbin/rabbitmq-plugins enable rabbitmq_shovel
The following plugins have been enabled:
 erlando
 rabbitmq_shovel
Plugin configuration has changed. Restart RabbitMQ for
changes to take effect.

If you’re running a version of RabbitMQ older than 2.7.0, you’ll need to retrieve and
install the plugins yourself. To do so, first download the rabbitmq-shovel and
amqp_client plugins from http://www.rabbitmq.com/plugins.html and install them
in the ./plugins/ directory of your RabbitMQ installation:

RabbitMQ
Goleta

warehouse

RabbitMQ
Carpinteria
warehouse

Website

Avocado
order

done

Shovel (replicated at leisure)

Figure 7.6 Order processing with Shovel
 www.it-ebooks.info

http://www.rabbitmq.com/plugins.html
http://www.it-ebooks.info/

130 CHAPTER 7 Warrens and Shovels: failover and replication
 $ cd ./plugins/
 $ wget http://www.rabbitmq.com/.../v2.6.1/amqp_client-2.6.1.ez
 Resolving www.rabbitmq.com... 208.91.1.36
 Connecting to www.rabbitmq.com|208.91.1.36|:80... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 154928 (151K) [application/andrew-inset]
 Saving to: `amqp_client-2.6.1.ez'
 100%[===============================>] 154,928 120K/s in 1.3s
 $ wget http://www.rabbitmq.com/.../v2.6.1/rabbitmq-shovel-2.6.1.ez
 Resolving www.rabbitmq.com... 208.91.1.36
 Connecting to www.rabbitmq.com|208.91.1.36|:80... connected.
 HTTP request sent, awaiting response... 200 OK
 Length: 42131 (41K) [application/andrew-inset]
 Saving to: `rabbitmq-shovel-2.6.1.ez'
 100%[==================================>] 42,131 112K/s in 0.4s

That’s all there is to it. Well, not quite. You still need to configure Shovel and start up
your RabbitMQ brokers.

7.3.3 Configuring and running Shovel

All of Shovel’s configuration information, from replication relationships to reconnec-
tion settings, goes into the rabbitmq.config file. Like the rest of RabbitMQ’s config
file, Shovel’s configuration is formatted as a valid Erlang tuple called rabbitmq_shovel
with configuration directives nested inside. Since the configuration can look fairly com-
plicated, let’s look at the following listing, which shows how your rabbitmq.config with
a Shovel configuration looks, and then examine the individual parts.

[

 {mnesia, [{dump_log_write_threshold, 100}
]},
 {rabbit, [{vm_memory_high_watermark, 0.4}
]},
 {rabbitmq_shovel,
 [{shovels,
 [{avocado_order_shovel,
 [{sources, [{broker, "amqp://guest:guest@localhost:5675/"},
 {declarations,
 [{'queue.declare',
 [{queue, <<"backup_orders">>},
 durable]},
 {'exchange.declare',
 [{exchange, <<"incoming_orders">>},
 {type, <<"direct">>},
 durable]},
 {'queue.bind',
 [{exchange, <<"incoming_orders">>},
 {queue, <<"backup_orders">>},
 {routing_key, <<"warehouse">>}]}
]}]},
 {destinations, [{broker, "amqp://guest:guest@localhost:5676"},

Listing 7.2 rabbitmq.config file with Shovel configuration
 www.it-ebooks.info

http://www.it-ebooks.info/

131Long-distance communication and replication
 {declarations,
 [{'queue.declare',
 [{queue, <<"warehouse_carpinteria">>},
 durable]},
 {'exchange.declare',
 [{exchange, <<"incoming_orders">>},
 {type, <<"direct">>},
 durable]},
 {'queue.bind',
 [{exchange, <<"incoming_orders">>},
 {queue, <<"warehouse_carpinteria">>},
 {routing_key, <<"warehouse">>}]}
]}]},
 {queue, <<"backup_orders">>},
 {ack_mode, no_ack},
 {publish_properties, [{delivery_mode, 2}]},
 {publish_fields, [{exchange, <<"incoming_orders">>},
 {routing_key, <<"warehouse">>}]},
 {reconnect_delay, 5}
]}
]
 }]
 }
].

Right under the rabbitmq_shovel directive you see a subsection called shovels. This
is a list of shovel definitions where each shovel defines a replication relationship
between two RabbitMQ servers. In this case, you only have one shovel defined called
avocado_order_shovel. Within that shovel, you define the sources that your messages
to be replicated will come from and the destinations where those messages will go to.
Both sources and destinations contain the same types of configuration directives:

 broker or brokers—URL defining the server, username, password, and vhost of
the RabbitMQ server you’ll be shoveling messages from (or to). If a RabbitMQ
cluster is your source or destination, use brokers and follow it with more than
one URL string wrapped in [] (for example, ["amqp://server1...", "amqp://
server2..."]). This will let Shovel fail over to another cluster node if the pri-
mary node fails.

 declarations—List of AMQP commands to declare the queues, exchanges, and
bindings that need to be in place for the shovel to operate.

The declarations are the trickiest to understand. They’re nested inside a list (array)
where each member is an Erlang tuple defining the AMQP command to run along
with another list of tuples that provide the arguments to that AMQP command:

{declarations,
 [{'queue.declare',
 [{queue, <<"backup_orders">>},
 durable]},
 {'exchange.declare',
 [{exchange, <<"incoming_orders">>},
 www.it-ebooks.info

http://www.it-ebooks.info/

132 CHAPTER 7 Warrens and Shovels: failover and replication
 {type, <<"direct">>},
 durable]},
 {'queue.bind',
 [{exchange, <<"incoming_orders">>},
 {queue, <<"backup_orders">>},
 {routing_key, <<"warehouse">>}]}
]}]},

For example, this declarations section instructs Shovel to declare a queue called
backup_orders and an exchange called incoming_orders (remember our rule about
not assuming any of our fabric is in place). Then you tell the shovel to bind
backup_orders to incoming_orders using the routing key warehouse. You may notice
a couple of funny things about those directives. First, all of the strings aren’t simply
quoted; they also have double angle brackets around them: <<"backup_orders">>.
The angle brackets tell Erlang not to treat the information as a string but as a special
data type called a binary. You don’t have to understand what a binary is, only that
Shovel will crash on startup if you forget the angle brackets. The other funny thing
you may notice is that the durable argument doesn’t get wrapped in curly braces like
all of the other arguments. This is because durable doesn’t take a value. It’s either
present or it’s not. You only need the curly braces when it’s an argument that takes a
value. Otherwise, the AMQP commands and their arguments should look familiar to
you, and you can specify any of the arguments you’d normally have in the language of
your choice. For example, though you wouldn’t normally want to, you could define
the backup_orders queue as auto_delete. Like durable, since auto_delete doesn’t
take a value, just add it (separate by a comma) without curly braces after durable in
the queue.declare arguments list.

 After you’ve defined the sources and destinations, you also need to define some
general settings for the shovel. All of these settings take values, so they’re wrapped in
curly braces. The settings you can define are

 queue—The name of the queue in the source server that Shovel will listen on
for messages to replicate.

 ack_mode—Whether Shovel should acknowledge message receipt on the source
before completing delivery to the destination.

 prefetch_count—How many messages Shovel will internally buffer at any given
time. The internal buffer is a stopover point between the source and destina-
tion that’s not protected during failure of Shovel.

 publish_properties—A list of properties to set specifically when publishing
messages to the destination. For example {delivery_mode, 2} will set the
delivery_mode to durable (2). By default, Shovel replicates the properties of
the source message when publishing to the destination unless a property is spe-
cifically overridden in publish_properties.
 www.it-ebooks.info

http://www.it-ebooks.info/

133Long-distance communication and replication
 publish_fields—Similar to publish_properties, but defines the exchange to
publish messages into on the destination server and the routing_key to tag on
the messages. If exchange or routing_key isn’t defined, Shovel replicates the
omitted settings from the original message.

 reconnect_delay—How many seconds to wait to reconnect to a source or desti-
nation after being disconnected.

So in your case you want to tell Shovel to consume messages from the backup_orders
queue on the source server and deliver them to the incoming_orders exchange on
the destination server with the routing key warehouse. You don’t want to auto
acknowledge the messages (for example, ack_mode set to on_confirm or on_publish),
but you do want the messages published as durable (delivery mode 2). Finally, you
want Shovel to wait 5 seconds before reconnecting if it becomes disconnected. Putting
this all together, here’s what it looks like in the configuration file:

 {queue, <<"backup_orders">>},
 {ack_mode, no_ack},
 {publish_properties, [{delivery_mode, 2}]},
 {publish_fields, [{exchange, <<"incoming_orders">>},
 {routing_key, <<"warehouse">>}]},
 {reconnect_delay, 5}

Figure 7.7 shows the topology your Shovel defines. You’re taking orders from the
backup_orders queue on Rabbit server localhost:5675 and publishing them into
the incoming_orders exchange on Rabbit server localhost:5676.

RabbitMQ
Goleta warehouse

RabbitMQ
Carpinteria warehouse

Shovel

incoming orders
exchange

warehouse_goleta
queue

backup_orders
queue

incoming orders
exchange

warehouse_carpinteria
queue

Order
67

Order
67

Order
67

Order
67

Order
67

Figure 7.7 Shovel order processing topology
 www.it-ebooks.info

http://www.it-ebooks.info/

134 CHAPTER 7 Warrens and Shovels: failover and replication

Pr
ackno

E

con

E
con

to Ra
Now that your Shovel configuration is complete, it’s time to fire up your source and
destination Rabbit servers and see how it works. You’ll spin up two standalone
RabbitMQ nodes on your development system for the test. Since both the source and
destination servers will be using the same rabbitmq.config file, you’ll end up with two
identical shovels running: one on the source and one on the destination. Normally,
you’d only want one shovel, but since you’re running both nodes locally, one configu-
ration file for both is simpler for testing. If you still have rabbit_a and rabbit_b run-
ning from the warrens section, go ahead and stop them now, because you’ll reuse them
for this example. Once they’re stopped, change to your RabbitMQ installation
directory and run RABBITMQ_NODE_PORT=5675 RABBITMQ_NODENAME=rabbit_a./sbin/
rabbitmq-server to start the source node (you’re not using the -detached option so
that you can see errors in your config file if they exist). Since your first terminal is occu-
pied with the source node in the foreground, open a new terminal and then run
RABBITMQ_NODE_PORT=5676 RABBITMQ_NODENAME=rabbit_b./sbin/rabbitmq-server

to start the destination node. With both your source and destination running, you’re
going to need a consumer and producer to test the setup. Variants of your cluster con-
sumer and producer modified to handle avocado orders should do nicely. First let’s
look at the consumer, shown in the following listing.

import sys, json, pika, time, traceback
def msg_rcvd(channel, method, header, body):
 message = json.loads(body)

 print "Received order %(ordernum)d for %(type)s." % message
 channel.basic_ack(delivery_tag=method.delivery_tag)

if __name__ == "__main__":
 AMQP_SERVER = sys.argv[1]
 AMQP_PORT = int(sys.argv[2])
 creds_broker = pika.PlainCredentials("guest", "guest")
 conn_params = pika.ConnectionParameters(AMQP_SERVER,
 port=AMQP_PORT,
 virtual_host="/",
 credentials=creds_broker)

 conn_broker = pika.BlockingConnection(conn_params)
 channel = conn_broker.channel()

 print "Ready for orders!"
 channel.basic_consume(msg_rcvd,
 queue="warehouse_carpinteria",
 no_ack=False,
 consumer_tag="order_processor")
 channel.start_consuming()

It’s not much different than the consumers you built in chapter 4 for processing
alerts. Your producer (shown in the following listing) is even simpler, with the only
change being the format of the avocado order you’re sending.

Listing 7.3 Shovel test consumer

int and
wledge

order

Broker
settings

stablish
broker
nection
settings

stablish
nection
bbitMQ

Start
processing
orders
 www.it-ebooks.info

http://www.it-ebooks.info/

135Long-distance communication and replication
import sys, json, pika, random
AMQP_HOST = sys.argv[1]
AMQP_PORT = int(sys.argv[2])
AVOCADO_TYPE = sys.argv[3]

creds_broker = pika.PlainCredentials("guest", "guest")
conn_params = pika.ConnectionParameters(AMQP_HOST,
 port=AMQP_PORT,
 virtual_host = "/",
 credentials = creds_broker)
conn_broker = pika.BlockingConnection(conn_params)
channel = conn_broker.channel()

msg = json.dumps({"ordernum": random.randrange(0, 100, 1),
 "type" : AVOCADO_TYPE})
msg_props = pika.BasicProperties(content_type="application/json")
channel.basic_publish(body=msg, mandatory=True,
 exchange="incoming_orders",
 properties=msg_props,
 routing_key="warehouse")
print "Sent avocado order message."

Your consumer takes two command-line arguments: the destination host name and
the destination port. The producer takes the same arguments but adds a third: the
avocado type (hass, fuerte, and so on—any single word will do). You’re going to pub-
lish an avocado order into the source node with the producer, and then through the
magic of Shovel, receive and print the order from the consumer attached on the com-
pletely independent destination server. Let’s fire up your consumer and connect it to
the destination node:

$ python shovel_consumer.py localhost 5676
Ready for orders!

Now let’s send it an avocado order by publishing into the source node:

$ python shovel_producer.py localhost 5675 hass

Back on the consumer, you should see something like this:

$ python shovel_consumer.py localhost 5676
Ready for orders!
Received order 66 for hass.

Hot diggity, you have a working shovel that’s enabling publishes on one RabbitMQ
server to be consumed on a completely independent one. Though more tedious to set
up than clustering, Shovel extends the reach of RabbitMQ by allowing you to create
even more robust topologies that now include federation between independent
RabbitMQ servers and clusters. In the future RabbitMQ will support robust federation
natively, but until then Shovel will provide you the federation you need today.

Listing 7.4 Shovel test producer

Establish
connection
to broker

Connect to
RabbitMQ
and send
message
 www.it-ebooks.info

http://www.it-ebooks.info/

136 CHAPTER 7 Warrens and Shovels: failover and replication
7.4 Summary
It’s been a long trip through all the options for making Rabbit resilient, but when we
started you were at the mercy of server failure taking down your Rabbits and knocking
your messaging infrastructure offline. Now you no longer have to fear the power cord.
If what you really need is absolute high availability with no possibilities of message loss,
you can build a warren using two standalone RabbitMQ servers, with a load balancer
making them appear as one to your applications. If for some reason you then need to
extend this reliability to bridge Rabbits in multiple data centers, you know how to use
Shovel to provide the replication to make that a reality. Perhaps most important, you
know how to make your applications resilient in the face of individual Rabbit failure.
By making them assume nothing about the state of the servers they’re connecting to
and implementing reconnecting functionality, your consumers and producers can
take advantage of any of the RabbitMQ redundancy options you’ve learned and sur-
vive node failure without missing a beat. Your apps and Rabbits are now robust, resil-
ient, and ready for production! But what good is a robust and distributed RabbitMQ
infrastructure if it’s a pain to administer? To answer that question, we’re heading next
into the wonderful world of the RabbitMQ management plugin.
 www.it-ebooks.info

http://www.it-ebooks.info/

Administering RabbitMQ
from the Web
So far our way of administering RabbitMQ has been based on the command line via
the rabbitmqctl script. After typing rabbitmqctl so many times, you may have
dreamed about a way to administer the server from a graphical interface, since
there’s phpMyAdmin for MySQL or Futon for CouchDB. The need for such a graphi-
cal interface led the RabbitMQ community to produce several web admins for
RabbitMQ with more or less the same features: displaying queue stats, adding users,
creating vhosts, and so on. Thankfully the RabbitMQ team listened to the call from
the community and developed the RabbitMQ Management plugin. Along the way,
they improved the server’s Erlang API in order to collect more stats about the bro-
ker usage, such as messages sent per second, queue usage rates, and more. In this

This chapter covers
 Advantages of the Management plugin over the rabbitmqctl script

 Enabling RabbitMQ Management plugin

 Management plugin features

 Management users, queue, and exchanges from the web console

 Introduction to the Management plugin REST interface
137

 www.it-ebooks.info

http://www.it-ebooks.info/

138 CHAPTER 8 Administering RabbitMQ from the Web
chapter you’ll learn about using this plugin, from enabling it to using its web interface
to manage users, queues, and exchanges. Further on you’ll learn about the new REST
API, which can be easily accessed via the new rabbitmqadmin script.

8.1 Beyond rabbitmqctl:
the RabbitMQ Management plugin
First things first—so far we haven’t discussed much about plugins. They’re a way to
extend the behavior of the server in ways that weren’t envisioned by its creators. Plug-
ins for RabbitMQ are written in Erlang and they run together with the server in the
same Erlang VM. We’ll have a chapter later devoted to building your own RabbitMQ
plugin; therefore, in this one we’ll focus on enabling and working with one of them.
Let’s see why you need the Management plugin, what its features are, and how to get it
enabled and running on your machines.

8.1.1 Why you need the Management plugin

Say you love your rabbitmqctl script (we do as well). We understand if you ask why
you’d ever need to use this plugin. Here are some reasons.

 The rabbitmqctl script is cool and it lets you do a lot of things for managing your
server, but it has a couple of shortcomings. First, to run the rabbitmqctl script, your
current Linux user needs to have access to the Erlang cookie that was used to start the
server. Since the server will probably be running as root or as a rabbit user, you need
access to their files. That’s not a problem if you have a one-man team or a small num-
ber of developers, but what happens with big teams? Managing permissions for that
file can get messy. Do you share passwords across the teams? And the story doesn’t end
there. When you have access to the content of the .erlang.cookie file it means you
can connect directly from an Erlang console to the RabbitMQ process. This means
you can perform pretty destructive operations on the server—accidentally or not—no
one will stop you.

 Apart from the security problems, not all the team members on a project are CLI
addicts. We’ve worked in projects where even the product owner was interested in
knowing how many background notifications were left on the queue. Besides that,
sometimes you just want to click and see the information with nice colors; it’s easier to
understand than text output produced by the rabbitmqctl script.

8.1.2 Management plugin features

What does the Management plugin looks like? Figure 8.1 shows a nice web interface
where you can access the following features:

 Overview server stats—messages delivered, server memory information, num-
ber of Erlang processes, and so on

 Import/Export server configuration
 Monitor connections to the server
 List open channels
 www.it-ebooks.info

http://www.it-ebooks.info/

139Beyond rabbitmqctl: the RabbitMQ Management plugin
 List/Add exchanges
 List/Add queues
 Modify queue bindings
 List/Add users
 List/Add vhosts

Now let’s get your fingers to work and enable the plugin.

8.1.3 Enabling the Management plugin

With the latest release of RabbitMQ (2.7.0 as of this writing), installing plugins
became simple. As a matter of fact there’s nothing to install anymore since the newer
server packages come with the plugins bundled in the distribution. The only thing
you need to do is to enable them. If you go to the folder where you installed
RabbitMQ, you can see the plugins that you have available by entering the following
command:

$ ls plugins/
README
amqp_client-2.7.0.ez
eldap-2.7.0-git.ez
erlando-2.7.0.ez
mochiweb-1.3-rmq2.7.0-git.ez
rabbitmq_auth_backend_ldap-2.7.0.ez
rabbitmq_auth_mechanism_ssl-2.7.0.ez
rabbitmq_consistent_hash_exchange-2.7.0.ez
rabbitmq_federation-2.7.0.ez

Figure 8.1 The RabbitMQ Management plugin main interface
 www.it-ebooks.info

http://www.it-ebooks.info/

140 CHAPTER 8 Administering RabbitMQ from the Web
rabbitmq_jsonrpc-2.7.0.ez
rabbitmq_jsonrpc_channel-2.7.0.ez
rabbitmq_jsonrpc_channel_examples-2.7.0.ez
rabbitmq_management-2.7.0.ez
rabbitmq_management_agent-2.7.0.ez
rabbitmq_management_visualiser-2.7.0.ez
rabbitmq_mochiweb-2.7.0.ez
rabbitmq_shovel-2.7.0.ez
rabbitmq_shovel_management-2.7.0.ez
rabbitmq_stomp-2.7.0.ez
rabbitmq_tracing-2.7.0.ez
rfc4627_jsonrpc-2.7.0-git.ez
webmachine-1.7.0-rmq2.7.0-hg.ez

The files ending with the .ez extension are the plugins and their supporting libraries.
For example, the management plugin that you want to enable depends on others like
the AMQP Erlang client amqp_client-2.7.0.ez and the webmachine plugin web-
machine-1.7.0-rmq2.7.0-hg.ez, among others. To enable the Management plugin,
you have to run the following command from the broker sbin folder:

$./rabbitmq-plugins enable rabbitmq_management
The following plugins have been enabled:

mochiweb
webmachine
rabbitmq_mochiweb
amqp_client
rabbitmq_management_agent
rabbitmq_management

Plugin configuration has changed. Restart RabbitMQ
for changes to take effect.

As you can see, the rabbitmq_management plugin was enabled1 along with the support-
ing plugins, but you still need to restart the broker for the changes to take effect:

./rabbitmqctl stop
$./rabbitmq-server -detached
Activating RabbitMQ plugins ...
6 plugins activated:
* amqp_client-2.7.0
* mochiweb-1.3-rmq2.7.0-git
* rabbitmq_management-2.7.0
* rabbitmq_management_agent-2.7.0
* rabbitmq_mochiweb-2.7.0
* webmachine-1.7.0-rmq2.7.0-hg

If everything went well, you can point your browser to http://localhost:55672/mgmt/
where you should be welcomed by an authentication prompt asking for a username
and a password. In the meantime you can use guest as user and password. Once you

1 If after running the command ./rabbitmq-plugins enable rabbitmq_management you got an error
regarding file permissions, then you probably need to modify the permissions of the folder /etc/rabbitmq/.
Do that by chowning that folder to the user that runs the rabbitmq process and then try again to enable the
plugin.
 www.it-ebooks.info

http://www.it-ebooks.info/

141Managing RabbitMQ from the web console
submit the information, you should see the management interface as in figure 8.1. If
you’re not running the server in localhost, then you’ll have to modify that URL to fit
your environment.

 By following such easy steps, you got the plugin up and running. Now it’s time to
learn how to use it, so let’s move on to the next section to start playing with it. Let’s
manage RabbitMQ with the click of a mouse.

8.2 Managing RabbitMQ from the web console
Let’s look again at figure 8.1. As you can see, you have a navigation menu on top
where you can browse several items like Connections, Exchanges, or Queues. Then the
interface presents a general overview of the server status. You can see how many mes-
sages are ready to be delivered from all of your queues, how many are waiting to be
acknowledged, and the total number of messages. This information can be useful
when debugging your applications because, for example, the number of unacked
messages tells you about the work your consumers are performing. If the number
starts to get too high, that could be a sign that your consumers are getting slow. The
good thing is that you can see this information right on the front page, without click-
ing 20 times to reach it. There’s more to it in the web console; in this section you’ll
learn how to monitor the Erlang VM to find out the number of processes running on
it, and also see how to export your configuration into JSON format, as well as how to
import your configuration back to the server.

8.2.1 Monitoring the Erlang VM

If you scroll down the page a bit you’ll see some useful information about the Erlang
node where RabbitMQ is running. As you saw in chapter 3, you can use the node
name information to remotely connect to RabbitMQ and perform advanced adminis-
tration operations on it. Another interesting value is the number of Erlang processes:
if it reaches the limit, then RabbitMQ will stop working. You can increase the limit by
modifying the +P option in the SERVER_ERL_ARGS from the rabbitmq-server init
script.2 Other important values that you can see there are the installed versions of
RabbitMQ and Erlang. Whenever you send a bug report to the RabbitMQ mailing list,
you should attach those values because that will make it easier for people to diagnose
the problem and be able to help you.

 On the next table you can see which port and host RabbitMQ is listening on. How
many times have you scratched our head because you couldn’t connect to the server
and at the end the problem was wrong connection options? Here you can see the cor-
rect options to avoid such problems.

2 The file where this option may be found will vary depending on how you installed RabbitMQ. If you followed
the installation instructions in chapter 1, then the rabbitmq-server script will be inside the sbin folder.
 www.it-ebooks.info

http://www.it-ebooks.info/

142 CHAPTER 8 Administering RabbitMQ from the Web
8.2.2 Importing configuration from JSON files

When you get to the end of the Overview page you can see a nice feature: you can
export the server configuration as a JSON file. You can then edit it and import it back.
Let’s see what this file looks like for the installation on your machine right now. Click
on Download Broker Configuration and save the file to your hard drive. The following
listing shows a formatted version of such file. Yours will be slightly different depending
on your setup.

{
"rabbit_version":"2.3.1",

"users":
[{"name":"guest",

"password_hash":"6r578x5zS5/8oo1acUUiebYkRiU=",
"administrator":true}],

"vhosts":[{"name":"/"}],
"permissions":[{"user":"guest", "vhost":"/", "configure":".*",

"write":".*", "read":".*"}],

"queues":[
{"name":"smart_proxy", "vhost":"/", "durable":true,

"auto_delete":false, "arguments":{}},
{"name":"control", "vhost":"/", "durable":true,

"auto_delete":false, "arguments":{}}],

"exchanges":[
{"name":"char_count_server", "vhost":"/", "type":"direct",

"durable":true, "auto_delete":false, "internal":false,
"arguments":{}},

{"name":"control", "vhost":"/", "type":"topic",
"durable":true, "auto_delete":false, "internal":false,
"arguments":{}},

{"name":"char_count", "vhost":"/", "type":"direct",
"durable":true, "auto_delete":false, "internal":false,
"arguments":{}}],

"bindings":[]}

For the sake of testing, try to add a new virtual host called book. Modify the vhost line
as in the following snippet:

"vhosts":[{"name":"/"}, {"name":"book"}],

Save your changes and upload the new file by clicking on the Upload button and
selecting your modified .json file. Once you’ve selected the file, click the Upload Bro-
ker Configuration button. If everything went well, you should see a confirmation mes-
sage as in figure 8.2. With this simple mechanism, you can update your server
configuration with ease. Also you can export and version the configuration files so you
can keep track of the server configuration at different points in time. Every time you
make a change in the config, you can keep the old settings just in case.

Listing 8.1 RabbitMQ JSON config
 www.it-ebooks.info

http://www.it-ebooks.info/

143Managing users from the web console
Let’s continue exploring the features provided by the Management plugin; in this
case, let’s see how you can manage the users that can access your server.

8.3 Managing users from the web console
Your next step will be to learn how to manage users from the web interface. You’ve
been using the default guest user in the book, which is fine for learning purposes, but
if you want to run RabbitMQ in production you need to take the precaution of creating
your own users and passwords. So in this section you’ll learn the easy way of doing that
via the web console. User management doesn’t end at user creation; you also have to
grant permissions to users. The second part of this section will deal with that task.

8.3.1 Creating users

Remember that when you opened the management page for the first time, you were
prompted for user and password information, and replied using guest:guest as val-
ues? It’s time to change that, because you don’t want your systems to be running with
the default user settings. Click on the Users link on the upper navigation menu, and
you should see the dialog box shown in figure 8.3.

 You’ll be presented with a list of the current users on the system. Below the list is a
form where you can add a new user. As in figure 8.3, create a user called rmqinaction
using rmqinaction as the password too. Finally, set the user as an administrator by
entering administrator in the tags field. The Management plugin supports the con-
cepts of user roles, which will determine what the user can do in the management
interface. Your users can be part of the management role, which means they can log in
to this interface. If you set the user as part of the monitoring role, then they can see
connections and node-related information. Your rmqinaction user was set as
administrator to grant access to all the features the Management plugin offers. In
figure 8.4 you can see the confirmation of your new user.

Figure 8.2 Importing JSON configuration
 www.it-ebooks.info

http://www.it-ebooks.info/

144 CHAPTER 8 Administering RabbitMQ from the Web

Figure 8.3 Creating new users

Figure 8.4 New user confirmation
 www.it-ebooks.info

http://www.it-ebooks.info/

145Managing users from the web console
8.3.2 Managing users’ permissions

As you can see from figure 8.5, the user that you just created doesn’t have permissions
to access any virtual host so it’s time to change that. Let’s grant the permissions to con-
figure the server and to write and read from queues. Click on the user name to go to
the permissions settings dialog box, shown in figure 8.5.

 Use the default settings that the Management plugin presents, as in the figure, so
just click on the Set Permission button to save those changes.

 As a last note on user management, you can also delete users from this page by
clicking the Delete button as in figure 8.6.

Figure 8.5 Managing users’ permissions

Figure 8.6 Delete users
 www.it-ebooks.info

http://www.it-ebooks.info/

146 CHAPTER 8 Administering RabbitMQ from the Web
With your users set up, the next step is to learn about managing queues and
exchanges. Let’s do that from the convenience of your browser.

8.4 Managing exchanges and queues
from the web console
What you’ve done so far can be easily achieved using the rabbitmqctl script, but with
rabbitmqctl, if you wanted to create exchanges or queues, then you had to resort to
your library of choice and write a script for such a task in it. Using the Management
plugin, you can create exchanges from the browser. Click on Exchanges on the navi-
gation menu. You’ll get a list of the current exchanges on the server, as in figure 8.7.

In the exchange list you get the following information:

 Virtual host on which the exchange exists
 Exchange name
 Exchange type
 Parameters list; D stands for durable for example.
 Message rate (in case you’re publishing messages to this exchange)

By clicking on the exchange name, you can see more details about it, such as the
exchange bindings. You can also add new bindings and even delete the exchange
completely. See figure 8.8 for an example.

Figure 8.7 Listing exchanges
 www.it-ebooks.info

http://www.it-ebooks.info/

147Managing exchanges and queues from the web console
Finally, if you go back to the exchange list page and scroll down, you’ll see the form
that allows you to create a exchange, as you can see in figure 8.9.

 Let’s create one using test as the name, direct as the exchange type, and leaving
all the other options as they appear on the form. Click Add Exchange and ta-da! In fig-
ure 8.10 you can see your new exchange created with a couple of clicks and keystrokes.

Figure 8.8 Viewing exchange details

Figure 8.9 Adding an exchange Figure 8.10 New exchange
 www.it-ebooks.info

http://www.it-ebooks.info/

148 CHAPTER 8 Administering RabbitMQ from the Web
8.4.1 Listing queues

In this chapter you’ve seen how the Management plugin aids comprehension of your
RabbitMQ architecture by providing visual representations of the fabric you’ve been
building. To nail down the point, let’s compare listing queues using rabbitmqctl ver-
sus the management web console.

 Move to the sbin folder of your RabbitMQ installation and do the following:

$./rabbitmqctl list_queues -p '/' name messages_ready \
 messages_unacknowledged messages
Listing queues ...
char_count_server-queue 0 0 0
myQueueDE 0 0 0
smart_proxy 0 0 0
myQueueEN 0 0 0
control 0 0 0
...done.

Then go back to your browser and click on the Queues link. Compare that with the
table you see in figure 8.11.

 You even got some extra goodies such as information telling you whether the
queue is exclusive, the queue’s status, and the queue’s message rates—the latter being
information that you can get only via the Management plugin. This last feature likely
convinced you to use the plugin!

Figure 8.11 Queues list
 www.it-ebooks.info

http://www.it-ebooks.info/

149Managing exchanges and queues from the web console
8.4.2 Creating queues

Another thing you can’t do from the rabbitmqctl
script is create queues. You sure can from the
plugin web console. As you did when creating an
exchange, type test as the queue name and then
click the Add Queue button. In figure 8.12 you can
see what the form looks like once filled.

 Your new queue will appear on the list. If you
click on it, you can inspect its properties in detail.
An interesting feature here is that you can delete it
or purge it directly from the browser. That means if
you have some queue in your server lying around
but not in use anymore, you can just click Delete
and the queue is gone.

 In figure 8.13 you can see details about the status
of a particular queue, for example, how many mes-
sages are ready to be delivered by consumers or how
many of them have pending acks. With this tool, it’s easy to see how much memory is
used by this queue, so you can use this information to monitor the health of the system
in ways that weren’t possible before by just using the rabbitmqctl script.

 The Management plugin doesn’t end at the web interface. For it to be really useful
to sysadmins, it has to provide command-line tools that allow access to its features
from a machine that lacks a window system, like most *nix servers. The Management
plugin also comes packed with a new command-line interface that will add flexibility
to the management process, liberating your sysadmins from their mice.

Figure 8.13 Queue details

Figure 8.12 Adding a queue
 www.it-ebooks.info

http://www.it-ebooks.info/

150 CHAPTER 8 Administering RabbitMQ from the Web
8.5 Back to the command line
It would be great if you could automate all that you’ve seen so far—say, write a script
that would get some queue details, like number of messages held in memory waiting to
be acked, and publish that to a graphing tool like Ganglia or Graphite. If you want to
do that via the Management plugin web interface, you’ll have to get your hands dirty
by performing some screen scraping. This means that if the web interface changes on
a new plugin version, your script will break. There has to be a better way of doing this.
Well, suffer no more, for there’s a new command-line tool, the RabbitMQ Management
CLI. In this section we’ll go through the reasons for yet another command-line tool.
Then you’ll install the new rabbitmqadmin script and use it to automate tasks like purg-
ing queues, creating exchanges, and more.

8.5.1 Why another CLI?

“Wait … another CLI tool? But in chapter 2 you guys taught me about the rabbit-
mqctl.” We understand your questions and they’re perfectly valid. As we already men-
tioned at the beginning of this chapter, the rabbitmqctl script is the default way of
administering RabbitMQ, but it has its own shortcomings, like dealing with Erlang
cookies, for example. Apart from that, it’s hard to integrate with other programming
languages and tools, since you need to be parsing the output it produces in its own
format. It’ll be better if, for example, you could get a list of queues in JSON format and
let your JSON library of choice parse the results to give you back a Python hash. Such
features justify the investment in learning this CLI API. Let’s see how it works.

 Point your browser to http://localhost:55672/. You’ll see three options there:

 Management: Web UI
 Management: HTTP API
 Management: Command Line Tool

We’ve already played with the first one, so let’s take a look at what the other options
have to offer. If you click on HTTP API, you’ll get a page with the documentation for
this REST interface. Anything you can do with the Management plugin (Management
Web UI), you can also do by using curl3 and invoking commands on this API. As an
example, if you want to list the vhosts on your server, execute the following code on
your terminal:

$ curl -i -u guest:guest http://localhost:55672/api/vhosts

You’ll get the following output:

HTTP/1.1 200 OK
Server: MochiWeb/1.1 WebMachine/1.7 (participate in the frantic)
Date: Wed, 23 Mar 2011 20:07:22 GMT
Content-Type: application/json

3 curl is a command-line tool for transferring data with URL syntax. It supports several formats like HTTP,
RTMP, IMAP, and many more. In case you need to install it on your machine, you can get the program from
its website: http://curl.haxx.se/.
 www.it-ebooks.info

http://curl.haxx.se/
http://www.it-ebooks.info/

151Back to the command line
Content-Length: 30
Cache-Control: no-cache

[{"name":"/"},{"name":"book"}]

You can also add new vhosts from here:

$ curl -i -u guest:guest -H "content-type:application/json" \
-XPUT http://localhost:55672/api/vhosts/rmqinaction

HTTP/1.1 204 No Content
Server: MochiWeb/1.1 WebMachine/1.7 (participate in the frantic)
Date: Wed, 23 Mar 2011 20:12:28 GMT
Content-Type: application/json
Content-Length: 0

And list all the vhosts back to see the one you just created:

curl -i -u guest:guest \
http://localhost:55672/api/vhostsHTTP/1.1 200 OK
Server: MochiWeb/1.1 WebMachine/1.7 (participate in the frantic)
Date: Wed, 23 Mar 2011 20:12:57 GMT
Content-Type: application/json
Content-Length: 53
Cache-Control: no-cache
[{"name":"/"},{"name":"book"},{"name":"rmqinaction"}]

Of course you can delete it if you don’t need it anymore:

$ curl -i -u guest:guest -H "content-type:application/json" \
-XDELETE http://localhost:55672/api/vhosts/rmqinaction

HTTP/1.1 204 No Content
Server: MochiWeb/1.1 WebMachine/1.7 (participate in the frantic)
Date: Wed, 23 Mar 2011 20:14:05 GMT
Content-Type: application/json
Content-Length: 0

By following this REST API you can easily automate tasks that so far have been only pos-
sible via a clickable interface. For sure, sysadmins will be happier with this tool. If you
want to learn about the available methods of the REST API, you can do so by pointing
your browser to the excellent documentation that’s distributed with the Management
plugin. See it at http://localhost:55672/api. Something interesting to notice if you’ve
been paying attention to the response headers is that the response is sent as
application/json, which means parsing the results will be as hard as knowing how to
use a JSON library in your language of choice (which you probably already do).

8.5.2 CLI administration the easier way

The preceding method is convenient and flexible, but there’s still an easier way to
administer the server: the command-line tool. The command-line tool is a Python script
that you can download directly from your RabbitMQ Management plugin installation
and execute on your machine. The advantages of this script over the REST-based API is
that you don’t need to hand-craft your requests. The rabbitmqadmin will wrap the
REST API and let you use a clean interface to interact with it, so instead of running the
following command to list the queues on the server,
 www.it-ebooks.info

http://www.it-ebooks.info/

152 CHAPTER 8 Administering RabbitMQ from the Web
$ curl -i -u guest:guest http://localhost:55672/api/queues

you could do this:

./rabbitmqadmin list queues

Much better, no? Let’s get it installed then.

8.5.3 Installing rabbitmqadmin script

Setting up the rabbitmqadmin admin script is dead simple: the only requirement is to
have Python installed. Assuming you do have Python installed, then what you have to
do is to fetch the script out of the Management plugin and make it executable. You
accomplish that with the following two commands:

$ wget http://localhost:55672/cli/rabbitmqadmin
$ chmod +x rabbitmqadmin

This will place a rabbitmqadmin script in your current folder that can be easily
invoked from the terminal. By using this you can avoid learning all the intricacies
about curl. Let’s see it in action:

$./rabbitmqadmin -V "/" list exchanges

+-------+------------------+---------+--------+---------+----------+
| vhost | name | type | auto | durable | internal |
| | | | delete | | |
+-------+------------------+---------+--------+---------+----------+
/		direct	False	True	False
/	amq.direct	direct	False	True	False
/	amq.fanout	fanout	False	True	False
/	amq.headers	headers	False	True	False
/	amq.match	headers	False	True	False
/	amq.rabbitmq.log	topic	False	True	False
/	amq.topic	topic	False	True	False
/	test	direct	False	True	False
+-------+------------------+---------+--------+---------+----------+

As you can see, the output is formatted, returning some pretty tables with the informa-
tion related to the exchanges that are part of the "/" vhost. Let’s strip apart the com-
mand you just invoked: rabbitmqadmin is the name of the executable file, the Python
script you just downloaded; -V "/" is the option used to specify the vhost you want to
use; finally, list exchanges is the command you want to execute.

8.5.4 Purging queues, creating exchanges, and more

Say that for some reason you had a consumer acting awry, unable to consume and ack
messages from the queue it was subscribed. By the time you notice the problem, you
have a queue filled up with messages that aren’t relevant anymore. You could write a
simple script to purge the queue using AMQP, or you can just call the following com-
mand:

$./rabbitmqadmin purge queue name=test
queue purged
 www.it-ebooks.info

http://www.it-ebooks.info/

153Summary
Let’s go back to the example of creating new exchanges. Let’s see how you can declare
a direct exchange called cli_test authenticating with the user guest and password
guest:

$./rabbitmqadmin -u guest -p guest declare exchange \
name=cli_test type=direct
exchange declared

Another interesting command is the ability to close connection, say because of misbe-
having consumers that are unable to ack messages, thus disrupting the message flow.
First you’ll get a list of connections, getting only the connection name property:

$./rabbitmqadmin list connections name
+-----------------+
| name |
+-----------------+
| 127.0.0.1:64659 |
+-----------------+

If you want to disconnect said consumer, you can do it by calling the close connection
command:

$./rabbitmqadmin close connection name="127.0.0.1:64659"
connection closed

Though we don’t describe every command in detail, we’ve presented the basics of
using the rabbitmqadmin script and from here it’ll be easy for you to get started and
perform other tasks.

8.6 Summary
When it comes to system administration, some people prefer command-line tools and
others prefer GUI programs. In this chapter, you've seen that there are plenty of
choices when it comes to administering a RabbitMQ server. The good thing is that the
tools we presented in this chapter are all produced by the RabbitMQ developers,
which means they’re maintained and on par with the latest features. Depending on
your taste, you’ll feel inclined to use the web UI, which is convenient for everyday
development, to get a visual representation of what’s happening on the server. The
web UI will make it easier to work in teams and even your marketing people can now
see how many campaign emails were delivered to customers. If you want to automate
such tasks, you can resort to the REST-based API that you can invoke via curl. Since
you’ll get the responses as JSON objects, it becomes easy to integrate with your current
tools and languages. Finally, if you want to extract some information from the server
but require something simpler than manually building your HTTP requests with curl,
you can resort to the rabbitmqadmin script to get nicely formatted output to help you
manage and monitor your RabbitMQ installations.

 In the next chapter we’ll dig deeper into the REST API, learning how to automate
several administration tasks like user and vhost provisioning. Start warming up your
fingers, because we’ll get our hands dirty with some Python code.
 www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Rabbit
with the REST API
Up to this point, you’ve been limited in your ability to configure RabbitMQ servers
from apps or scripts. Sure, you could write code that runs rabbitmqctl and then
tries to “scrape” the output for results but that’s a brittle solution and is likely to
break anytime the guys at Rabbit decide to change rabbitmqctl’s output. In reality,
both rabbitmqctl and the management web UI are designed for interaction with
something that has a heartbeat. So where does that leave you when you want to
automate the deployment of your RabbitMQ servers with tools like Chef, Puppet,
or even CFEngine? Also, what about the more basic need to monitor RabbitMQ?
How are you supposed to write health check scripts to keep an eye on your Rabbits
without a programmatic window into RabbitMQ’s inner workings?

This chapter covers
 Limitations and abilities of the Rabbit REST API

 Managing Rabbit permissions from code

 Accessing messaging statistics and counters

 Automating user and virtual host creation
154

 www.it-ebooks.info

http://www.it-ebooks.info/

155What can you do with the RabbitMQ REST API?
 If you’ve been working through the book linearly, you’re already familiar with the
RabbitMQ Management plugin (check out chapter 8 for installation instructions). It
provides web-based access that allows you to manage and control a RabbitMQ server
from your browser. Via the included web UI, an administrator can do everything from
creating users and vhosts to viewing queue statistics and overall configuration. The
best part is that when you install the Management plugin, you not only get the web UI,
you also get a RESTful web API for free. The API provides to your apps and scripts the
same full functionality as the web UI or rabbitmqctl.

 When Rabbit HQ released the Management plugin, they not only gave developers
a human-friendly web UI, they also included a RESTful web management API. The API
is a simple, language-neutral, and Erlang-free way to configure and keep tabs on your
Rabbit nodes running the Management plugin. The Erlang-free part is particularly
important, because though Erlang provides the foundation for RabbitMQ to be dis-
tributed, scalable, and stable, you may want to control Rabbit from systems that do not
have Erlang installed. Fortunately, the RabbitMQ management API uses HTTP to com-
municate, so you can talk to it from any programming or scripting language that has
an HTTP client library.

NOTE For those not familiar with the term, REST stands for Representational
State Transfer. It describes a convention for HTTP-based APIs that encodes
the item you’re changing and the state of the action on the item in the URL.
For example, you could have a non-RESTful API that has a single URL like
http://my-api.com/calls, and then put the particulars about the item and
action in the body of the request. But if you want to do any sort of data min-
ing on the API server’s logs, all you’ll see is a list of requests for/calls. Not
very helpful. When you use a RESTful convention for your API, you end up
with a URL like http://my-api.com/item (where item is the name of the
item you’re acting on) and then use standard HTTP verbs like POST, PUT,
and DELETE to create, modify, or delete the item. Now your logs are full of
useful information showing exactly the item being manipulated, and the
action (verb) performed on it. For more information on REST, check out
http://en.wikipedia.org/wiki/Representational_State_Transfer.

Before we dive into writing programs that interact with the management API, we need
to cover some ground about what the API does (and doesn’t) allow you to do. Once
that’s under your belt, you’ll be ready to start looking at how to create access creden-
tials for your API clients, and then begin using that access to view internal RabbitMQ
statistics and perform changes to the Rabbit server like adding users and virtual hosts.
Let’s get started and see what the management API has to offer!

9.1 What can you do with the RabbitMQ REST API?
The first thing to understand about the API is that it is fully RESTful, so the name of
the item you’re manipulating is always included in the URL. For example, if you
wanted to see the statistics for the queue named branches in the oak virtual host,
you’d construct the following URL and send it as an HTTP GET request to the server:
 www.it-ebooks.info

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.it-ebooks.info/

156 CHAPTER 9 Controlling Rabbit with the REST API
http://localhost:55672/api/queues/oak/branches.1 If you were to run this
request using cURL, you’d see something like this:

$ curl -i -u guest:guest
http://localhost:55672/api/queues/oak/branches
HTTP/1.1 200 OK
Server: MochiWeb/1.1 WebMachine/1.7 (participate in the frantic)
Date: Tue, 05 Jul 2011 22:55:25 GMT
Content-Type: application/json
Content-Length: 739
Cache-Control: no-cache

{"memory":9136,"messages":0,"consumer_details":[],
"idle_since":"2011-7-516:55:1","exclusive_consumer_pid":"",
"exclusive_consumer_tag":"","messages_ready":0,
"messages_unacknowledged":0,"messages":0,"consumers":0,
"backing_queue_status":{"q1":0,"q2":0,

 ...

NOTE cURL is a free program that lets you manually send and receive HTTP
requests from the command line. It’s available in most Linux/UNIX distribu-
tions and can also be downloaded directly from http://curl.haxx.se/
download.html.

Wow, besides the fairly readable HTTP headers, what does that load of jumble mean?
The headers give you a clue. If you look at the Content-Type header, you see that the
response is encoded as application/json. For those not familiar with it, JSON stands
for JavaScript Object Notation and is an alternative to XML for encoding data (check out
http://en.wikipedia.org/wiki/JSON for a deep dive on JSON). JSON allows you to
encode data using familiar structures like hash tables, arrays, strings, and integers that
programming languages already understand (and, more importantly, that you already
understand). If you understand JavaScript, you’ve probably figured out that the API is
returning all the data about the queue as a hash table. For example, the memory ele-
ment of the hash table tells you how much RAM (in bytes) the queue is currently con-
suming. When working with the management API, every call will return either an
empty body (for actions that create or delete items) or a JSON hash table containing
the data you requested (for actions that list or show items).

 Just as important as the data an API request can return is the HTTP verb you use to
make the request; you used a GET request. The RabbitMQ API interprets GET as mean-
ing “show me all the details/settings about the item located at/api/queues/oak/
branches.” Besides GET, you can also use POST, PUT, or DELETE when talking to the API.
POST and PUT create items, whereas DELETE does what it says—it deletes things. POST
and PUT aren’t interchangeable, and some API calls require POST to create the item
referenced in the URL whereas others use PUT (see the reference link at the end of the
section for a detailed list of where to use PUT or POST). Let’s assume for a minute that

1 For the examples in this chapter we assume that RabbitMQ is running on localhost and that you haven’t
modified the Management plugin’s default listening port of 55672.
 www.it-ebooks.info

http://en.wikipedia.org/wiki/JSON
http://curl.haxx.se/download.html
http://curl.haxx.se/download.html
http://www.it-ebooks.info/

157Granting your clients access
the branches queue doesn’t exist yet, and you want to create it using the API. By using
the same URL as before but changing the verb to PUT, you can convert the request to
create the queue instead of returning its details:

$ curl -i -u guest:guest -X PUT -H
"Content-Type: application/json" \
-d '{"auto_delete": false, "durable": false}' \

http://localhost:55672/api/queues/oak/branches

HTTP/1.1 204 No Content
Server: MochiWeb/1.1 WebMachine/1.7 (participate in the frantic)
Date: Tue, 05 Jul 2011 23:24:46 GMT
Content-Type: application/json
Content-Length: 0

All right, so you didn’t just change the verb to PUT. You also added the JSON hash table
'{"auto_delete": false, "durable": false}' into the body and added a Content-
Type header so that the API would know the data in the body is JSON-encoded. The
body of your request told the API to turn off the auto_delete and durable flags when
creating the branches queue. The flags have the same effect here as the auto_delete
and durable flags did when creating queues in the Python examples earlier in the
book. In fact, just like in the Python AMQP examples, the API requires the flags to be
specified when creating queues. If you had left the body empty, you would’ve received
an API error. Whether you’re creating a queue with the API or setting permissions, any
time you use a PUT or POST verb, encode the parameters for the function you’re calling
as a JSON hash table in the body.

 So you can create queues and view their statistics, but what else can you do? Here
are a few other things the API will enable your scripts to do:

 View a list of the current connections and their details—/api/connections

 Download or upload the complete configuration of your RabbitMQ broker,
including queues, exchanges, and bindings— /api/all-configuration

 List all of the nodes in a cluster (and their statistics)—/api/nodes

 Create or view a RabbitMQ user— /api/users/<user>
 View or create a virtual host— /api/vhosts/<vhost>
 Set the permissions for a user— /api/permissions/<vhost>/<user>

Since the management API (and plugin) is always being enhanced, that’s just a small list
of the functions the API provides. You can always see the most current (and complete)
list of API calls and the HTTP verbs they support by loading http://localhost:55672/api
in your web browser. Enough explanation though! Let’s create some credentials so you
can start writing scripts that use the API!

9.2 Granting your clients access
You may have noticed that both of the API requests you made using cURL had
-u guest:guest as an argument. Just like any app accessing RabbitMQ through AMQP,
scripts accessing the management API use normal RabbitMQ usernames and passwords
 www.it-ebooks.info

http://www.it-ebooks.info/

158 CHAPTER 9 Controlling Rabbit with the REST API
to authenticate and gain access (supplied using HTTP Basic authentication). For exam-
ple, if you have a monitoring script that should only be able to check on queue statis-
tics, you could create a new Rabbit user whose permissions for the virtual host were

 Read: .*
 Write: (empty)
 Config: (empty)

This would allow the script (and anyone who knew the script’s Rabbit username and
password) to only monitor the queues but not publish to them or change their
configuration.

 So how do you create a username for API access? Simple: create a user via rabbit-
mqctl and set the admin property to true. Let’s create a user called monitor that your
scripts can use to monitor statistics in the default (/) virtual host (but not write or
change anything). From your RabbitMQ directory run

$ sbin/rabbitmqctl add_user monitor monitorMe
Creating user "monitor" ...
...done.

$ sbin/rabbitmqctl set_admin monitor
Setting administrative status for user "monitor" ...
...done.

$ sbin/rabbitmqctl set_permissions -p / monitor "" "" ".*"
Setting permissions for user "monitor" in vhost "/" ...
...done.

That’s all there is to it! The important part is the set_admin command. Without setting
the admin flag on the username, it won’t be allowed to access the API regardless of the
permissions that are set. The last command (set_permissions) grants the monitor
user no configure or write permissions, and full read permissions within the default
(/) virtual host. With your monitor user in hand, you’re ready to write your first API
script and start viewing queue statistics.

9.3 Accessing statistics
There are many times on a daily basis when you need to see how many messages are
sitting in a particular queue. Sometimes it’s to debug a new app you’re writing; other
times it’s to monitor in production the ratio between messages waiting to be con-
sumed and those that have been delivered to a consumer and are still unacknowl-
edged (the latter can be a useful metric for discovering messages that are crashing
your consumers). You could use rabbitmqctl to list the total message count in your
queues, but this has two major disadvantages:

1 You can only run rabbitmqctl from computers that have Erlang installed and
the same Erlang cookie as the RabbitMQ server.

2 rabbitmqctl will only show you the total number of messages in the queue. It
won’t differentiate between delivered messages waiting for acknowledgement
and messages waiting to be consumed in the first place.
 www.it-ebooks.info

http://www.it-ebooks.info/

159Accessing statistics
Sounds like a perfect job for the Rabbit management API! You’ll use Python’s built-in
httplib and json libraries to communicate with Rabbit and encode/decode the
requests and responses. Since you want to be able to run your query statistics script
from the command line, you need to start by parsing the command line arguments, as
in the following listing.

import sys, json, httplib, urllib, base64

if len(sys.argv) < 6:
print "USAGE: queue_stats.py server_name:port auth_user " + \

"auth_pass VHOST QUEUE_NAME"
sys.exit(1)

server, port = sys.argv[1].split(":")
username = sys.argv[2]
password = sys.argv[3]
vhost = sys.argv[4]
queue_name = sys.argv[5]

The utility takes five arguments besides the program name: server name/port (in
host:port notation), username for API authentication, password for API authentica-
tion, name of the virtual host containing the queue, and the queue name whose statis-
tics you want to view. After you’ve validated B that the minimum number of required
arguments is present, you assign them C to more memorable variables based on the
argument’s position in the argument list. The only unusual bit is server, port =
sys.argv[1].split(":"). Since you’re passing the hostname and port of the Rabbit
server as a single argument delimited by : (localhost:55672), you split that argu-
ment into its individual hostname and port parts. The split command splits the argu-
ment at : and returns an array containing the separated parts (for example,
"localhost:55672" becomes["localhost", "55672"]). The separated parts are then
assigned into the server and port variables.

 With the arguments parsed, you’re ready to build the request. All API queue oper-
ations are located under the /api/queues path. So, if you want to access a particular
queue, you just extend the path to indicate the virtual host containing the queue you
want and that queue’s name:/api/queues/<vhost>/<queue_name>. The following list-
ing shows an example.

vhost = urllib.quote(vhost, safe='')
queue_name = urllib.quote(queue_name, safe='')
path = "/api/queues/%s/%s" % (vhost, queue_name)
method = "GET"

You may notice that you escaped B both the virtual host name and queue name before
putting them into the request’s path. If you don’t quote the virtual host, then specify-
ing the default virtual host (/) will raise an API error since the server considers / a path

Listing 9.1 queue_stats.py—acquire initial settings

Listing 9.2 queue_stats.py—build the request

Validate
argument
count

B

Assign
arguments
to memorable
variablesC

Build API pathB

Set request method
 www.it-ebooks.info

http://www.it-ebooks.info/

160 CHAPTER 9 Controlling Rabbit with the REST API

Connect
API serv

Rece
respon
separator. By first escaping the virtual host name, the request path /api/queues///
test_queue becomes /api/queues/%2F/test_queue and can be understood by the
API server. Finally, you set the HTTP method to GET so that the server will know you
want to retrieve details about the queue rather than create it. With the request path
and method set, you’re ready to fire off the request to the server, as the in the following
listing.

conn = httplib.HTTPConnection(server, port)
credentials = base64.b64encode("%s:%s" % (username, password))
headers = {"Content-Type" : "application/json",
 "Authorization" : "Basic " + credentials}
conn.request(method, path, "", headers)
response = conn.getresponse()
if response.status > 299:
 print "Error executing API call (%d): %s" % (response.status,
 response.read())
 sys.exit(2)

The script first establishes an HTTP connection B with the API server. At this point,
the server is waiting for the API request and authorization credentials. Since the
Rabbit API uses HTTP Basic authentication, you need to package C the username and
password into a single string in the format username:password and then Base64-
encode the string.2 Then you need to create a dictionary (hash table) containing the
HTTP headers D for the request. One of those headers is the Authorization header
that contains your Base64-encoded credentials appended to the ASCII string "Basic".
The other header is Content-Type and is equally important because it lets the API
server know your request body (if there is one) will be encoded as JSON. Since your
utility is only issuing GET requests, the request bodies will always be empty, but it’s
good form to set the Content-Type so you don’t forget when it does matter (PUT or
POST requests). Finally, you send E the prepared request to the API server and receive
the response F back. If there are any issues fulfilling the request, the API server will
set the HTTP response code to a 4xx or 5xx value. Since anything higher than 299 is
an unacceptable response code, you check that the code is lower than 299 F and if it
isn’t, exit with an error to the user. If there isn’t an error, you’re ready to parse the
response and display the queue details to the user, as in the following listing.

payload = json.loads(response.read())

print "\tMemory Used (bytes): " + str(payload["memory"])
print "\tConsumer Count: " + str(payload["consumers"])
print "\tMessages:"

Listing 9.3 queue_stats.py—issue API request

2 Base64 is a way of encoding text and binary data so that it can be represented by only ASCII characters. The
HTTP Basic authentication specification requires the username:password string to be Base64-encoded
before it’s sent. For more information on Base64 check http://en.wikipedia.org/wiki/Base64.

Listing 9.4 queue_stats.py—parse and display queue statistics

 to
er B

Base64
credentials

C

Set headersD

Send
requestE

ive
se F

Decode responseB

Display
queue statisticsC
 www.it-ebooks.info

http://en.wikipedia.org/wiki/Base64
http://www.it-ebooks.info/

161Automating vhost and user provisioning
print "\t\tUnack'd: " + str(payload["messages_unacknowledged"])
print "\t\tReady: " + str(payload["messages_ready"])
print "\t\tTotal: " + str(payload["messages"])
sys.exit(0)

Since the API server always returns information as a JSON hash table, you have to first
JSON-decode B the response. This converts the JSON-encoded hash table into the
actual hash table type supported by your programming language. For Python, this
means the response is converted into a Python dictionary. The beauty of the response
being JSON-encoded is that once the decoding is done, you can access the fields in
resp_payload just like any other dictionary (hash table). For example, extracting the
amount of memory used by the queue is as easy as accessing C the memory element of
the resp_payload dictionary.3

 So what does it look like if you run the utility?

$ python queue_stats.py localhost:55672 guest
guest / test
'test' Queue Stats

Memory Used (bytes): 9104
Consumer Count: 3
Messages:

Unack'd: 3
Ready: 4
Total: 7

You can see from the output that the test queue in the default (/) virtual host is con-
suming 9104 bytes of memory, has three consumers attached to it, and contains a total
of seven messages. Not only can you tell that the queue contains seven messages, you
can see that three of them have been delivered to consumers and are waiting for those
consumers to acknowledge them, and the other four are waiting to be delivered to the
next available consumer. All of this information at your fingertips in less than 60 lines
of code—and you can access it from anywhere in your infrastructure! That’s the
power of the Rabbit management API. It empowers you to introspect and control your
Rabbits from anywhere that has network access. But for all this talk about controlling
RabbitMQ, so far all we’ve done is read statistics. Let’s actually change the configura-
tion of your RabbitMQ server.

9.4 Automating vhost and user provisioning
Before the management API came along, one of the biggest hassles in deploying
RabbitMQ was automating the creation of the virtual hosts and users that apps need.
Frequently, when deploying your apps with automated deployment tools like Chef or
Puppet, the recipe to deploy your app is run on a server that’s different from the

3 There are many more statistics in the resp_payload dictionary than just the ones we display. Inside there’s
also information on how many of the messages are persistent, how many messages are pending acknowledge-
ment, the average ingress and egress rates of messages in the queue, and much more. Simply add print
repr(resp_payload) before sys.exit(0) in the code from the listing to see all of the different fields.
 www.it-ebooks.info

http://www.it-ebooks.info/

162 CHAPTER 9 Controlling Rabbit with the REST API
RabbitMQ server the app needs to communicate with. When all you have is rabbit-
mqctl to create users and virtual hosts, that’s a problem, because it means Erlang and
rabbitmqctl must be installed on every app server for the sole purpose of creating
users and vhosts on the central RabbitMQ server. Wouldn’t it be nice if there was a way
to create users and vhosts from the servers running your apps without having to put
Erlang on every one (and synchronize them all to the same Erlang cookie)? Since we
live in the age of the Rabbit management API, fret no more intrepid Rabbit developer!
You can write a command-line script that will let you create, delete, show, and list users
by using the management API (extending the script to provision vhosts will be sim-
ple). No Erlang or cookies required!

 Since we’ve already covered how to connect, authenticate, and send a basic API
request, we’ll focus on what makes a request that creates or deletes users (or vhosts)
different. Let’s start by looking at the user_manager.py script in its entirety, as shown
in the following listing.

import sys, json, httplib, base64

if len(sys.argv) < 5:
 print "USAGE: user_manager.py server_name:port " + \
 "auth_user auth_pass",
 print "ACTION [PARAMS...]"
 sys.exit(1)

server, port = sys.argv[1].split(":")
username = sys.argv[2]
password = sys.argv[3]
action = sys.argv[4]

if len(sys.argv) > 5:
 res_params = sys.argv[5:]
else:
 res_params = []

base_path = "/api/users"

if action == "list":
 path = base_path
 method = "GET"
if action == "create":
 path = base_path + "/" + res_params[0]
 method = "PUT"
if action == "delete":
 path = base_path + "/" + res_params[0]
 method = "DELETE"
if action == "show":
 path = base_path
 method = "GET"

json_args = ""
if action == "create":
 json_args = {"password" : res_params[1],
 "administrator" : json.loads(res_params[2])}

Listing 9.5 user_manager.py—RabbitMQ user manager

Assign
arguments

B

Build API pathC

Build JSON argumentsD
 www.it-ebooks.info

http://www.it-ebooks.info/

163Automating vhost and user provisioning

Issue
requ

Pr

re
 json_args = json.dumps(json_args)

conn = httplib.HTTPConnection(server, port)
credentials = base64.b64encode("%s:%s" % (username, password))
conn.request(method, path, json_args,
 {"Content-Type" : "application/json",
 "Authorization" : "Basic " + credentials})
response = conn.getresponse()
if response.status > 299:
 print "Error executing API call (%d): %s" % (response.status,
 response.read())
 sys.exit(2)
resp_payload = response.read()
if action in ["list", "show"]:
 resp_payload = json.loads(resp_payload)

 if action == "list":
 print "Count: %d" % len(resp_payload)
 for user in resp_payload:
 print "User: %(name)s" % user
 print "\tPassword: %(password_hash)s" % user
 print "\tAdministrator: %(administrator)s\n" % user
 if action == "show":
 print "User: %(name)s" % resp_payload
 print "\tPassword: %(password_hash)s" % resp_payload
 print "\tAdministrator: %(administrator)s\n" % resp_payload
else:
 print "Completed request!"

sys.exit(0)

As with the queue statistics script, you validate B the command-line arguments and
assign them into more memorable variables. The only difference so far is that the
number of arguments has grown. Instead of the final arguments indicating a vhost
and queue name, they now represent the action to take (create, delete, list, show) and
parameters for that action. For example:

$ python user_manager.py localhost:55672 guest guest \
create myuser password true

This will connect to the localhost API server using the username and password
guest, and will create a new user called myuser whose password is password and who
is an administrator (true). If you change the true to false, the user won’t be created
as an administrator.

 Next you start building C the request’s path. The base path for all use API calls is/
api/users. To this path you then append the username (located in 0 index of the
res_params array) you want to perform the action on:

base_path = "/api/users"

if action == "list":
path = base_path
method = "GET"

if action == "create":

API
est

E

Parse and
display
responseF

ocess
list

sults G

Process
show
results

H

Create and
delete requests
have no resultI
 www.it-ebooks.info

http://www.it-ebooks.info/

164 CHAPTER 9 Controlling Rabbit with the REST API
path = base_path + "/" + res_params[0]
method = "PUT"

if action == "delete":
path = base_path + "/" + res_params[0]
method = "DELETE"

if action == "show":
path = base_path + "/" + res_params[0]
method = "GET"

Here is where you can see clearly how the API interprets different HTTP verbs on the
same request path. If you set the method to PUT, then the API server will create the
user specified by/api/users/<username>. But setting the method to DELETE for the
same request path will cause the user to be deleted. Similarly, GET will be interpreted
by the API server as an instruction to return details about the user in a JSON hash
table. The only oddball is what you do to list all users. Rather than issue GET on /api/
users/<username> (which would specify a specific user), you issue the GET request
on/api/users. Since that request path specifies no user in particular, the API server
returns a list of all the users in the RabbitMQ server (the server returns a list of hash
tables, where each hash table has the full details for a user).

 After the path is built, you need to determine D whether the request being crafted
is supposed to create a user. If it is, you need to build a JSON-encoded hash table that
contains the password and administrator status for the new user:

json_args = ""
if action == "create":

json_args = {"password" : res_params[1],
 "administrator" : json.loads(res_params[2])}

json_args = json.dumps(json_args)

The hash table for creating a user needs two fields: password and administrator.
password contains a plaintext version of the desired password, and administrator is a
Boolean set to either true or false. With the request now built, you connect and send
E the request just as you did with the queue statistics script. The only difference is
that you now specify a request for the body when the action is to create a user.

 Once the request has been sent and you’ve verified that the server didn’t return an
error, you read F the response and get to work. If the action was to create or delete a
user I, there’s no result so you just print a confirmation that the request succeeded
to the user. If the requested action was to list or show users, then you JSON-decode the
response. After the response has been decoded, you have a native Python data struc-
ture you can work with. If the user requested a list of users, then the response is an
array of hash tables. So you need to iterate G through the list of users and print the
name, password_hash, and administrator status for each user:4

4 You may notice that we’re using Python’s string formatting capabilities. For example, "User: %(name)s" %
user tells Python to create a new string, substituting the value of user["name"] at the position of %(name)s
in the string. You could use the syntax "User: " + user["name"] and have the same result.
 www.it-ebooks.info

http://www.it-ebooks.info/

165Summary
if action == "list":
print "Count: %d" % len(resp_payload)
for user in resp_payload:

print "User: %(name)s" % user
print "\tPassword: %(password_hash)s" % user
print "\tAdministrator: %(administrator)s\n" % user

If the action was to show a specific user, then the response won’t be an array of hash
tables. Instead, the response will itself be a single hash table, similar to what you saw
with the queue statistics script, except that this time the hash table H contains the
name, password_hash, and administrator status for the user:

if action == "show":
print "User: %(name)s" % resp_payload
print "\tPassword: %(password_hash)s" % resp_payload
print "\tAdministrator: %(administrator)s\n" % resp_payload

You now have a fully featured utility that can create, delete, show, and list users on any
RabbitMQ server that has the Management plugin installed. Let’s see what creating
and then showing a user looks like with the utility:

$ python user_manager.py localhost:55672 guest guest \
create newuser newpass true

Completed request!

$ python user_manager.py localhost:55672 guest guest \
show newuser

User: newuser
Password: o/ZEH9Z86FNUtzu2MzNlmDSTDFE=
Administrator: True

Though you’d probably want to add more stringent argument validation to the script
for production use, the fact is you could use it as-is to manage the creation of users
from any system. In fact, the authors use a similar script for automating RabbitMQ
user creation when deploying apps. By building this script you’ve learned how to not
only show a single item via the management API, but how to show lists of items and
how to create and delete those items. You can apply these concepts to working with
any of the different item/resource types available via the API (users, queues,
exchanges, connections, permissions, and so on). In the source code companion for
this chapter we’ve included a script called user_vhost_manager.py. It extends this
user manager script to manage the creation of vhosts, and also enables the manipula-
tion of user/vhost permissions.

9.5 Summary
Before we began, you were limited to managing your Rabbit servers by hand either
through rabbitmqctl or the management web UI. You were completely unable to
write automated scripts or utilities that could integrate with Rabbit to help you man-
age its configuration or monitor its internal state. But by learning how the Rabbit
management API works, you’re now able to build tools that let you monitor queue
state and manage your users according to your own needs. You’re no longer at the
 www.it-ebooks.info

http://www.it-ebooks.info/

166 CHAPTER 9 Controlling Rabbit with the REST API
mercy of managing your RabbitMQ servers by hand—now you can write utilities that
use the management API to automate Rabbit provisioning to custom suit the processes
of your organizations. With the management API at your disposal, the only limit to the
Rabbit management tools you can build is your own imagination. One of the areas
that the API opens up is automated monitoring of RabbitMQ’s health. Now that you
understand how to build tools with the API, you’re ready to look at using those skills in
more depth to enhance the monitoring of your Rabbit infrastructures and make sure
they’re running in tip-top shape.
 www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring: Houston,
we have a problem
Your RabbitMQ server is up and running and your snazzy dog walking app is bring-
ing in thousands of orders nationwide. Everything seems to be going great when
you suddenly get the call: customers are getting errors from your web app and the
flow of orders has stopped completely. The RabbitMQ server has died, and to make
matters worse it appears that it’s been down for hours. If only you’d been proac-
tively notified the instant RabbitMQ went offline instead of having to wait for your
customers to tell you and losing thousands of dollars in orders in the process. Set-
ting up Rabbit to be highly available and writing your apps to use it are only two
legs of the stool. Things can still go bump in the night. If you’re going to run a truly

This chapter covers
 Basics of writing Nagios health checks

 Using both AMQP and the REST API to monitor Rabbit internals

 Verifying that Rabbit is available and responding

 Watching queue levels for early detection of consumer problems

 Checking for undesirable configuration changes in the
messaging fabric
167

 www.it-ebooks.info

http://www.it-ebooks.info/

168 CHAPTER 10 Monitoring: Houston, we have a problem
reliable operation, you need to monitor Rabbit to make sure it’s running and that the
messages you publish into it are getting consumed as expected. Properly monitored,
you can find out not only when things have gone horribly wrong (like the Rabbit
server dying), but also when your messaging infrastructure is suffering—well before it
takes down your customers and your bottom line. For example, wouldn’t it be great to
know that your dog walking order queue suddenly has 10 million messages waiting to
be consumed when it normally averages 1,000 messages? Or perhaps it would be a
good idea to know when that order queue suddenly has had its durable setting
changed from durable to transient before a power outage hits and causes all those
orders to disappear? In this chapter you’re going to learn how to write programs that
can monitor Rabbit and all of these aspects of our messaging infrastructure. You’ll
then be able to take these monitoring programs and plug them into the monitoring
and alerting framework of your choice so you can be alerted when things have gone
off course with your messaging. Let’s get started by learning how to monitor
RabbitMQ internals both over AMQP and with the REST API.

10.1 RabbitMQ monitoring: keeping an eye on your warren
Monitoring RabbitMQ isn’t just about making sure that port 5672 is open and accept-
ing TCP connections. With a complicated system like Rabbit it’s better if you can simu-
late an AMQP client to make sure that you can actually acquire a channel after you
connect. It would also be great if you could use the REST API to find out if all of the
different Erlang components that make up Rabbit are running and talking correctly
to each other. To do any of this, you first have to understand how write a health check
that your monitoring system can understand. In this case, that system is going to be
Nagios, so let’s look at what Nagios is and what a health check has to do to talk to it.

10.1.1 Writing health checks for Nagios

Many different commercial and open source monitoring frameworks are available
today. Of these, one of the most popular is Nagios. It’s freely available from http://
nagios.org and has a flexible API that makes it easy to write your own health check pro-
grams in any language you choose. In addition, many of the other open source moni-
toring frameworks (like Zenoss and Zabbix) also support the Nagios health check API,
making it possible for your Rabbit health checks to be used with many other monitor-
ing systems besides Nagios. So what’s a Nagios health check and how does it work?

 A Nagios health check is a standalone program that monitors a service when it’s
run and indicates the healthiness of the service (or lack thereof) by its exit code when
the program terminates. You technically don’t even need Nagios to run a health
check—you can execute it anytime from the command line and manually observe the
output. A Nagios health check can be written as anything from a Python program to a
BASH script as long as it prints the human-readable status of the thing it’s monitoring
to STDOUT and returns one of the following four integer exit codes:

 0—OK—The service being checked is functioning normally and is completely
within any thresholds given to the health check via command-line arguments.
 www.it-ebooks.info

http://nagios.org
http://nagios.org
http://www.it-ebooks.info/

169RabbitMQ monitoring: keeping an eye on your warren
 1—WARNING—The service is running in a degraded state (or has encountered
a problem) but the issue isn’t urgent. For example, say you’re monitoring RAM
usage. If you had configured the health check with a warning threshold of 2 GB
and a critical threshold of 4 GB, a WARNING exit code would be returned for any
RAM usage between 2 GB and 4 GB.

 2—CRITICAL—The service is down, unresponsive, and/or has crossed the critical
threshold for the metric being monitored. Using the RAM usage example, the
health check would return a CRITICAL exit code when RAM usage is over 4 GB.

 3—UNKNOWN—Technically this means that the status of the service or metric
being monitored couldn’t be determined. For example, if the health check were
monitoring the number of messages in a queue and it couldn’t connect to the
server, instead of returning a critical status it could return unknown as the status.
Returning the status as unknown only makes sense when you’re unable to sam-
ple the current state of the metric. If the metric you’re monitoring is connectiv-
ity and you can’t connect, then definitely return critical instead of unknown.

Now that you understand what Nagios expects from a health check program, let’s
build one in the following listing. Though you can use any language to write your
health checks, for these examples you’ll use Python again and the Pika AMQP library
you installed in chapter 4. Your first health check is going to be simple—it’s not going
to check anything. It’s going to take warning, critical, unknown, or ok as an argument
and exit with that Nagios status code.

import sys, json, httplib, base64

status = sys.argv[1]

if status.lower() == "warning":
print "Status is WARN"
exit(1)

elif status.lower() == "critical":
print "Status is CRITICAL"
exit(2)

elif status.lower() == "unknown":
print "Status is UNKNOWN"
exit(3)

else:
print "Status is OK"
exit(0)

If you run python nagios_check.py critical you should get a human-readable mes-
sage on STDOUT and 2 as the exit code:

> python nagios_check.py critical
Status is CRITICAL
> echo $?
2

Excellent! Your health check returned the correct status message, and echo $? tells
you the exit code is correct for critical status (2). If Nagios were running this health

Listing 10.1 nagios_check.py: health check that returns Nagios status codes

Return requested
Nagios status code
 www.it-ebooks.info

http://www.it-ebooks.info/

170 CHAPTER 10 Monitoring: Houston, we have a problem
check itself, you’d get an alert that read Status is CRITICAL. Though Nagios doesn’t
understand what that message means, it does understand that 2 as your exit code indi-
cates that the health check is in critical status. All of our health checks will build on
this example to add logic that actually checks a live service, and also to take command-
line arguments so that you can tell the health check what service to monitor and what
constitutes a critical or warning threshold.

 Before we jump into making a health check that can see whether RabbitMQ is alive
and capable of building channels, we need to talk about Nagios itself. Though you’ll
be building health checks that can be used by Nagios, we won’t cover configuring Nag-
ios to use them. This will let us focus on how to monitor different aspects of Rabbit. If
you want to learn more about Nagios and how to install it, a great place to start is the
documentation site: http://www.nagios.org/documentation.

 Enough housekeeping! Let’s see whether your RabbitMQ server is alive and
healthy!

10.1.2 Checking that RabbitMQ is alive with AMQP simulation checks

Without writing a line of code, you could use the TCP health check that comes with
most monitoring systems to do a simple TCP connect to check whether Rabbit is
responding on port 5762. This would tell you that the RabbitMQ daemon is running,
but it wouldn’t tell you whether the daemon is functioning. For example, what if
RabbitMQ is running out of memory? It’s possible that the daemon could be func-
tional enough to complete the TCP handshake but has insufficient memory to actually
respond to AMQP commands. What you need to truly determine whether Rabbit is
capable of servicing requests is to actually issue AMQP commands. So let’s build an
AMQP ping health check. It’ll return a critical status if any of the following conditions
are true:

 The RabbitMQ server doesn’t respond to TCP connections.
 When issuing an AMQP command, the Pika library times out before receiving a

response.
 You experience a protocol error while building an AMQP channel.

Only if none of those conditions are true will the program return an OK status from
the health check. The health check code itself looks like a simplified version of your
initial Hello World consumer.

import sys, pika

EXIT_OK = 0
EXIT_WARNING = 1
EXIT_CRITICAL = 2
EXIT_UNKNOWN = 3

server, port = sys.argv[1].split(":")
vhost = sys.argv[2]

Listing 10.2 amqp_ping_check.py

Nagios status codesB

Parse command-line
arguments

C

 www.it-ebooks.info

http://www.nagios.org/documentation
http://www.it-ebooks.info/

171RabbitMQ monitoring: keeping an eye on your warren
username = sys.argv[3]
password = sys.argv[4]

creds_broker = pika.PlainCredentials(username, password)
conn_params = pika.ConnectionParameters(server,

virtual_host = vhost,
credentials = creds_broker)

try:
conn_broker = pika.BlockingConnection(conn_params)
channel = conn_broker.channel()

except Exception:

print "CRITICAL: Could not connect to %s:%s!" % \
(server, port)
exit(EXIT_CRITICAL)

print "OK: Connect to %s:%s successful." % (server, port)
exit(EXIT_OK)

After creating a few constants to refer to the status codes B that Nagios will expect the
health check to return, you get right to parsing the command-line arguments passed
to the check C. Since this health check is simply verifying that the RabbitMQ server is
able to respond to AMQP commands, it only needs to be passed four arguments when
it’s invoked: the server name and port for the RabbitMQ server, the virtual host
(vhost) on which to build the channel, and the username and password that permit
access to the vhost. Wait a minute—that’s five arguments, not four. To simplify the
number of arguments you have to pass to the check, combine the hostname and port
into a single argument delimited by a colon. For example, if the Rabbit server you
want to check the health of is running at localhost on port 5672, you’d pass the argu-
ment as localhost:5672.

 Once you’ve parsed the connection parameters from the command-line argu-
ments, you attempt to connect to the server D using those credentials and then build
a channel: channel = conn_broker.channel(). What’s different from the earlier
examples is that if an exception is thrown for any reason when you try to connect, you
exit immediately with a critical exit code E (and print that you couldn’t connect). In
previous examples, when an error occurred, you’d catch the error and immediately
try to reconnect to keep your consumer running. In this case, since a bad connection
is exactly what you’re trying to tell Nagios about, you don’t want to cleanly hide the
error. Rather, by catching the generic Exception error class, all exceptions will match
your error handling code and return a critical status (exit code 2) to Nagios for any
issue related to connecting to the Rabbit server (including timeout errors). Finally, if
building the connection and channel didn’t trigger any errors, you return F with an
exit code of 0 (the value of EXIT_OK) to let Nagios know that your health check was
successful.

 What’s important to notice in this simple health check is that Nagios has no inti-
mate knowledge of RabbitMQ at any point in the process. In fact, Nagios never even
knows what RabbitMQ is. All that Nagios knows is that the exit code is either 2 if
there’s a critical error determined by the health check, or 0 if everything is running

Establish
connection to

broker

D

Connection
failed, return
CRITICAL
status

E

F Connection
OK, return
OK status
 www.it-ebooks.info

http://www.it-ebooks.info/

172 CHAPTER 10 Monitoring: Houston, we have a problem
smoothly. That’s what makes writing health check programs for Nagios so simple, and
why so many other monitoring frameworks support the Nagios model of health
checks written as standalone programs that return exit codes 0 through 3. With your
shiny new health check in hand, let’s give it a test drive and see what happens with a
healthy RabbitMQ server:

$ python amqp_ping_check.py localhost:5672 / guest guest
OK: Connect to localhost:5672 successful.
$ echo $?
0

Terrific, the RabbitMQ server running on your local development machine is running
and able to process AMQP commands. Also, as required, the exit code when the check
is successful is 0 (echo $? will always show you the exit code from the previously run
command). But how can you test to make sure the health check detects an unhealthy
RabbitMQ server? To simulate an internal Rabbit failure, you’ll use the rabbitmqctl
stop_app command you learned about when dealing with clustering:

$ rabbitmqctl stop_app
Stopping node rabbit@Phantome ...
...done.
$ python amqp_ping_check.py localhost:5672 / guest guest
CRITICAL: Could not connect to localhost:5672!
$ echo $?
2

As desired, your new AMQP-based health check for Rabbit successfully detects a failed
Rabbit and returns an error code of 2 to indicate a critical failure to the monitoring
framework. With your new health check in hand, you can easily configure your moni-
toring framework of choice to start monitoring your Rabbit server and notify you
when it’s unable to service connections. But what if you want your health check not to
stop at simply building a channel, but rather want to fully test that you can publish a
message and consume it? You could extend your AMQP health check with this addi-
tional functionality, but if you have the Rabbit management API installed, you have an
even better option at your disposal. Let’s look at how you can build a health check
that uses the REST API to do a full produce/consume test for you and lets your health
check know the result.

10.1.3 Checking aliveness with the REST API

Testing that RabbitMQ is accepting new connections and able to build an AMQP chan-
nel is a good way to test that a Rabbit server is healthy. But as we’ve all learned the
hard way, if you don’t test every part of a process you rely on, you can get bitten when
the part you don’t test fails. With that in mind, let’s take the monitoring a step further
and test the process of publishing a message into RabbitMQ and then consuming that
message to verify it was routed correctly.

 You could simply extend your AMQP health check to fully test the routing process,
but your check would have the added complexity of creating queues and making
 www.it-ebooks.info

http://www.it-ebooks.info/

173RabbitMQ monitoring: keeping an eye on your warren

B
API
est
sure messages don’t build up if the health check doesn’t complete. Fortunately, you
have another option. One of the features of the REST API that ships with the Rabbit
management plugin is an API call that tests the health of the Rabbit server internally.
The aliveness-test, as it’s called, performs three steps to verify the health of a Rab-
bit server:

1 Create a new queue to receive the test message.
2 Publish a test message with the name of the queue as the routing key into the

default exchange.
3 Consume the message when it arrives in the queue, and error out if it doesn’t

arrive.

Since this check runs internally inside the Erlang virtual machine (alongside
RabbitMQ) it’s not affected by network issues that might prevent you from connecting
to Rabbit’s port (5672) externally. Though this means that using the API to health
check Rabbit lets you focus on internal message routing issues that may be occurring,
it also means that the check won’t tell you whether a firewall rule is preventing outside
consumers (like your dog walking app) from connecting to Rabbit at all. So in reality,
it’s advisable to use the AMQP health check you built in the previous section in con-
junction with an API-based health check to ensure you have complete monitoring cov-
erage of your Rabbit server. It’s also important to note that the aliveness-test API
call uses an intelligent implementation of its check process, which doesn’t delete the
queue it creates. This means you won’t fill the Mnesia database with thousands of
queue metadata transactions if your health check runs repeatedly in short intervals.
So how do you write a health check around the aliveness-test API call? Use HTTP to
make an API request in the form /api/aliveness-test/<vhost> where <vhost> is
the name of the virtual host where the API should create the test queue. The following
listing shows the code.

import sys, json, httplib, urllib, base64, socket

EXIT_OK = 0
EXIT_WARNING = 1
EXIT_CRITICAL = 2
EXIT_UNKNOWN = 3

server, port = sys.argv[1].split(":")
vhost = sys.argv[2]
username = sys.argv[3]
password = sys.argv[4]

conn = httplib.HTTPConnection(server, port)

path = "/api/aliveness-test/%s" % urllib.quote(vhost, safe="")
method = "GET"

credentials = base64.b64encode("%s:%s" % (username, password))

try:

Listing 10.3 api_ping_check.py: REST API–based health check for RabbitMQ

Nagios status codesB

Parse argumentsC

Connect to serverD

E

uild
API

path
F Issue

requ
 www.it-ebooks.info

http://www.it-ebooks.info/

174 CHAPTER 10 Monitoring: Houston, we have a problem

Coul
con

r
c
s

t

s

s

conn.request(method, path, "",
{"Content-Type" : "application/json",
"Authorization" : "Basic " + credentials})

except socket.error:
print "CRITICAL: Could not connect to %s:%s" % (server, port)
exit(EXIT_CRITICAL)

response = conn.getresponse()

if response.status > 299:
print "CRITICAL: Broker not alive: %s" % response.read()
exit(EXIT_CRITICAL)

print "OK: Broker alive: %s" % response.read()
exit(EXIT_OK)

As with the AMQP health check, the first things you do are set up constants B for the
exit codes and parse C the command-line arguments. This health check takes exactly
the same arguments as the AMQP health check, with the change that the server and port
are for the API server (instead of the RabbitMQ server itself). Where you start to
diverge from the AMQP health check is that you’re building an HTTP connection D to
the API server rather than an AMQP connection. Once you’ve built the HTTP connec-
tion to the API server, you then create the request path for the aliveness-test call E.
At the end of the path, you append the vhost to be used for creating the test queue.
Since it’s possible to have a vhost named / (the HTTP path separator), you also need to
escape any special characters in the vhost name using urllib.quote before appending
it to the path. The safe="" argument tells urllib.quote that it should escape all spe-
cial characters without exception (by default urllib.quote won’t escape / characters).
Also, you set the request method to GET since you’re retrieving information via the API
rather than modifying or creating it.

 Once you’ve created the HTTP connection and request path, you’re ready to
encode your credentials F and transmit the request to the API server.1 If you’re
unable to connect to the API server G, you return EXIT_CRITICAL as your status exit
code. You could return a warning or unknown status instead, since technically you
only know that the API server is down as opposed to the RabbitMQ server itself. But
since the API runs as a plugin to RabbitMQ, it’s unlikely that the API server would be
down if the RabbitMQ server wasn’t down as well.

 Providing you’re able to connect to the API server and transmit your request, you’ll
receive a response object back. The response object stores the HTTP status code in
response.status, and the body text of the response as a file descriptor you can access
using response.read(). All that you care about is the HTTP status code. If the
aliveness-test call is successful, it’ll return a 200-level HTTP status code. Any other
code above 299 is either an error or additional instructions to the client. As a result, if
you receive an HTTP status code above 299 H, you can return a critical status (EXIT
_CRITICAL) to Nagios to indicate that the health check failed. Otherwise, the call was

1 Chapter 9 on the REST API has more information on how to craft the HTTP Basic authentication header.

G

d not
nect,
eturn
ritical
tatus

RabbitMQ no
responding/
alive, return
critical statu

H

RabbitMQ alive,
return OK statu

I

 www.it-ebooks.info

http://www.it-ebooks.info/

175RabbitMQ monitoring: keeping an eye on your warren
successful and the broker is alive I. Since the body of a successful call is simply the
JSON string {'status' : 'ok'} (a status you already know from the HTTP status
code), you can either ignore the body entirely or in this case append it to the human-
readable response from your health check.

 So what happens if you run your API ping health check against your local develop-
ment machine?

> python api_ping_check.py localhost:55672 / guest guest
OK: Broker alive: {"status":"ok"}
> echo $?
0

The health check correctly determines that the RabbitMQ server is alive and able to
produce and consume messages. But what happens if you simulate a node failure and
rerun the health check?

> rabbitmqctl -n rabbit@Phantome stop_app
Stopping node rabbit@Phantome ...
...done.
> python api_ping_check.py localhost:55672 / guest guest
CRITICAL: Broker not alive: <html><head><title>500 Internal
Server Error</title></head><body><h1>Internal Server Error</h1>The
server encountered an error while processing this request:
<pre>
{exit,{aborted,{no_exists,[rabbit_user,<<"guest">>]}},

[{mnesia,abort,1},
{rabbit_misc,dirty_read,1},
{rabbit_auth_backend_internal,internal_check_user_login,2},
{rabbit_access_control,'-check_user_login/2-fun-0-',4},
{lists,foldl,3},
{rabbit_mgmt_util,is_authorized,3},
{webmachine_resource,resource_call,3},
{webmachine_resource,do,3}]}</pre><P><HR>
<ADDRESS>mochiweb+webmachine
web server</ADDRESS></body></html>

> echo $?
2

Wow, that’s a lot of output. Nagios is only looking for the exit code (2) to determine that
the health check failed, but it’ll send you everything from CRITICAL:... to ...</html>
in the alert that it generates. What the aliveness-test call is returning to you in the
body, and which your health check is outputting verbatim, is the internal Erlang crash
report that was generated because the API couldn’t talk to RabbitMQ. So if someone
were to stop the RabbitMQ node, not only would your monitoring system be able to
alert you thanks to your new health check, but it would also give you the detailed Erlang
crash report that you can use to track down why Rabbit is having issues.

 You now have the ability to monitor not only that RabbitMQ is able to accept con-
nections, but also that it’s able to successfully route messages. But what happens if
someone were to change one of your durable queues to nondurable and thereby
make it vulnerable to message loss? How can you protect against dangerous changes
to your Rabbit configuration that wouldn’t normally be noticed by checking the
 www.it-ebooks.info

http://www.it-ebooks.info/

176 CHAPTER 10 Monitoring: Houston, we have a problem
RabbitMQ server’s health? Easy: just write a health check that can monitor a queue
(or exchange) configuration.

10.1.4 Creating a watchdog for configuration changes

Verifying that RabbitMQ is running and healthy is only part of ensuring the reliability
of your messaging infrastructure. You also need to make sure that your messaging fab-
ric isn’t accidentally changed into a configuration that would cause message loss for
your apps. For example, imagine that your hard-working fellow developer Rolf is
deploying the latest version of your dog walking app. Since you wisely wrote the app to
configure the queues, exchange, and bindings it will need, you don’t have to worry
that the app will crash if the RabbitMQ server is missing parts of that fabric when the
app starts (the app will just create what’s missing). But this autoconfiguration of the
fabric by the app is going to cause problems this morning because Rolf had a late
night of quashing the final bugs in Dog Walker 10.0 and made a typo. Accidentally,
Rolf erased the code that creates the walking_orders queue upon app startup. Realiz-
ing his problem, he retyped the queue declaration back into the app’s code before he
committed the code to the production repository. The issue is that when Rolf retyped
the queue declaration, he forgot to make
the queue durable. This is a big problem,
because if a power failure hits the Rab-
bitMQ server in production, all the dog
walking orders in the queue will vaporize
when the power is cut. But since the
queue exists and is named correctly, you
wouldn’t notice any problems until a
power outage occurs, at which point it’s
too late. Since we’re all Rolf from time to
time, you need to create a health check
that can monitor the configuration of a
queue so that you’re notified proactively if
it changes. Consult figure 10.1.

 Before the creation of the Rabbit Man-
agement plugin and API, it was difficult to
monitor queue (or exchange) configura-
tion. About the only way you could verify a
queue’s configuration was to attempt to
redeclare the queue with the desired
parameters, and trust that RabbitMQ
would reject the redeclaration if the con-
figuration was different from the queue
that already existed. The biggest issue with
this approach is that it can actively change

RabbitMQ
node

Q1

settings
durable

autodelete

health check

Monitoring via RabbitMQ API

settings
durable

autodelete

settings
durable

not autodelete

Actual Expected

Alert!

Queue config

Figure 10.1 Queue configuration health check
 www.it-ebooks.info

http://www.it-ebooks.info/

177RabbitMQ monitoring: keeping an eye on your warren
the messaging fabric since you’re declaring a queue to see if a failure occurs. In other
words, if the health check has a bug it could trigger the very condition (a queue
adversely changing configuration) it’s trying to detect. Fortunately, with the existence
of the RabbitMQ API, you now have a better way.

 One of the calls provided by the Rabbit management API allows you to view the con-
figuration of any queue in any vhost: /api/queues/<vhost>/<queue>. Not only can
you view the configuration, you can also view statistics about the queue like how much
memory it’s consuming or the queue’s average messaging throughput. In the following
listing, let’s use curl to take a quick look at the configuration and status of a sample
queue called my_queue in the / vhost (note that / is encoded in the URL as %2F).

$ curl -i -u guest:guest http://localhost:55672/api/queues/%2F/my_queue
HTTP/1.1 200 OK
Server: MochiWeb/1.1 WebMachine/1.7 (participate in the frantic)
Date: Tue, 16 Aug 2011 23:25:14 GMT
Content-Type: application/json
Content-Length: 670
Cache-Control: no-cache

{
"memory":8400,
"idle_since":"2011-8-16 17:24:46",
"exclusive_consumer_pid":"",
"exclusive_consumer_tag":"",
"messages_ready":0,
"messages_unacknowledged":0,
"messages":0,
"consumers":0,
"backing_queue_status":
{

"q1":0,
...

},
...
"name":"my_queue",
"vhost":"/",
"durable":true,
"auto_delete":false,
"arguments":
{
},
"node":"rabbit@Phantome"

}

Even though you’ve trimmed out some of the statistics for brevity (the ... portions),
you can still tell a lot about the queue. For example, you can see that my_queue is con-
suming 8400 bytes of memory B, and that no messages are waiting in the queue C.
For your current needs, you’re interested in the queue configuration elements at the
bottom of the JSON output D. Here you can see that my_queue was created with

Listing 10.4 /api/queues/<vhost>/<queue> curl output

Queue
memory
usage

B

Message countsC

Queue configurationD
 www.it-ebooks.info

http://www.it-ebooks.info/

178 CHAPTER 10 Monitoring: Houston, we have a problem
durable set to true and auto_delete set to false (the arguments array contains a list
of the queue’s optional configuration parameters). Armed with this kind of informa-
tion, your new health check could easily monitor the durable and auto_delete
parameters from the API call’s output to alert you when either changes.

 Like the previous health checks you’ve written, you’ll use command-line argu-
ments to let the check know which API server to check. But this time you need a few
extra arguments. In addition to the usual server, port, vhost, username, and password
details, you also need to know

 The name of the queue whose configuration is going to be monitored
 Whether the queue is supposed to have durable and/or autodelete turned on

Since the API call is going to return the value of durable and auto_delete as JSON-
encoded Booleans, you’re going to expect true or false on the command line in
JSON format:

server, port = sys.argv[1].split(":")
vhost = sys.argv[2]
username = sys.argv[3]
password = sys.argv[4]
queue_name = sys.argv[5]
auto_delete = json.loads(sys.argv[6].lower())
durable = json.loads(sys.argv[7].lower())

This will let you JSON-decode the arguments and compare them to the values of their
respective parameters from the call output. Your code to generate the HTTP request
for the API call is also remarkably similar to the API ping health check. The only
change is to the request path itself to point to the queue inspection call:

conn = httplib.HTTPConnection(server, port)

path = "/api/queues/%s/%s" % (urllib.quote(vhost, safe=""),
urllib.quote(queue_name))

method = "GET"

credentials = base64.b64encode("%s:%s" % (username, password))
try:

conn.request(method, path, "",
{"Content-Type" : "application/json",
"Authorization" : "Basic " + credentials})

except socket.error:
print "UNKNOWN: Could not connect to %s:%s" % (server, port)
exit(EXIT_UNKNOWN)

response = conn.getresponse()

You may have noticed one other change from the HTTP connection code in the API
ping health check you built: your new health check returns EXIT_UNKNOWN if it can’t
connect to the API server. With the API ping health check you were verifying the avail-
ability of the RabbitMQ server itself, so the API server not being available meant the
health check had failed and should return EXIT_CRITICAL. But the mission of this
new health check is not to monitor the availability of the Rabbit server but to keep an

Issue API
request
 www.it-ebooks.info

http://www.it-ebooks.info/

179RabbitMQ monitoring: keeping an eye on your warren

Par
res
eye on the configuration of a queue. As a result, if you can’t connect to the API server,
you should return EXIT_UNKNOWN since your health check can’t determine the configu-
ration of the queue one way or the other. Whether you receive an alert from your
monitoring system when this new check enters into the state unknown is up to how
you configured the monitoring system (Nagios) to treat UNKNOWN. By returning
UNKNOWN instead of CRITICAL, you’re providing a more accurate response and giving
the administrator of the monitoring system the flexibility to configure the system to
handle UNKNOWN the way they think is best.

 Where this check truly diverges from the checks you’ve written so far is in the way
it handles the HTTP response from the API call, as shown in the following listing.

if response.status == 404:
print "CRITICAL: Queue %s does not exist." % \

queue_name
exit(EXIT_CRITICAL)

elif response.status > 299:
print "UNKNOWN: Unexpected API error: %s" % \

response.read()
exit(EXIT_UNKNOWN)

response = json.loads(response.read())

if response["auto_delete"] != auto_delete:
print "WARN: Queue '%s' - auto_delete flag is NOT %s." % \

(queue_name, auto_delete)
exit(EXIT_WARNING)

if response["durable"] != durable:
print "WARN: Queue '%s' - durable flag is NOT %s." % \

(queue_name, durable)
exit(EXIT_WARNING)

print "OK: Queue %s configured correctly." % queue_name
exit(EXIT_OK)

The API ping health check either succeeded or failed and there was no differentiation
between the failure codes. But the queue inspection API call gives you more informa-
tion through the HTTP status code when it fails. If the HTTP status code is 404, you
know that the queue this check is trying to validate doesn’t exist B. Since the queue
not existing is a violation of how you want the queue configured, when you see a 404,
you set the exit code to EXIT_CRITICAL and output a human-readable message indi-
cating that the check failed because the queue is missing. For any other HTTP status
code greater than 299, you set the exit code to EXIT_UNKNOWN C and output a human-
readable message indicating that an API error that you weren’t expecting occurred
and include the body from the call’s HTTP response. EXIT_UNKNOWN as the health
check exit code is appropriate because as with the last use of the unknown status, an
error you’re not expecting prevents the check from determining the queue configura-
tion one way or the other.

Listing 10.5 queue_config_check.py: API response handling

Queue doesn’t exist,
return criticalB

Unexpected API error,
return unknownC

Dse API
ponse Queue

auto_delete flag
incorrect, return
warning

E

Queue durable
flag incorrect,
return warning

F

G Queue exists and
flags correct,
return OK
 www.it-ebooks.info

http://www.it-ebooks.info/

180 CHAPTER 10 Monitoring: Houston, we have a problem
 In the remainder of the new health check, you JSON-decode D the HTTP response
and compare the auto_delete E and durable F parameters against the values pro-
vided to the health check via its command-line arguments. If either auto_delete or
durable don’t match what the command-line arguments say they should be, you set
the exit status code to EXIT_WARNING and provide a descriptive human-readable mes-
sage. Now you may wonder why you’re setting the health check’s status to warning
instead of critical if the configuration parameters you’re verifying aren’t correct. Hon-
estly, it’s up to you and your environment. If you care more about the queue existing
and less about its actual configuration, a warning status for durable or auto_delete
not matching is fine. But if it would be fatal for the queue not to be durable when a
power failure occurs (as with the dog walking order queue) you definitely want to use
the exit code EXIT_CRITICAL instead.

 If everything about the queue’s configuration is correct, you exit normally G. With
this health check you can easily set up multiple instances in the monitoring system to
monitor the configuration of all the queues that are vital to your apps. Similarly, if you
need to make sure certain exchanges are always configured in a particular way, you
can rewrite this check to use the /api/exchanges/<vhost>/<exchange> API call
instead and monitor the exchange’s configuration parameters in the response. As
with most of your adventures in the book so far, you’ve been focusing on monitoring
the aspects of a Rabbit server that apply equally whether you’re running a standalone
server or a cluster. But if you’re running a cluster it’s equally important to know when
individual nodes have disappeared or their internal statistics are above desirable lev-
els. So let’s look at what it takes to make a check that can monitor the health of a
RabbitMQ cluster as a whole.

10.1.5 Monitoring your cluster status

You might be wondering what’s the point of creating yet another health check just for
monitoring a RabbitMQ cluster? After all, can’t you use the AMQP or API-based ping
health checks you’ve already written to monitor all of the nodes in the cluster? Yes you
could, and you’d know right away when any of those nodes went down—no special
cluster health check required. But imagine for a moment that you’re loading a
replacement server for a node that went down due to a hard drive crash. This new
server is an identical replacement all the way down to the IP address and Erlang node
name of the dead system. Once you’re done loading RabbitMQ onto the fresh server,
you then get an alert from your monitoring system. It tells you that the AMQP ping
health check for that node is now reporting RabbitMQ to be up and running again.
Excellent! Your cluster is running at full strength again and your work is done! Or is
it? Within an hour you start receiving customer reports that their dog walking orders
aren’t showing up in the queue even though the web app is confirming their orders.
Suddenly you realize your mistake—you reloaded the server as an identical replace-
ment for the dead RabbitMQ node, but you forgot to join it to the cluster! It’s acting
as a standalone Rabbit server, so any orders that get sent to the replacement node
aren’t visible to apps connected to the rest of cluster. All the while, the AMQP ping
 www.it-ebooks.info

http://www.it-ebooks.info/

181RabbitMQ monitoring: keeping an eye on your warren
health check is reporting everything is A-OK on the replacement node. When you’re
depending on a RabbitMQ cluster to power your apps, it’s not enough to make sure
all the nodes are simply running and accepting AMQP commands. You need to ensure
they’re acting together as a single unit, and that each one is joined to the cluster.
There’s also another reason for creating a special health check for monitoring your
RabbitMQ clusters: you need to be alerted proactively when a cluster node is running
up against its maximum memory limit.

 There are a number of reasons why RabbitMQ can use too much memory and run
into the maximum memory cap set in the Rabbit configuration file. Here are few of
the most common reasons:

 Your app has a bug that consumes a message but forgets to send an acknowl-
edgement back to RabbitMQ. This can result in thousands or millions of mes-
sages building up and exhausting Rabbit’s RAM in a high-volume environment.

 You’ve written an app that’s using RabbitMQ to route large data (like images)
to processing nodes. It doesn’t take many 100 MB images to exhaust a server
with only 8 GB of RAM.

 There’s a shiny new feature you’re using in the latest version of RabbitMQ, but
it has a bug that causes a slow memory leak.

No matter what the reason, once RabbitMQ has run out of RAM, bad things often start
to happen—like RabbitMQ becoming completely unresponsive or crashing. Yes,
RabbitMQ will try to use disk for storing messages when it experiences memory
exhaustion, but if you’re running in an environment with any significant message vol-
ume your disks won’t be able to keep up. When memory exhaustion happens to a
node that’s part of a cluster, you can start to see strange and intermittent behavior that
may not make sense. For example, your AMQP channel may appear to hang when a
message is published to a fanout exchange on node A, but node A appears to be fine.
In reality, the channel is locking up not because of anything wrong with node A, but
because node A has a binding that delivers the message to a queue on node B, which
is out of RAM. Since node A can’t get node B to deliver the message, the channel to
node A appears to hang while you wait for the publish to timeout. It would be much
better to have a health check that could monitor the cluster and let you know that one
of the nodes is almost out of RAM so you can correct the problem before the node
becomes unresponsive.

 Fortunately, you don’t need separate health checks to monitor cluster membership
and the RAM usage of the members. That’s because the smart guys at Rabbit HQ gave
you a single API call that tells you everything you could want to know about a cluster
and its members: /api/nodes. If you use curl to query /api/nodes manually, you’ll
get a JSON array with a dictionary for each node in the cluster:

$ curl -i -u guest:guest http://localhost:55672/api/nodes
HTTP/1.1 200 OK
Server: MochiWeb/1.1 WebMachine/1.7 (participate in the frantic)
Date: Thu, 18 Aug 2011 02:15:10 GMT
 www.it-ebooks.info

http://www.it-ebooks.info/

182 CHAPTER 10 Monitoring: Houston, we have a problem
Content-Type: application/json
Content-Length: 4254
Cache-Control: no-cache
[

{
"name":"rabbit@Phantome",
"type":"disc",
"running":true,
...
"mem_used":31537360,
"mem_limit":1675968512,
"mem_alarm":false,

...

The dictionary for each node contains statistics and configuration elements for that
node. For example, you can see that the node rabbit@Phantome is a disc node and is
using 31537360 bytes (30 MB) of RAM (mem_used). If you were using a standalone
Rabbit server you could also query /api/nodes for information about that server, with
the only difference being you’d get a single node dictionary instead of multiple dic-
tionaries for the nodes in a cluster. With this basic knowledge of what to expect in the
/api/nodes response, you’re ready to start building your cluster health check. Since
the health check you’re basing on /api/nodes is going to monitor both node mem-
bership and memory usage, your check first needs to know which cluster members it
should expect and what memory levels you consider warranting a warning or critical
status. To acquire these settings you’ll add three new arguments (node list, RAM usage
warning threshold, RAM usage critical threshold) to the server, port, and credentials
arguments you normally expect:

server, port = sys.argv[1].split(":")
username = sys.argv[2]
password = sys.argv[3]
node_list = sys.argv[4].split(",")
mem_critical = int(sys.argv[5])
mem_warning = int(sys.argv[6])

The node list argument is special in that the check will expect it to be a comma-
delimited list of nodes (such as rabbit@node1,rabbit@node2). This will let users
pass the node list as a single argument rather than multiple arguments that are
more difficult to parse. With the check’s configuration settings acquired, you’re
ready to make the connection to the API server in the following listing and post your
request to /api/nodes.

conn = httplib.HTTPConnection(server, port)

path = "/api/nodes"
method = "GET"

credentials = base64.b64encode("%s:%s" % (username, password))
try:

Listing 10.6 cluster_health_check.py: posting the request to /api/nodes

Connect to serverB
Build API pathC

Issue API
requestD
 www.it-ebooks.info

http://www.it-ebooks.info/

183RabbitMQ monitoring: keeping an eye on your warren
conn.request(method, path, "",
{"Content-Type" : "application/json",
"Authorization" : "Basic " + credentials})

except socket.error:
print "UNKNOWN: Could not connect to %s:%s" % (server, port)
exit(EXIT_UNKNOWN)

response = conn.getresponse()

if response.status > 299:
print "UNKNOWN: Unexpected API error: %s" % response.read()
exit(EXIT_UNKNOWN)

As with the previous API-based health checks, you connect to the API server over
HTTP B and send credentials via a Base64-encoded header D. The only difference is
that for this health check you’re posting to the /api/nodes endpoint C. With the
request sent, you’re ready to start processing the API server’s response in the next list-
ing. Since you need to check both the node membership for missing members as well
as the RAM usage of each of the nodes, you’ll make two passes over the array of node
dictionaries containing the statistics and configurations.

response = json.loads(response.read())

for node in response:
if node["name"] in node_list and node["running"] != False:

node_list.remove(node["name"])

if len(node_list):
print "WARNING: Cluster missing nodes: %s" % str(node_list)
exit(EXIT_WARNING)

for node in response:
if node["mem_used"] > mem_critical:

print "CRITICAL: Node %s memory usage is %d." % \
(node["name"], node["mem_used"])
exit(EXIT_CRITICAL)

elif node["mem_used"] > mem_warning:
print "WARNING: Node %s memory usage is %d." % \

(node["name"], node["mem_used"])
exit(EXIT_WARNING)

print "OK: %d nodes. All memory usage below %d." % (len(response),
mem_warning)

exit(EXIT_OK)

After decoding the JSON array of node dictionaries to their native Python
equivalents B, you try to match the node name element in each dictionary C to the
list of expected member nodes that were passed on the command line. As you iterate
through the node dictionaries, if the name element in that dictionary matches an
expected node name (and that node is notated as running), you remove that name
from the list of expected nodes. The result is that if all of the expected member nodes
are present, your list of expected nodes will be empty when you’re done iterating

Listing 10.7 cluster_health_check.py: processing the node listing

Parse API responseB

Cluster missing
nodes, return
warningC

Node used
memory
over limit

D

EAll nodes
present, used

memory
below limit
 www.it-ebooks.info

http://www.it-ebooks.info/

184 CHAPTER 10 Monitoring: Houston, we have a problem
through the node dictionaries. On the other hand, if your list of expected node
names has any entries still in it, you know that those nodes weren’t present or weren’t
running according to /api/nodes. If your check determines that nodes are missing
from the cluster, then you set the exit code to EXIT_WARNING and exit without any fur-
ther analysis. The reason you set the status to warning is because a missing cluster
node degrades the performance of the cluster but doesn’t necessarily prevent the
cluster from doing its work. If you feel a missing cluster node is more serious, set the
exit code to EXIT_CRITICAL instead.

 Once you’ve verified that all of the expected nodes are present in the cluster, you
then iterate through each node dictionary again to evaluate how much RAM each
node is using D. If the mem_used element in any node dictionary is greater than the
critical RAM usage threshold set via the command line, you exit with the status code
EXIT_CRITICAL and output a human-readable message indicating the affected node’s
current RAM usage in bytes. If the node’s mem_used element doesn’t exceed the criti-
cal threshold, but does exceed the warning threshold for RAM usage, you instead exit
with the EXIT_WARNING status code but still output the affected node’s current RAM
usage. Finally, if all of the expected cluster members are present and none of them
exceed the warning or critical RAM usage thresholds, you exit with the EXIT_OK status
code E and output that all of the nodes’ RAM usage is below the warning threshold
number. Let’s give your health check a quick run and see what happens:

$ python cluster_health_check.py localhost:55672 guest guest \
rabbit@Phantome,rabbit2@Phantome 34000000 33000000

OK: 2 nodes. All memory usage below 33000000.
$ echo $?
0

Great, so your health check has confirmed that both rabbit@Phantome and
rabbit2@Phantome nodes are members of the cluster, and that the RAM usage of both
is below the critical (34 MB) and warning (33 MB) thresholds. But let’s see how your
check handles one of the cluster nodes disappearing:

$ rabbitmqctl -n rabbit2@Phantome stop_app
Stopping node rabbit2@Phantome ...
...done.
$ python cluster_health_check.py localhost:55672 guest guest \

rabbit@Phantome,rabbit2@Phantome 34000000 33000000
WARNING: Cluster missing nodes: ['rabbit2@Phantome']
$ echo $?
1

So far, so good; your health check not only detects that an expected cluster mode is
missing from the cluster, it correctly tells you which node is missing. Finally, you need
to make sure your check correctly detects nodes crossing both the warning and critical
RAM thresholds that you set:

$ python cluster_health_check.py localhost:55672 guest guest \
rabbit@Phantome,rabbit2@Phantome 32000000 31000000

WARNING: Node rabbit2@Phantome memory usage is 31785552.
 www.it-ebooks.info

http://www.it-ebooks.info/

185Making sure consumers are consuming
$ echo $?
1
$ python cluster_health_check.py localhost:55672 guest guest \

rabbit@Phantome,rabbit2@Phantome 31000000 30000000
CRITICAL: Node rabbit2@Phantome memory usage is 31834792.
$ echo $?
2

By switching critical/warning RAM thresholds between 32 MB/31 MB and 31 MB/30 MB,
you can see that your new check correctly detects and reports when RabbitMQ is using
more RAM than it should. You now have a complete set of Rabbit-facing health checks
that can let you know not only if your RabbitMQ servers individually become unavail-
able, but can also warn you if your Rabbit clusters are missing members or if any of those
members are nearing RAM exhaustion. But what if the issue isn’t the health of Rabbit,
but whether your apps are properly consuming the messages they’re supposed to? Your
cluster health check can let you know about RAM exhaustion, but if the problem is that
your dog walking app isn’t properly consuming orders out of an order queue, wouldn’t
it be nice to know that before RAM exhaustion becomes an issue? If your message
volume (or size) is low, monitoring how many messages are in a particular queue can
be even more important because the message build-up may go completely unnoticed
until a customer complains that their order hasn’t been processed. With that in mind
it’s time to look at how to build health checks that can let you know when your consum-
ers stop consuming.

10.2 Making sure consumers are consuming
Up to this point, we’ve primarily been concerned with making sure your RabbitMQ
servers are running, able to route messages, and clustered properly. But we haven’t
talked about one of the few downsides to using messaging: it becomes harder to mon-
itor your consumers. Let’s take the dog walking site as an example. A key part of the
site is the daemon that runs continuously behind the scenes to process orders
recorded by the user-facing web app. If you didn’t have messaging, it’s likely you’d
design the order processing daemon as a server app that communicates over HTTP.
After collecting order information from a customer, your web app would connect to
the server port the order processing app is listening on and, once connected, would
transmit the order. As we’ve discussed before, the major disadvantage to this approach
is that the web app can’t get back to taking another order until the order processing
app confirms custody of the order, usually after processing it. The decoupling of front-
end web app from backend order processor is a huge benefit of using messaging, but
the question becomes how you monitor that the order processor is functioning. When
it comes to monitoring them, server-type apps that accept TCP connections are
straightforward to monitor. Once you convert that app to use messaging, you can no
longer just connect to the server app’s listener port to make sure it’s up and able to
process traffic. There’s no port to connect to!

 Fear not! You can still monitor your order processing app that uses messaging;
you just have to think differently about what to monitor. The natural side effect of
 www.it-ebooks.info

http://www.it-ebooks.info/

186 CHAPTER 10 Monitoring: Houston, we have a problem
any consumer not being able to consume messages and process them is that mes-
sages build up in the queues supplying the consumers. You may remember earlier in
the book we encouraged writing consumers so that they don’t acknowledge mes-
sages they’ve received until they’ve successfully finished processing them. One of the
reasons we encouraged this approach (besides ensuring your messages don’t get
black-holed), is that if your consumer is continually crashing when processing mes-
sages, those messages will build up in the queues and a health check can then trig-
ger an alert. So as you may have guessed by now, the way you’ll monitor whether
your consumers are functioning properly is by monitoring the message count in a
queue and triggering an alert when that count crosses the warning or critical thresh-
old you set.

 As with the ping health checks you wrote earlier, there are two ways you can moni-
tor queue message counts:

1 Use the AMQP queue_declare() command with the passive=True argument to
redeclare an existing queue. When you declare a queue in AMQP, the result
from the command contains the queue message count if the passive argument
is set to True.

2 Leverage our old friend the Rabbit management API to pull the statistics on the
queue, among which is the current queue message count.

After you’ve learned how to build each version of the queue count check (and the
benefits of each approach), we’ll look at how you can analyze your messaging traffic to
figure out what the warning and critical thresholds should be for each of the queues
your apps use. Without further ado, let’s dive into using AMQP to monitor the message
counts in your queues.

10.2.1 Monitoring queue levels through AMQP

One question you might be asking yourself is, “Why are we using AMQP for this?
Wouldn’t the API provide more detail?” In short, yes, the API provides a lot more detail
into the number of messages that are waiting to be consumed versus the number of
messages that have been delivered to a consumer but have yet to be acknowledged.
Using AMQP to monitor message counts will only show you the aggregate number of
messages in the queue with no differentiation between unconsumed and unacknowl-
edged messages. But if you’re using an older version of RabbitMQ that doesn’t work
with the Management plugin, or if for technical/security reasons you can’t install the
Management plugin, then using AMQP to monitor message counts is your only option.
Given the choice between not monitoring your queues or using an AMQP-based check
to do so, it’s not much of a choice if the reliability of your applications matters.

 In common with the AMQP-based ping health check you’ve already written, your
AMQP queue count check will expect server, port, vhost, and credential arguments on
the command line. It will also need additional arguments so that it will know which
queue to monitor and at what thresholds a warning or critical status should be
returned:
 www.it-ebooks.info

http://www.it-ebooks.info/

187Making sure consumers are consuming
server, port = sys.argv[1].split(":")
vhost = sys.argv[2]
username = sys.argv[3]
password = sys.argv[4]
queue_name = sys.argv[5]
max_critical = int(sys.argv[6])
max_warn = int(sys.argv[7])

Your new health check will also build its connection to Rabbit identically to the AMQP
ping check. But once connected, it will issue channel.queue_declare for the speci-
fied queue to get the current message count:

creds_broker = pika.PlainCredentials(username, password)
conn_params = pika.ConnectionParameters(server,

virtual_host = vhost,
credentials = creds_broker)

try:
conn_broker = pika.BlockingConnection(conn_params)
channel = conn_broker.channel()

except socket.timeout:
print "Unknown: Could not connect to %s:%s!" % (server, port)
exit(EXIT_UNKNOWN)

try:
response = channel.queue_declare(queue=queue_name,

passive=True)
except pika.exceptions.AMQPChannelError:

print "CRITICAL: Queue %s does not exist." % queue_name
exit(EXIT_CRITICAL)

Contained within the response object is the current message count for the monitored
queue. But before we look at how to access that message count, it’s important to note
the passive=True argument passed to queue_declare. The passive argument tells
RabbitMQ you don’t want to actually declare the queue; you want to know whether it
exists. With passive set to True, queue_declare will raise an exception if the queue
doesn’t exist, and will return the current message count in the queue if it does. It’s
crucial to make sure the passive argument is included not only because it’s the only
way to return the queue message count, but also because without it the check will actu-
ally try to declare the queue. Once the passive queue_declare operation completes,
you’re left with the response object, inside of which the message count is buried. To
access that message count, you reference the .method.message_count attribute as in
the following listing.

if response.method.message_count >= max_critical:
print "CRITICAL: Queue %s message count: %d" % \

(queue_name, response.method.message_count)
exit(EXIT_CRITICAL)

if response.method.message_count >= max_warn:
print "WARN: Queue %s message count: %d" % \

Listing 10.8 amqp_queue_count_check.py: validating the queue message count

Message count
above critical limitB

Message count
above warningC
 www.it-ebooks.info

http://www.it-ebooks.info/

188 CHAPTER 10 Monitoring: Houston, we have a problem
(queue_name, response.method.message_count)
exit(EXIT_WARNING)

print "OK: Queue %s message count: %d" % \
(queue_name, response.method.message_count)

exit(EXIT_OK)

The message_count attribute is an integer so it’s simple to compare against the
check’s message count thresholds. If message_count is greater than the critical thresh-
old B, exit with an EXIT_CRITICAL status code, and if it’s not over the critical thresh-
old but is over the warning threshold, exit C with an EXIT_WARNING status code. On
the other hand, if message_count exceeds neither the critical nor warning thresholds,
you set the status code to EXIT_OK D and quit. Other than the code to set up the
AMQP connection to Rabbit, this health check is simple.

 To test out this check, first you’ll use the Rabbit management web UI covered in
chapter 8 to create a queue called my_queue, as illustrated in figure 10.2.

 With the queue created, next you’ll click on the Exchanges tab in the management
web UI and then click on (AMQP default) in the resulting listing. You use the (AMQP
default) exchange because publishing your test message into this exchange with
my_queue as the routing key will automatically route the message to my_queue without

Connection OK,
return OK

D

Figure 10.2 Create my_queue
 www.it-ebooks.info

http://www.it-ebooks.info/

189Making sure consumers are consuming
setting up explicit bindings. Using the Publish Message controls on the (AMQP
default) page in the management web UI, publish a message with the payload Any
payload will do. and the routing key my_queue. After you receive the notice Message
published, click Publish Message one more time to put a second copy of the message
into my_queue, as in figure 10.3.

 You should now have two messages waiting in my_queue, so let’s run your health
check to find out if it sees them:

$ python amqp_queue_count_check.py localhost:5672 / guest \
guest my_queue 4 3

OK: Queue my_queue message count: 2
$ echo $?
0

Figure 10.3 Publish test message into my_queue.
 www.it-ebooks.info

http://www.it-ebooks.info/

190 CHAPTER 10 Monitoring: Houston, we have a problem
You told the health check to consider four or more messages a critical status and three
or more a warning. As a result, the check returned an OK status and told you correctly
that there are two messages in my_queue. Let’s change the critical and warning thresh-
olds to three and two messages respectively, and run the check again:

$ python amqp_queue_count_check.py localhost:5672 / guest \
guest my_queue 3 2

WARN: Queue my_queue message count: 2
$ echo $?
1

As it should, your health check now returns a warning because two messages is the new
warning threshold for the queue message count, but you haven’t exceeded the three-
message critical threshold. If you reduce the critical and warning thresholds again, but
to two and one messages this time, the check should now return a critical status:

$ python amqp_queue_count_check.py localhost:5672 / guest \
guest my_queue 2 1

CRITICAL: Queue my_queue message count: 2
$ echo $?
2

In less than 50 lines of code, you now have a way to monitor the message count in any
queue and know proactively when to check your consumers because their queue mes-
sage count has grown to dangerous levels. Sometimes, the message count has built too
high not because your consumers are crashing, but rather the high queue count
might be due to a bug where the consumers don’t acknowledge messages they’ve suc-
cessfully processed. Wouldn’t it be helpful to know whether the high message count is
due to unconsumed (crashing consumers) or simply unacknowledged (buggy con-
sumers) messages? Though your AMQP-based check can’t give you that information,
the Rabbit API definitely can. Let’s see how you can create a better queue count check
that can answer those questions through using the Rabbit Management API.

10.2.2 Using the REST API to watch queue levels

When you built your health check to monitor queue configurations via the API, you
may remember that there were statistics sprinkled in with the configuration informa-
tion returned by /api/queues/<vhost>/<queue_name>. Among those was the number
of messages currently in the queue:

...
"messages_ready":0,
"messages_unacknowledged":0,
"messages":0,
...

But the output from /api/queues/<vhost>/<queue_name> doesn’t just tell you how
many total messages (messages) are in the queue. It also breaks down the aggregate
message count into unconsumed messages (messages_ready) and unacknowledged
messages (messages_unacknowledged). This can be useful information to have. For
 www.it-ebooks.info

http://www.it-ebooks.info/

191Making sure consumers are consuming
example, let’s say your dog walking order app gets temporary spikes of orders every day
after your ad comes on during The Dog Whisperer. During the period of time after the
ad, your order queues show a 10x increase in message counts. With the AMQP health
check this would definitely exceed your critical threshold and would trigger a false pos-
itive alert every day. On the other hand, if you check the message counts using the API,
you can see that the 10x increase is restricted to messages_ready (unconsumed mes-
sages). By creating a new message count health check using the API, you could set a
much higher critical threshold for unconsumed messages while still maintaining a low
threshold for unacknowledged messages. This would let you eliminate false alarms on
unconsumed message counts, while still being notified quickly of bugs in your consum-
ers that manifest as elevated unacknowledged message counts.

 As with every health check so far, first you need to acquire the RabbitMQ connec-
tion and authentication information from the command line. But in addition you also
need to acquire the name of the queue to monitor as well as the critical and warning
thresholds for both unconsumed (ready) and unacknowledged message counts:

server, port = sys.argv[1].split(":")
vhost = sys.argv[2]
username = sys.argv[3]
password = sys.argv[4]
queue_name = sys.argv[5]
max_unack_critical = int(sys.argv[6])
max_unack_warn = int(sys.argv[7])
max_ready_critical = int(sys.argv[8]
max_ready_warn = int(sys.argv[9])

With the settings for the health check in hand, you’re ready to connect to the API
server. You’ll use the same connection code as your previous API-based health checks,
with the exception that this time you’ll connect to the /api/queues/<vhost>/
<queue_name> endpoint:

conn = httplib.HTTPConnection(server, port)
path = "/api/queues/%s/%s" % (urllib.quote(vhost, safe=""),

queue_name)
method = "GET"
credentials = base64.b64encode("%s:%s" % (username, password))
try:

conn.request(method, path, "",
{"Content-Type" : "application/json",
"Authorization" : "Basic " + credentials})

except socket.error:
print "UNKNOWN: Could not connect to %s:%s" % (server, port)
exit(EXIT_UNKNOWN)

response = conn.getresponse()
if response.status > 299:

print "UNKNOWN: Unexpected API error: %s" % response.read()
exit(EXIT_UNKNOWN)

Assuming that the API connection was successful, and your request didn’t generate an
HTTP error, you can now analyze the response to determine the current message
 www.it-ebooks.info

http://www.it-ebooks.info/

192 CHAPTER 10 Monitoring: Houston, we have a problem

Ready-to
consum

mess
count ab

thresh
count levels for the queue. After JSON-decoding the response, you’ll extract the
messages_unacknowledged and messages_ready elements from the response
dictionary:

resp_payload = json.loads(response.read())
msg_cnt_unack = resp_payload["messages_unacknowledged"]
msg_cnt_ready = resp_payload["messages_ready"]
msg_cnt_total = resp_payload["messages"]

At last, with the unconsumed (ready) and unacknowledged message counts extracted,
you’re able to compare them against the supplied thresholds in the following listing.

if msg_cnt_unack >= max_unack_critical:
print "CRITICAL: %s - %d unack'd messages." % (queue_name,

msg_cnt_unack)
exit(EXIT_CRITICAL)

elif msg_cnt_unack >= max_unack_warn:
print "WARN: %s - %d unack'd messages." % (queue_name,

msg_cnt_unack)
exit(EXIT_WARNING)

if msg_cnt_ready >= max_ready_critical:
print "CRITICAL: %s - %d unconsumed messages." % (queue_name,

msg_cnt_ready)
exit(EXIT_CRITICAL)

elif msg_cnt_ready >= max_ready_warn:
print "WARN: %s - %d unconsumed messages." % (queue_name,

msg_cnt_ready)
exit(EXIT_WARNING)

print "OK: %s - %d in-flight messages. %dB used memory." % \
(queue_name, msg_cnt_total, resp_payload["memory"])

exit(EXIT_OK)

The first thing to check is whether the unacknowledged message count has exceeded
critical or warning levels B. If it has, you set the status exit code to EXIT_CRITICAL or
EXIT_WARNING (depending on which threshold it exceeded), and output the number
of unacknowledged messages currently in the queue. Providing that none of the unac-
knowledged message count thresholds have been exceeded, you next analyze the
unconsumed (ready) message counts C. Similarly, if either the critical or warning
thresholds for unconsumed messages have been exceeded, you again set the status
exit code to EXIT_CRITICAL or EXIT_WARNING and then output the number of uncon-
sumed messages. Finally, if neither the unconsumed nor unacknowledged message
counts are above their critical or warning thresholds, you set the status exit code to
EXIT_OK to let Nagios know everything is healthy D and then output the total (uncon-
sumed + unacknowledged) number of messages in the queue along with the amount
of RAM the queue is currently consuming.

Listing 10.9 api_queue_count_check.py: examine message counts

B
Consumed but

unacknowledged
message count

above thresholds
-be-

ed
age
ove

olds

C

Message
counts below
thresholds,
return OKD
 www.it-ebooks.info

http://www.it-ebooks.info/

193Making sure consumers are consuming
 Though it’s complicated to test the unacknowledged message thresholds, you
should be able to use the messages still sitting in my_queue from testing the AMQP-
based message count check to verify your new API-based version of the check. If you
set the unconsumed critical/warning thresholds to two and one messages respectively,
your API message count check should correctly detect an excessive number of uncon-
sumed (ready) messages:

$ python api_queue_count_check.py localhost:55672 / guest \
guest my_queue 2 1 2 1

CRITICAL: my_queue - 2 unconsumed messages.
$ echo $?
2

If you raise the critical/warning unconsumed thresholds to four and three messages
respectively, your check should now consider the unconsumed message count in the
queue healthy again:

$ python api_queue_count_check.py localhost:55672 / guest \
guest my_queue 4 3 4 3

OK: my_queue - 2 in-flight messages. 9800B used memory.
$ echo $?
0

As it should, the check reports that you have a total of two messages in the queue, and
that the queue is consuming 9800 bytes of memory (the exact memory usage will
vary). You now have a health check that can differentiate between an excessive num-
ber of unacknowledged versus unconsumed messages in your queues. That will help
you more quickly determine whether your queue counts are indicating an increased
load or simply defects in your apps. The question remains: how do you determine
baseline message counts for your queues so that you can set the critical and warning
thresholds on your health checks?

10.2.3 Rules of thumb for establishing a queue count baseline

There are a number of approaches for determining what should be considered criti-
cal and warning thresholds for queue message counts. If you’re converting an existing
application to use messaging, the logs for that application can provide a reasonably
accurate source of information. For example, if your application processes credit card
orders, it’s highly likely you already log each order with a timestamp to a database. It’s
generally a good rule of thumb to use those logs to see how many orders you process
in a 10-second interval. This number should generally be your warning threshold
because the health check is taking a snapshot of the queue message counts when it
runs, and that snapshot generally represents a 1-second or shorter period of time. It
should be unusual for the number of messages in the queue at any given time to
exceed the number of messages/orders processed over 10 seconds. Similarly, set the
critical threshold at the number of orders/messages processed in 20 seconds. Keep in
mind that this approach is approximate and you need to monitor the actual queue
levels to make sure these thresholds are correct for your environment.
 www.it-ebooks.info

http://www.it-ebooks.info/

194 CHAPTER 10 Monitoring: Houston, we have a problem
 The best way to determine the warning and critical message count thresholds for
your environment is to monitor the queues with a graphing monitoring system like
Cacti or Graphite. By modifying the message count checks to work with these systems,
they can graph the actual message counts in your queues by sampling the counts at
regular intervals. The resulting graphs will tell you almost exactly what your actual
average unconsumed and unacknowledged message counts are. With those numbers
in hand, add 20% to get your warning threshold and 100% to get your critical thresh-
old. Generally speaking, anything between 20% and 99% above normal could be reg-
ular fluctuations. But 100% or more above normal definitely is worth looking into as a
sign that something has gone awry.

10.3 Summary
When we started you may have had a robust RabbitMQ architecture built, but you had
no way to monitor it to ensure it was truly reliable. Now you’ve built health check pro-
grams that can not only query a RabbitMQ server to make sure it’s able to process
AMQP commands, but which can also monitor actual message count levels to deter-
mine the health of the programs that are consuming from your queues. In addition,
you can also keep an eye on the configuration of your queues to make sure human
error doesn’t change your queues from durable to nondurable and set you up for
disaster during the next server failure. Monitoring RabbitMQ is a vital part of ensur-
ing it’s running properly and is efficiently powering your applications. But once you
start monitoring RabbitMQ, those health checks can open your eyes to inefficiencies
and issues that can be corrected by tuning Rabbit. With that in mind it’s time you took
a look at ways to analyze RabbitMQ’s performance and behavior so you can maximize
both in your applications.
 www.it-ebooks.info

http://www.it-ebooks.info/

Supercharging and
securing your Rabbit
In previous chapters you’ve seen how to design your architectures around messag-
ing. You’ve seen many ways for implementing several messaging patterns using the
various AMQP building blocks like exchanges, queues, and bindings. Depending on
the problem at hand, you chose a particular combination of those items to bring
about a solution. If you needed to distribute logs across many machines, you fol-
lowed a pub-sub pattern using topic or fanout exchanges; if you needed point-to-
point communication, then you use direct exchanges, and so on. In this chapter
we’ll review the performance characteristics of these design decisions. You’ll see
the advantages and disadvantages of using direct exchanges over topic exchanges;
the minimum memory footprint an exchange, queue, or binding has; what hap-
pens when you have hundreds of bindings to a topic exchange in contrast with a
fanout exchange, and more. Also you may have questions like, when is a message

This chapter covers
 Exchange, queue, and bindings memory footprint

 Message durability and disk I/O

 SSL connections with RabbitMQ

 Setting up a private key infrastructure
195

 www.it-ebooks.info

http://www.it-ebooks.info/

196 CHAPTER 11 Supercharging and securing your Rabbit
written to disk? How does the server cope with many in-memory queues? Our goal is to
provide the information necessary to make decisions when it comes to capacity plan-
ning. We’ll do so by analyzing the path that a message takes while traveling from the
producer to the consumer, depending on the several AMQP options.

 After we’ve talked about performance, you’ll see how to secure your RabbitMQ
installation and more specifically how to use SSL to establish trusted communications
with the broker. We’ll cover the configuration aspects to enable SSL listeners in Rab-
bitMQ, how to generate the SSL certificates, and how to connect to the broker using SSL.

 Let’s move to the first section where you’ll see what affects the speed of messaging
delivery from an AMQP point of view.

11.1 The need for speed
Several factors can modify the speed at which RabbitMQ delivers messages, depend-
ing on the hardware and software configuration. On the hardware side, you have fac-
tors like network configuration, disk arrangement, number of cores, and so on. On
the software level, you can configure several AMQP parameters like message durability,
routing algorithm, number of bindings, and message acknowledgment strategy. Since
the first totally depend on your setup, we won’t cover them in this chapter. We’ll focus
on the AMQP specifics and on what RabbitMQ does about them.

 Let’s start by reviewing how message durability and message acknowledgment affect
the speed of message delivery.

11.1.1 Message durability

When discussing software performance, everything has to be taken with a grain of salt
or even two. Why? Because whatever decision you make has to take into account the
context in which it’s applied. For every decision you make there are pros and cons. For
example, you can speed up message delivery for system logs which you might not even
need to persist to disk, but when it comes to order processing for shopping carts you’d
better make sure nothing is lost in the process. So although you could send logs as non-
persistent messages and consume them without acknowledgment, you can’t afford
such luxury when customer money is in play. So whenever you deal with these kinds of
performance tweaks, you have to think of the trade-offs you’re making.

 When you publish messages, you have to decide whether it’s okay to lose any of
them. If it’s okay that a couple of messages out of thousands can be lost (for whatever
reason), then you may publish them with the property delivery-mode set to 1, which
means nonpersistent. Usually you’d deliver messages as persistent by setting the deliv-
ery-mode to 2, but at the cost of forcing the broker to write them to disk. For example,
on a Mac, RabbitMQ can easily deliver up to 12,000 messages per second. If you turn
on message persistence, then that number drops to around 4,000 message deliveries
per second. The number of messages is still high but has dropped considerably.

 How do you manage this setting? You have to specify it as part of the message prop-
erties for every message that you publish to the server. The following code snippet is
an example of how to create a nonpersistent message with the PHP library:
 www.it-ebooks.info

http://www.it-ebooks.info/

197The need for speed
$msg = new AMQPMessage("Test Message", array('delivery_mode' => 1));

Another setting that will affect messaging speed is message acknowledgment. Let’s
take a look at it.

11.1.2 Message acknowledgment

In the previous section we looked at the settings that involve message publication; now
it’s time to see how you can configure during message consumption. One setting that
will speed up message delivery is the no-ack flag that you can specify during queue
subscription time. If set to true, the server will automatically dequeue the message
after it’s sent to the client. If for some reason the connection is lost or your client
application dies, the message will be lost forever.

 The speed advantage of subscribing to a queue with no-ack set to true comes from
the fact that you don’t need to send an acknowledgment back to the server after you
process the message, which will speed up your consumers. On the server side, things
will be simplified since RabbitMQ can forget about your message after it’s delivered.
Here’s a Python snippet showing how to consume from a queue with no-ack set to true:

channel.basic_consume(critical_notify,
queue="critical",
no_ack=True,
consumer_tag="critical")

You’ll consume from the critical queue using critical as the consumer tag as well.
For every message that you receive, the callback critical_notify will be called. Now
it’s time to see what happens during message routing. In the next section we’ll look at
each of the main routing algorithms used by RabbitMQ.

11.1.3 Routing algorithm and bindings

In this book we’ve discussed three kinds of exchanges: direct, fanout, and topic. You
know that each exchange type implies a particular routing algorithm that’s imple-
mented by the server. When the exchange is required to route a message, it’ll select
the queues where the message should go based on the message routing key and the
bindings it holds to queues. The selection process will vary according to the exchange
type, since each exchange type will treat the message routing key differently.

 On the server side, exchanges and bindings are record entries in Mnesia, which
means that when RabbitMQ is matching the message routing key, what it’s doing is try-
ing to find a binding that corresponds to that routing key. Mnesia is a highly perfor-
mant database whose storage is based on Erlang’s ETS and DETS tables.1 ETS stands for
Erlang term storage and is an in-memory storage for data, whereas DETS is the
disk-based counterpart. The advantage of using Mnesia over plain ETS function calls is
that Mnesia can coordinate access to the tables in a cluster. So, for example, when you
create an exchange on a clustered node, Mnesia will take care of replicating the infor-
mation to all the other nodes in the cluster; the same can be done while adding

1 More information about ETS can be found at http://erlang.org/doc/man/ets.html.
 www.it-ebooks.info

http://erlang.org/doc/man/ets.html
http://www.it-ebooks.info/

198 CHAPTER 11 Supercharging and securing your Rabbit
bindings, declaring queues, and so forth. Although Mnesia works great for maintain-
ing consistency, the extra layer on top of ETS can slow things down when you need to
perform certain kind of queries like performing a routing key match. That part of the
process has been optimized for the direct and fanout exchanges so you don’t have to
suffer Mnesia coordination penalties. For those exchange types, bindings are stored in
the rabbit_route table, which is of the ordered_set type. According to the documen-
tation for ETS tables, access time for such tables is logarithmic in relation to the num-
ber of entries in the database. Also due to the nature of the ordered_set table type,
the RabbitMQ developers were able to perform some interesting optimizations when
selecting data from the table that allowed them to bypass Mnesia for these kinds of
queries. This means that RabbitMQ routing tables have the consistency guarantees
offered by Mnesia while keeping the data retrieval speed offered by plain ETS tables.

DIRECT AND FANOUT EXCHANGES

The difference between the direct exchange versus the fanout exchange is that the lat-
ter ignores the routing key when it comes to querying to the rabbit_route table. So
although you can provide a routing key during queue binding to a fanout exchange,
keep in mind that the routing key will be ignored when routing messages. The same
thing happens when publishing messages with routing keys to fanout exchanges: the
routing key is ignored.

TOPIC EXCHANGE

The case of the topic exchange is completely different because the stored routing
information is more complex. Matching a message routing key goes beyond simple
string comparison, since the routing key can contain several words separated by dots
(.). For that reason, RabbitMQ implements a trie data structure where the binding
keys patterns are stored in a format that allows for fast querying. This series of two blog
posts explain in detail the implementation of the topic exchange and its performance
characteristics: http://www.rabbitmq.com/blog/2010/09/14/very-fast-and-scalable-topic-
routing-part-1/ and http://www.rabbitmq.com/blog/2011/03/28/very-fast-and-scalable-
topic-routing-part-2/. In the second of those posts, you can see that the topic exchange
implementation of RabbitMQ can match 1,000,000 topics against 2,000 patterns in
about 11 seconds on a 2.3 GHz machine, which leaves the topic exchange more than
usable for your everyday messaging scenarios. Keep in mind that, usually, bindings on
topic exchanges use more memory than in direct or fanout exchanges.

 Finding the message destination is one thing; delivering the messages is another.
Let’s see what happens after the exchange processes the message routing information.

11.1.4 Delivering messages

After the exchange has found where the message should be routed, it’ll return a list of
destinations to the rabbit_router and later proceed to deliver copies of the messages
to each of the destinations (queues or exchanges). If you published your message with
the mandatory and immediate flags set to false then this process can be done asyn-
chronously, and the server will be faster from the client point of view.
 www.it-ebooks.info

http://www.rabbitmq.com/blog/2010/09/14/very-fast-and-scalable-topic-routing-part-1/
http://www.rabbitmq.com/blog/2010/09/14/very-fast-and-scalable-topic-routing-part-1/
http://www.rabbitmq.com/blog/2011/03/28/very-fast-and-scalable-topic-routing-part-2/
http://www.rabbitmq.com/blog/2011/03/28/very-fast-and-scalable-topic-routing-part-2/
http://www.it-ebooks.info/

199The need for speed
 Here is where things start to get tricky, so we represented this process in figure 11.1.
If the queue where the message is being delivered is empty and a consumer is ready to
receive a message, then the message goes straight to the consumer without even touch-
ing the queue. As you can guess, this greatly improves message delivery speeds. The
next question to ask is whether the consumer is in auto-ack mode. If the consumer is
subscribed using the no-ack flag set to true, then the message is forgotten by the server.
If that’s not the case then the message will be added to a pending-acknowledgment list
to keep track of the message. The next question is whether the message is being routed
to a durable queue and whether the message was published as persistent. If so, the mes-
sage is written to disk but marked as already delivered so while the message is sitting in the
queue, it won’t be sent to another consumer.

Consumer
in auto-ack

mode?

Durable
queue

Mandatory or
immediate

Msg
delivery
mode

Route message

Deliver to
consumer

Delivery

Enqueue
message

Persist msg to disk
Durable store

Keep msg in
memory

Yes

persistent

transient

No

Queue is
empty

Persist msg to disk
Transient store

Yes

Yes

No

Consumer
ready?

Yes

No

Memory
pressure?

Add Msg to
pending ack

list

No

Yes

Msg marked
as delivered

No

Async deliverySync delivery

Figure 11.1 Message delivery flow
 www.it-ebooks.info

http://www.it-ebooks.info/

200 CHAPTER 11 Supercharging and securing your Rabbit
Now let’s go back in time to the point when RabbitMQ checks whether the queue is
empty. If the queue isn’t empty, then the message is queued. If the message isn’t per-
sistent, then it’s kept in memory only if there’s enough memory to hold the message.
If there’s not enough memory, then the message will be written to disk to the transient
store. In the case of persistent messages, they’ll be written to disk and at the same time
be kept in memory to speed up message delivery. If memory pressure occurs, then
messages will get flushed to disk. By doing that, the server ensures message properties
such as persistence while still delivering the messages as quickly as it can.

 As you can see in figure 11.1, if the message is routed to a durable queue, then if
it’s written to disk, it’ll go to the durable store; otherwise it’ll go to the transient store. If
RabbitMQ has to restart and recover durable queues, it only needs to go through the
contents of the durable store, and can wipe out the transient store without worrying.

 Something to keep in mind is that RabbitMQ is optimized to deliver messages as
quickly as possible to consumers. If you do capacity planning and calculate your mes-
sages’ ingress/egress rates, then you should try to keep your queues as empty as possi-
ble; though this isn’t the latest discovery, it’ll help you have a fast-paced broker. But if
consumers start to lag behind and queues start to fill up, then at some point the mem-
ory alarm will fire on the server and it’ll start to flush messages to disk no matter what
properties were used to publish the messages. The lesson is to always keep an eye on
your queue sizes.

 In this section you saw how the different algorithms and message publish and sub-
scribe settings can affect the overall system speed, and how a different flag setting like
auto-ack mode can immensely affect the system performance. In the next section
we’ll look at the hard limits imposed on the RabbitMQ server by the hardware (RAM)
and by the Erlang virtual machine itself.

11.2 Memory usage and process limits
When you design applications you usually have two basic constraints: what the chosen
technology allows you to do, and what your current hardware setup allows you to do.
In the previous section—and throughout the book—we’ve covered the first point by
seeing how the different message routing and delivery algorithms affect design deci-
sions. In this section we’ll review some of the hard limits imposed by your hardware or
by the Erlang virtual machine on RabbitMQ so you can plan ahead and see how much
you should be able to scale up RabbitMQ in a single box. For example, one interesting
metric to know about RabbitMQ is the memory required to create each of the AMQP
components like queues, exchanges, and bindings. Another value to take into account
is the number of Erlang processes that RabbitMQ creates for those elements, since
there’s a hard limit in the Erlang VM to how many processes you can create. Let’s look
at each of those elements in detail so you can start from solid ground when doing
capacity planning calculations.
 www.it-ebooks.info

http://www.it-ebooks.info/

201Memory usage and process limits
11.2.1 Memory usage

The first question to ask is what
happens when you declare a queue.
When you declare a queue,
RabbitMQ will add several entries
into various Mnesia tables,
depending on the kind of queue.
If the queue is declared with
durable set to true, then there will
be an entry for your queue in the
tables rabbit_queue and rabbit
_durable_queue. In the case of a
nondurable queue, there will be
an entry for it only in the
rabbit_queue table. An entry in
any of those tables will take
approximately 29 words of mem-
ory. So what does that mean? In
Erlang the size of a word will depend on your system. For a 32-bit computer, the
wordsize will be 4 bytes and in a 64-bit architecture a word will take 8 bytes. We said
approximately 29 words because the size of the record will depend also on the name of
the queue you declared. This process is shown in figure 11.2.

 According to the AMQP specification, every queue is bound to the anonymous
exchange, which means that after a queue declare there will also be an entry in the
rabbit_route table that keeps tracks of the bindings between queues and exchanges.
There might be entries in another Mnesia tables, which we’ll come back to later when
we take a look at bindings. An entry on the rabbit_route table will take approxi-
mately 44 words of memory.

 All this means that when you declare a queue, you’ll use 29 words of memory for
the entry on the rabbit_queue table plus 44 words of memory for the entry on the
rabbit_route table. If the queue is durable, then you’ll have a 29-word entry on the
rabbit_durable_queue table as well. Apart from that you’ll also have more entries on
the routing tables, as you’ll soon see. Table 11.1 explains this in detail.

Table 11.1 Queue metadata memory usage

 rabbit_queue rabbit_durable_queue

Durable queue x x

Transient queue x

Words/item 29 29

durable? rabbit_durable_queue

rabbit_queue

Yes

No

Mnesia record
 29 words

Mnesia record
 29 words

Bind to anon
exchange

Mnesia record
 44 words

Queue
declare OK

Queue
declare

Figure 11.2 Queue declare process
 www.it-ebooks.info

http://www.it-ebooks.info/

202 CHAPTER 11 Supercharging and securing your Rabbit
The x shows which tables will have new entries for a queue declare; you can also see
the word size of each item stored in those tables.

 When you declare an exchange, something similar happens, but in this case it’s
simpler. Whenever you declare a new exchange, RabbitMQ will create an entry on the
rabbit_exchange table that will occupy approximately 29 words of memory. If the
exchange is durable, an entry on the rabbit_durable_exchange will also be created.
This can be seen in table 11.2.

Now it’s time to see what happens when you bind a queue to an exchange. In this case
there are two situations: binding a queue to a direct or fanout exchange, or binding a
queue to a topic exchange. The latter case is more complex to explain, so we’ll ana-
lyze it last.

 When a queue is bound to a direct or fanout exchange, RabbitMQ will create an
entry in at least two Mnesia tables to keep track of the binding. Those tables are
rabbit_route and rabbit_reverse_route. The size of those records are 44 words of
memory. There are several combinations that will make RabbitMQ create entries on
other tables. Those combinations depend on the durability properties of the queue
and the exchange that participate in the binding. A durable queue bound to a tran-
sient exchange will also get a record entry on the rabbit_semi_durable_route table.
Finally, when you bind a durable queue to a durable exchange, RabbitMQ will create
an entry on the rabbit_durable_route table. Both those entries are 44 words of
memory each. In table 11.3 you can see this in more detail.

 The case of binding to a topic exchange has all the ingredients you’ve seen for
bindings to direct and fanout exchanges, and also involves a couple more Mnesia
tables: rabbit_topic_trie_binding and rabbit_topic_trie_edge. As the name of
the table suggests, the binding itself will be stored in rabbit_topic_trie_binding. A
record in that table will occupy approximately 45 words of memory. The number of
parts in your topic pattern will determine the number of records inserted in the
rabbit_topic_trie_binding. So a pattern like a.b.c.d will create four entries in that
table with a size of 38 words of memory each.

 With those numbers, you can do capacity planning for your messaging applications
and determine the upper bound on RabbitMQ when it comes to RAM usage. As you
can see, the footprint for queues, exchanges, and bindings is small when it comes to
memory usage. As an example, you can see that on a 64-bit system, a durable queue

Table 11.2 Exchange metadata memory usage

 rabbit_exchange rabbit_durable_exchange

Durable exchange x x

Transient exchange x

Words/item 29 29
 www.it-ebooks.info

http://www.it-ebooks.info/

203Memory usage and process limits
bound to a durable exchange will take 58 words of memory for the queue entries on
the rabbit_queue and rabbit_durable_queue and 176 words for the respective
entries on the *_route tables. That will make a total of 234 words of memory or,
expressed in bytes, 234 words times 8 bytes per word = 1872 bytes.

 Another factor that imposes a hard limit on RabbitMQ is the maximum number of
Erlang processes per Erlang node. Let’s look into that.

11.2.2 Erlang process count

The maximum number of Erlang processes that can be run in an Erlang node is spec-
ified when you start the node, which in this case happens when you launch RabbitMQ,
for example by calling ./sbin/rabbitmq-server -detached. The defaults set for Rab-
bitMQ are 1048576 or 220 processes per Erlang node, which should be more than
enough.

 Erlang applications create and destroy processes many times during their lifetime.
For example, when RabbitMQ accepts a TCP connection to your AMQP client, an
Erlang process will be spawned to manage that connection. At the same time, there
are Erlang processes that handle the logic of the RabbitMQ message store. Other pro-
cesses are there to monitor child processes to ensure they’re kept alive, and so on. If
you just start a RabbitMQ server, you’ll have around 126 processes laying around,
which is fairly low for a server like RabbitMQ. But what happens if you surpass the
default limit of 220? Sadly, Erlang will crash and therefore RabbitMQ will crash too,
which means you want to make sure that you set that number properly. Now 220 pro-
cesses is a lot and good enough for most users, but your mileage may vary. Let’s see
what events make that number increase so you know what to add to your capacity
planning calculations.

 The events you may produce as users of RabbitMQ that will increase the number of
processes are new connections to the broker, new channel creations, and queue

Table 11.3 Bindings metadata memory usage

rabbit_route
rabbit

_durable_route
rabbit

_semi_durable_route
rabbit

_reverse_route

Durable queue to
durable exchange

x x x x

Durable queue to
transient exchange

x x x

Transient queue to
transient exchange

x x

Transient queue to
durable exchange

x x

Words/item 44 44 44 44
 www.it-ebooks.info

http://www.it-ebooks.info/

204 CHAPTER 11 Supercharging and securing your Rabbit
declares. A new connection will create four new
processes and opening a new channel on that
connection will create four new processes as
well. The overhead per queue is minimal: just
one process per queue. Table 11.4 shows it in a
clear format.

 As we said already, a limit of 220 processes is
more than enough in most cases; still, doing
some math while planning your messaging
architecture won’t hurt anyone. Now that you have an idea of what’s happening inside
RabbitMQ for the different AMQP operations that you might perform, it’s time to see
how you can secure your RabbitMQ setup by enabling SSL.

11.3 SSL connections
When you work on a closed network inside a corporation where you deploy your
applications, you can be almost 100% sure you can trust the parties involved. If app_a
requests a connection to your RabbitMQ broker, you can easily assume that it is in fact
app_a making the request. Most of the time there’s no reason to suspect the request,
but when you start to work with sensitive data like credit card information, you might
need to restrict access to certain areas of your applications. Since you don’t want to
compromise such information, you need a way to establish encrypted connections
with RabbitMQ in order to transmit data in a secure way. You can use SSL2 as a proto-
col to transmit the data between messaging endpoints like consumers and producers.
RabbitMQ comes with SSL support out of the box, so from your side you have to set up
all the SSL machinery to use such infrastructure.

 In this section we’ll address how to establish secure connections to your RabbitMQ
installations by using SSL. We’ll use the OpenSSL library, which has support for most
*nix-style operating systems as well as Windows. You can obtain more information
about OpenSSL on its website at www.openssl.org/. OpenSSL and security itself are
broad topics that we can’t cover in detail in this chapter. If you want to get detailed
information on how to secure your network with OpenSSL, we recommend that you
consult the book Network Security with OpenSSL (Viega et al., 2002, O’Reilly Media).

 In the following sections you’ll see how to create an SSL Certificate Authority and
from there create certificates for your clients and servers. Such a setup is often
referred to as public key infrastructure or PKI. Finally, you’ll use those certificates to
establish an SSL connection with RabbitMQ.

11.3.1 SSL certificates

One way to exchange information in a secure way is to encrypt it using public key cryp-
tography.3 In this technique, the parties exchanging information have a private key and
a public key that are mathematically related so they can be used to encrypt and decrypt

2 SSL stands for Secure Sockets Layer. It’s a cryptographic protocol that allows for secure network communications.

Table 11.4 Erlang process used by
connections, channels, and queues

 Processes

New connection 4

New channel 4

Queue declare 1
 www.it-ebooks.info

http://www.openssl.org/
http://www.it-ebooks.info/

205SSL connections
the information exchanged. Though the pub-
lic key can be widely distributed, the private
key must be kept, well, private. This technique
uses asymmetric algorithms, so the key used to
encrypt the message can’t be used to decrypt
it. If the user Bob wants to exchange data with
Alice, then they exchange their respective
public keys. When Alice sends data to Bob, she
will encode the information using her private
key and then Bob will decode the data using
Alice’s public key. Another use of public keys is
to sign messages. The digital signature of the
messages are computed based on the private
key; in this way the receiver can assume that
the message comes from the expected party by
checking the signature against the sender’s
public key. Figure 11.3 depicts this process.

 Having the other party’s public key is one
thing. Knowing that the key actually belongs to
this party is a different matter. To ensure that a
key does belong to the assumed owner, the keys are exchanged together with certificates
that prove the authenticity of the key. The certificates are emitted by trusted third par-
ties that work as certificate authorities who take care of proving that the key belongs to its
advertised owner. Though this may sound too complex, there’s a nice analogy in the
book Network Security with OpenSSL that compares the certificate with a passport. A pass-
port not only has your picture but also includes some personal information about you
that allows someone to certify that the picture actually belongs to whom it says it does.
Of course you could have forged a passport in your basement trying to trick the author-
ities. To prevent that, your passport includes information about the issuing authorities
from your government acting as the certificate authority for your passport. When you
travel abroad, the immigration officers can identify you based on your passport and
can prove its authenticity based on the watermark and other means added by your gov-
ernment.

 To get a valid SSL certificate, you’ll have to pay a trusted third-party company to
issue one for you. You may want to do so if you plan to exchange data with the public,
but if you just want to share data inside your organization, then you can set up your
private certification authority which you implicitly trust. You’ll use it to emit certifi-
cates that will be used by both RabbitMQ and its messaging clients to exchange data.
In the following sections you’ll learn how to set up your own certificate authority and
from there you’ll issue certificates for your clients and servers to be able to establish
SSL connections between them.

3 See the Wikipedia entry for more information on this topic: http://en.wikipedia.org/wiki/Public-key
_cryptography.

MSG

a8253d13b...

Alice’s public key

Alice’s private key

Alice

Bob

Sign/Encrypt

MSG

Verify/Decrypt

Network/
Filesystem/
Internet

Figure 11.3 Public key encryption
 www.it-ebooks.info

http://en.wikipedia.org/wiki/Public-key_cryptography
http://en.wikipedia.org/wiki/Public-key_cryptography
http://www.it-ebooks.info/

206 CHAPTER 11 Supercharging and securing your Rabbit
11.3.2 Setting up a certificate authority

To set up your certificate authority you’ll use the openssl command-line utility. This util-
ity accepts plenty of options that are hard to remember. To make things easier,
openssl can work with configuration files where you specify the options you want
using key/value pairs. You can also track which parameters were used to generate your
certificates by checking this configuration file. Let’s start by creating the basic environ-
ment for your certificate authority (CA).

NOTE As you already know, RabbitMQ runs on top of Erlang, so even before
trying to use OpenSSL in your applications, you need to have support for it in
Erlang. If you had OpenSSL installed before you built Erlang then you proba-
bly are all set to use it. If you don’t have OpenSSL in your system then you’ll
have to install it and then reinstall Erlang with OpenSSL enabled.

You need to create a folder to hold your certificates plus the CA configuration files.
Open a terminal window and then type the following commands:

$ mkdir rmqca
$ cd rmqca
$ mkdir certs private
$ chmod 700 private

First you created an rmqca folder to hold your files. We used the name rmqca, which
stands for RabbitMQ certificate authority, but feel free to give a name that fits your orga-
nization. Once that folder is created, you then create a couple of folders: certs and
private; the first will hold the certificates generated by your CA, whereas the second
will hold the CA private key. Keep in mind that the CA private key must not be disclosed
to third parties; therefore you chmod the private folder to be accessible only for your cur-
rent user.

 To be able to generate certificates, OpenSSL requires a couple more files. Since cer-
tificates created by one CA can’t share the same serial number, you need to create a file
where you can keep track of the last certificate’s serial number. Every time you issue a
new certificate, OpenSSL will take care of incrementing this number. OpenSSL expects
the number to be in hexadecimal and to contain at least two digits, so when you first cre-
ate such a file you have to pad the number by adding a zero to the left like this:

$ echo 01 > serial

The last file you need to create works like a database where OpenSSL will keep track
of the certificates issued by your CA. We’ll call this file index.txt; because you haven’t
created any certificates yet, this file will be empty. You can create it with the following
command:

$ touch index.txt

Now that you have the basic environment to work with OpenSSL, you need to create
your configuration file. This file will be used to provide default values to the various
openssl commands that you need to run in order to create your certificate authority
 www.it-ebooks.info

http://www.it-ebooks.info/

207SSL connections
and to later emit certificates with it. As you’ll see, the configuration is split into several
sections for each of these commands, which makes it easier to follow. One of those
commands is called ca and is used to set up a CA and a certificate revocation list (CRL).4

Let’s create a file called openssl.conf inside the rmqca folder and then add the fol-
lowing content for the ca command section.

[ca]
default_ca = rmqca

[rmqca]
dir = .
certificate = $dir/cacert.pem
database = $dir/index.txt
new_certs_dir = $dir/certs
private_key = $dir/private/cakey.pem
serial = $dir/serial

default_crl_days = 7
default_days = 365
default_md = sha1

policy = rmqca_policy
x509_extensions = certificate_extensions

[rmqca_policy]
commonName = supplied
stateOrProvinceName = optional
countryName = optional
emailAddress = optional
organizationName = optional
organizationalUnitName = optional

[certificate_extensions]
basicConstraints = CA:false

In this file you’re providing default options for the ca command that you can still
override on the command line when you invoke openssl. As you can see, the sections
of the .conf file are marked by headers between a pair of square brackets ([]). The
configuration file is a set of key/value pairs holding your configuration options. You
start by declaring the ca section B where you tell openssl that your default CA will be
called rmqca. OpenSSL then will look for a section with that name from where it will
load the remainder of the configuration options.

 In the rmqca section C, you set up a variable called dir that points to the same
directory where the .conf file is. That variable is referenced in the next few lines so
you don’t need to type the full path to your current folder every time. There you tell
openssl that the certificate will be stored in the file cacert.pem in the same directory
as the configuration file. Then you set the database to reside in index.txt. The

4 Certificate revocation lists are used to inform clients when the certificates emitted by your CA have expired.
Clients can download the list from the CA and then reject certificates that are revoked in your CRL.

Listing 11.1 openssl.conf CA command configuration

Section nameB

CA configurationC

Expiration configurationD

Policy configurationE

Extensions sectionF
 www.it-ebooks.info

http://www.it-ebooks.info/

208 CHAPTER 11 Supercharging and securing your Rabbit
certificates issued by your CA will be kept in the certs folder; your private key has to
be taken from the private/cakey.pem file and the serial used to generate certificates
will be the one stored in the file serial that you created before.

 Then you need to configure the expiration time for your certificates D. There you
say that your certificates will expire after a year, that you’ll provide a CRL file every seven
days, and that your certificates will be generated by using sha15 as the hash function.

 The next part of the file configures your CA policy E where you tell openssl which
fields are mandatory in your certificates. For this CA, the commonName has to be pro-
vided, whereas the other fields like countryName or emailAddress are optional. (For
more details, see http://www.openssl.org/docs/apps/ca.html#POLICY_FORMAT.) In
that section, you specify which of the x5096 extensions are supported by your CA, which
in this case are specified under the certificate_extensions section of your config
file F. There you set basicConstraints to CA:false. That basically means the certifi-
cates issued by your CA can’t be used as certificate authorities themselves—they can’t
be used to sign and issue new certificates.

 Now you need to configure the req command that’s used to generate certificates.
You’ll add new sections to openssl.conf, where you’ll provide new key/value pairs.
Let’s add the following content to the openssl.conf file.

[req]
default_bits = 2048
default_keyfile = ./private/cakey.pem
default_md = sha1
prompt = yes
distinguished_name = root_ca_distinguished_name
x509_extensions = root_ca_extensions

[root_ca_distinguished_name]
commonName = hostname

[root_ca_extensions]
basicConstraints = CA:true
keyUsage = keyCertSign, cRLSign

[client_ca_extensions]
basicConstraints = CA:false
keyUsage = digitalSignature
extendedKeyUsage = 1.3.6.1.5.5.7.3.2

[server_ca_extensions]
basicConstraints = CA:false
keyUsage = keyEncipherment
extendedKeyUsage = 1.3.6.1.5.5.7.3.1

In this section B you start configuring the req command by specifying that you want
to generate 2048-bit keys for your certificates. That’s the minimum advised number to

5 More information on SHA1 can be found at http://en.wikipedia.org/wiki/SHA-1.
6 More information about the x509 extensions can be found at the OpenSSL website: http://www.openssl.org/

docs/apps/x509.html.

Listing 11.2 openssl.conf req command configuration

req configuration sectionB

root extensionsC

client extensionsD

server extensionsE
 www.it-ebooks.info

http://www.openssl.org/docs/apps/ca.html#POLICY_FORMAT
http://www.openssl.org/docs/apps/x509.html
http://www.openssl.org/docs/apps/x509.html
http://en.wikipedia.org/wiki/SHA-1
http://www.it-ebooks.info/

209SSL connections
consider your keys to be secure; your key will be written to the ./private/cakey.pem
file and will use sha1 as the default hashing function. By setting prompt to yes, you
tell the req command that it should prompt you whenever it needs to fill up the values
specified under by distinguished_name. As you can see there, the distinguished
_name will be taken from the next section called root_ca_distinguished_name where
you set the hostname as the commonName.

 Then you have the section where you provide some extensions for your root certificate
C. In this case you set that the root certificate can be used to sign other certificates
(that’s the point of this whole setup). When you set up the client extensions D
you say that the client certificates can’t be used as certificate authority themselves but
can be used to sign the data they send back and forth. The extendedKeyUsage field
has some particular set of numbers7 that in this case indicates that the certificate can
be used for client authentication. Finally comes the server extensions section E
where in this case you want certificates that are used for encrypting data and for
authenticating the server. As you can see, you specify that information with a different
set of values for the extendedKeyUsage key.

 With those settings, you finished setting up your OpenSSL environment and are
now ready to start creating certificates. Though this process was complex, you had to
do it once, with the advantage that by keeping the configuration options in this file,
you don’t need to remember all the settings by heart. Let’s move on to the next sec-
tion to see how to create your own certificates.

11.3.3 Generating the root certificate

The first thing you need to do is to generate a CA certificate. This will be the one that
you implicitly trust. All your other certificates will descend from it, and it will be used
to establish the chain of trust between the different applications. Let’s run the follow-
ing commands:

$ openssl req -x509 -config openssl.conf -newkey rsa:2048 -days 365 \
-out cacert.pem -outform PEM -subj /CN=RMQCA/ -nodes

You should see output similar to this:

Generating a 2048 bit RSA private key
.........................+++
............................
.........................+++
writing new private key to './private/cakey.pem'

With that command, you created your certificate which is stored in the file cacert.pem. The
format will be PEM using the x509 extensions. The key will be encrypted using an rsa:

2048 algorithm and will be valid for 365 days. For specific details on the req command
and its options, you can consult http://www.openssl.org/docs/apps/req.html.

7 For more details we refer you again to the book Network Security with OpenSSL by Viega et al. OpenSSL is a
broad topic so if you want to learn it in detail you’ll be best served by reading that book.
 www.it-ebooks.info

http://www.openssl.org/docs/apps/req.html
http://www.it-ebooks.info/

210 CHAPTER 11 Supercharging and securing your Rabbit
 The next thing you’ll do is to create the same certificate but using the DER format
which is preferred by Microsoft products. Run the following command:

$ openssl x509 -in cacert.pem -out cacert.cer -outform DER

Now that you have your root certificate, it’s time to create the client and server
certificates.

11.3.4 Generating the server certificates

To issue your server certificate, you need to create a folder to store it in. Then you’ll
proceed to generate the server key and finally to certify it using your root certificate:

$ cd ..
$ mkdir server
$ cd server
$ openssl genrsa -out key.pem 2048
Generating RSA private key, 2048 bit long modulus
........................+++
...........................
........................+++
e is 65537 (0x10001)

First you moved into the folder that contains the rmqca, and there you created your
server folder and then moved into it. There you invoked the openssl command to
generate the RSA key. What you need to do next is create a certificate request for that
key:

$ openssl req -new -key key.pem -out req.pem -outform PEM \
-subj /CN=$(hostname)/O=server/ -nodes

The certificate request now can be used by your certificate authority to provide a
certificate for your RabbitMQ server. Let’s create that server certificate:

$ cd ../rmqca/
$ openssl ca -config openssl.conf -in ../server/req.pem -out \

../server/cert.pem -notext -batch -extensions server_ca_extensions
Using configuration from openssl.conf
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
commonName

::ASN.11 12:''mrhyde'server
Certificate is to be certified until Oct 5 23:10:35 2012 GMT (365 days)

Write out database with 1 new entries
Data Base Updated

What you did there is first change directories to the rmqca folder and, from there, you
ran the openssl ca command using your openssl.conf file. The input file is the
req.pem that you created before, and the output file is the cert.pem certificate that
will reside inside your server folder. Now you need to repeat the same process to cre-
ate the client certificate.
 www.it-ebooks.info

http://www.it-ebooks.info/

211SSL connections
11.3.5 Generating the client certificates

Considering that the process is much the same, we won’t explain it in detail this time.
As in the previous case, first you create a key for your client, then you have to generate
a certificate request based on that key, and finally you hand that certificate request to
your certificate authority to issue the client certificate that will reside in the file called
cert.pem inside the client folder. The following shows the commands that need to
be run and the output they produce, which might be different on your computer:

$ cd ..
$ mkdir client
$ cd client
$ openssl genrsa -out key.pem 2048
Generating RSA private key, 2048 bit long modulus
...........................
........................+++
........................+++
e is 65537 (0x10001)

$ openssl req -new -key key.pem -out req.pem -outform PEM \
-subj /CN=$(hostname)/O=client/ -nodes

$ cd ../rmqca/
$ openssl ca -config openssl.conf -in ../client/req.pem -out \

../client/cert.pem -notext -batch -extensions client_ca_extensions
Using configuration from openssl.conf
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
commonName

::ASN.11 12:''mrhyde'client
Certificate is to be certified until Oct 5 23:14:50 2012 GMT (365 days)

Write out database with 1 new entries
Data Base Updated

Now that you have the certificates sorted out, it’s time to configure RabbitMQ to be
able to use SSL when accepting incoming connections. It’s worth noting that if you
check the contents of the files serial and index.txt inside the rmqca folder, you’ll
see that the serial file now has the number 03 in it because you’ve generated three
certificates so far and that the index.txt file lists the certificates you issued.

11.3.6 Enabling SSL listeners in RabbitMQ

To enable SSL with RabbitMQ, you need to add a couple of configuration values to
the rabbitmq.config file. If you haven’t created that file yet, now is the time to do it.
The location of that file will vary depending on your operating system and the
RabbitMQ distribution that you’re using. For example, in a generic Unix installation,
that file will go inside the /etc/rabbitmq folder. For more information on where to
locate that file according to your current setup, you can consult the RabbitMQ online
documentation at http://www.rabbitmq.com/configure.html#config-location.
 www.it-ebooks.info

http://www.rabbitmq.com/configure.html#config-location
http://www.it-ebooks.info/

212 CHAPTER 11 Supercharging and securing your Rabbit
 After you’ve created that file, you need to add two entries to it: ssl_listeners and
ssl_options. The first will enable the TCP listener for incoming connections, and the
second will tell RabbitMQ where to find the server certificates and what authentica-
tion requirements it will impose on clients connecting via SSL. If you already have this
file on your system, then add the configuration entries just after the ones you already
have. Your configuration should then look like the following listing.

[
{rabbit, [

{ssl_listeners, [5671]},

{ssl_options, [{cacertfile,"/path/to/rmqca/cacert.pem"},
{certfile,"/path/to/server/cert.pem"},
{keyfile,"/path/to/server/key.pem"},
{verify,verify_peer},
{fail_if_no_peer_cert,false}]}

]}
].

As you know, the rabbitmq.config file uses Erlang syntax to specify configuration
options. First you set up the ssl_listeners B where you say that RabbitMQ will lis-
ten for SSL connections on port 5671. Then you provide the values for the
ssl_options key, which RabbitMQ uses internally to configure Erlang’s new_ssl app.8

 The options cacertfile, certfile, and keyfile are self-explanatory: cacertfile
is your CA’s private certificate, certfile is the server’s own certificate, and keyfile is
the server’s key. They will be used to authenticate the server with the client and also to
verify the client authenticity. The final parameters are verify and
fail_if_no_peer_cert C, which tell the server that if the client sends a certificate,
the server needs to verify its authenticity (verify_peer) but that if the client doesn’t
send a certificate, then the server won’t reject the client (fail_if_no_peer_cert,
false). Keep in mind that you’re using SSL to establish encrypted connections—
therefore the server presents its certificate to the client—but you may also want the
server to be able to establish a chain of trust with the client by requesting its certifi-
cate. That’s similar to how browsers work, where the server sends the certificate but
the browser isn’t required to send your certificate back (most people don’t have their
own SSL certificates when browsing the web).

 Now it’s time to apply this configuration to your RabbitMQ installation. Restart
RabbitMQ (or start it if it wasn’t running) and you should see the following entries in
rabbit.log telling you that the new SSL listener has been started:

Listing 11.3 Enabling SSL with RabbitMQ

8 For more details on the new_ssl application, consult its online manual at http://www.erlang.org/
documentation/doc-5.7.5/lib/ssl-3.10.8/doc/html/new_ssl.html. There you can find a description of all
the options it accepts.

Enable SSL listenersB

Configure SSL

Peer validationC
 www.it-ebooks.info

http://www.erlang.org/documentation/doc-5.7.5/lib/ssl-3.10.8/doc/html/new_ssl.html
http://www.erlang.org/documentation/doc-5.7.5/lib/ssl-3.10.8/doc/html/new_ssl.html
http://www.it-ebooks.info/

213SSL connections
$ tail -f /var/log/rabbitmq/rabbit@host.log
=INFO REPORT==== 9-Oct-2011::17:52:08 ===
started TCP Listener on 0.0.0.0:5672

=INFO REPORT==== 9-Oct-2011::17:52:08 ===
started SSL Listener on 0.0.0.0:5671

The next thing to do is to test your new configuration by connecting to RabbitMQ
using the PHP client library.

11.3.7 Testing your RabbitMQ SSL setup

To test and try out your SSL setup, you’ll connect to RabbitMQ using the php-amqplib
library. PHP SSL implementation expects that your client keys, certificate, and CA cer-
tificate are all in the same file, so you’ll create such a file for PHP. Go to the command
line and type the following commands:

$ cat client/key.pem > phpcert.pem
$ cat client/cert.pem >> phpcert.pem
$ cat rmqca/cacert.pem >> phpcert.pem

Your PHP client will use the phpcert.pem file when dealing with SSL connections with
RabbitMQ. Let’s create your client code. Add the following content to a file called
ssl_connection.php.

<?php
require_once(__DIR__ . '/path/to/php-amqplib/amqp.inc');

define('HOST', 'localhost');
define('PORT', 5671);
define('USER', 'guest');
define('PASS', 'guest');
define('VHOST', '/');
define('AMQP_DEBUG', true);

define('CERTS_PATH',
'/path/to/ca/folder/');

$ssl_options = array(
'cafile' => CERTS_PATH . '/rmqca/cacert.pem',
'local_cert' => CERTS_PATH . '/phpcert.pem',
'verify_peer' => true

);

$conn = new AMQPSSLConnection(HOST, PORT, USER, PASS,
VHOST, $ssl_options);

function shutdown($conn){
$conn->close();

}

register_shutdown_function('shutdown', $conn);

while(1){}
?>

Listing 11.4 PHP OpenSSL connection

Connection optionsB

SSL optionsC

Create connectionD

Connection cleanupE
 www.it-ebooks.info

http://www.it-ebooks.info/

214 CHAPTER 11 Supercharging and securing your Rabbit
If you run this script you’ll start seeing debug information from the AMQP library
showing you how it negotiates a connection with RabbitMQ. After the connection is
established successfully, if you tail the RabbitMQ logs you should see messages simi-
lar to the following, showing you that RabbitMQ established a connection with your
PHP script and then that connection was upgraded to the SSL protocol:

$ tail -f /var/log/rabbitmq/rabbit@host.log
=INFO REPORT==== 9-Oct-2011::21:01:03 ===
accepted TCP connection on 0.0.0.0:5671 from 127.0.0.1:64940

=INFO REPORT==== 9-Oct-2011::21:01:03 ===
starting TCP connection <0.16304.0> from 127.0.0.1:64940

=INFO REPORT==== 9-Oct-2011::21:01:03 ===
upgraded TCP connection <0.16304.0> to SSL

Let’s see what the script is doing. First you include the AMQP library as usual and then
declare B some constants that you’ll use as the connection configuration. What’s
important to note here is that you used the port 5671 for your SSL connection instead
of using the default RabbitMQ port (5672). Then you created an array with the SSL
options for PHP C so it knows where to find your key and certificates information.
You opened a connection by using the AMQPSSLConnection class D, passing a sixth
argument with your SSL options. Finally, you prepared the connection cleanup E by
setting up a shutdown function that will take care of closing the connection when your
script terminates, for example, when you press ctrl-c to kill the script.

 With this, we finish our coverage of SSL with RabbitMQ. Now you can establish
connections between the broker and its messaging clients, knowing that both ends
can certify the authenticity of their peers. By checking the server certificate when you
open a connection to the broker, you can be sure that the messages are coming from
a trusted source. At the same time, the broker can verify the client’s certificates so it
won’t accept connections from untrusted parties.

 As we’ve said already many times, this is a large topic that goes well beyond what
we can cover in a book about RabbitMQ. Note that depending on the language
you’re using, you’ll have to see how to open SSL connections specifically for your plat-
form, since the implementation details vary across vendors. Keep in mind that the
PKI setup that we prepared in this section can be used in many places in your organi-
zation well beyond RabbitMQ usage. Your certificate authority isn’t limited to only
certify RabbitMQ brokers and their respective clients; you can also use it to certify the
communication among other applications. For example, you can issue certificates for
your intranet to enable secure web browsing (using HTTPS) for the company’s inter-
nal websites.
 www.it-ebooks.info

http://www.it-ebooks.info/

215Summary
11.4 Summary
In this chapter we covered some interesting topics like performance, capacity plan-
ning, and security. One thing that’s clear is that there’s no secret sauce when it comes
to scaling your RabbitMQ installation. All will depend on your use case; you’ll always
have to consider the trade-offs. If you want to get more performance out of RabbitMQ,
then you’ll need to judiciously analyze the pros and cons of each of the routing algo-
rithms provided by the different exchange types. Moreover, you saw how the combina-
tion of properties like message persistence, queue durability, and consumer
acknowledgment mode will affect the path of a message through the broker, which will
modify the performance characteristics of your applications. Regarding capacity plan-
ning, you saw that to calculate memory usage for your messaging fabric, you have to
consider factors like the kinds of queues or exchanges you’re using and which of the
AMQP elements will spawn Erlang processes on the broker. Though the process limit in
Erlang is high, it’s not infinite, so by performing some simple math you can calculate
a number that matches your needs. Finally, we covered the essentials of a broad topic
like OpenSSL. You configured your broker to be able to accept SSL connections and to
authenticate clients. To give your setup a test ride, you have a PHP client connecting to
the server via SSL, but not without a small hassle to get PHP to accept your certificates.
Such quirks happen with almost every platform that uses OpenSSL.

 In the next chapter we’ll enter the world of RabbitMQ plugins. You’ll see which
plugins you can obtain to augment your broker capabilities, but we won’t stop there...
you’ll also build your own. Fasten your seat belt because in the next chapter you’ll be
programming in Erlang. You read that right: Erlang.
 www.it-ebooks.info

http://www.it-ebooks.info/

Smart Rabbits:
extending RabbitMQ
At this point you’ve learned how to use RabbitMQ as an AMQP message broker
using what comes out of the box. In chapter 8 you saw that some customization was
required in order to have an easier way to manage the broker. You enabled the
Management plugin, which includes a slick web interface that adds a bunch of
functionality to the server. The process of enabling the plugin is simple: you run a
single command at the shell, rabbitmq-plugins enable rabbitmq_management,
and the plugin is ready to use. Taking that into account, wouldn’t it be nice if you
could add custom behaviors to the broker?

 In this chapter we’ll take a deep dive into RabbitMQ plugins, seeing what you
can do with them and what features they bring to the table. You’ll learn how to
enable plugins and, in case you don’t need their functionality anymore, you’ll also
see how to uninstall them. You might be wondering where you can get plugins for

This chapter covers
 Installing RabbitMQ plugins

 A review of interesting plugins

 Implementing your own custom exchange plugin
216

 www.it-ebooks.info

http://www.it-ebooks.info/

217RabbitMQ plugins
RabbitMQ. Don’t worry; we’ve got you covered. Many cool plugins are out there and
you’ll see where to get them.

 Learning about already existing plugins won’t be all. In the second section of the
chapter you’ll make your own plugins. Yes, you read that right. You’ll get your hands
dirty programming with Erlang and create your own. Don’t worry if you don’t know
Erlang; we’ll cover enough to get you started, but you will feel more comfortable if
you already know about it. So let’s move onto the next section to pimp up our rabbit.

12.1 RabbitMQ plugins
If you look at a system like RabbitMQ you’ll see that the features shipped with it are
those that are useful to a large set of users. The same thing happens with server
default configurations or with the new characteristics shipped with new broker
releases. But what happens when you need something that doesn't come out of the
box? For that situation, RabbitMQ can be enhanced by adding plugins. You can find
plugins on the internet or create your own. Let’s first look at when you might need a
plugin, and then we’ll see where you can get new plugins for your broker.

12.1.1 What can you do with plugins?

So which use cases go beyond what RabbitMQ provides out of the box? Here’s a list of
possible scenarios or needs that can be solved by installing a plugin:

 Support for protocols other than AMQP

 Different authentication mechanisms (LDAP, custom database)
 Message replication
 New exchanges and routing algorithms
 Message logging and audition

Let’s go through some of these cases.

DIFFERENT PROTOCOLS—STOMP

One area where there has been a lot of experimentation is adding support for other
protocols on top of RabbitMQ. As you know, AMQP is the default protocol supported
by RabbitMQ, but one size doesn’t fit all, so there’s also a plugin for the STOMP proto-
col. STOMP is a simple text-based protocol used for transmitting data across applica-
tions. One advantage of STOMP is that it works with other brokers like ActiveMQ. If
you have a code base that targets ActiveMQ and STOMP and you want to only use
RabbitMQ, then you can start to migrate step by step by using the STOMP plugin. Or if
you work with a programming language that lacks an AMQP client but has one for
STOMP, then you can start using RabbitMQ by installing this plugin. If you want to
learn more about STOMP you can do so on its web page: http://stomp.github.com/.

LDAP AUTHENTICATION

Another use case for RabbitMQ plugins is the need to authenticate to the broker via
some method other than plain AMQP. Let’s say all the user management in your sys-
tems is done via LDAP and you want to continue using it when you connect to
 www.it-ebooks.info

http://stomp.github.com/
http://www.it-ebooks.info/

218 CHAPTER 12 Smart Rabbits: extending RabbitMQ
RabbitMQ. That’s possible now thanks to the LDAP authentication backend: http://
www.rabbitmq.com/plugins.html#rabbitmq-auth-backend-ldap. Install the plugin,
add the proper configuration, and you can get going with LDAP authentication.

CUSTOM EXCHANGE TYPES

New protocols and different authentication mechanisms aren’t the only things that
you can add on top of RabbitMQ. You can go low-level on AMQP and implement your
own exchanges with custom routing rules. An interesting example of a custom
exchange is the Riak Exchange by Jon Brisbin (https://github.com/jbrisbin/riak-
exchange). Riak is a Dynamo-inspired key/value store that offers fault tolerance out
of the box. What if you need to log every message that passes through a RabbitMQ
exchange for auditing purposes? One way to do that would be to have a fanout
exchange and bind an extra queue to it, and then implement the logger using a run-
of-the-mill AMQP consumer… or you can let the server handle that for you by using
the Riak Exchange which will do just that: log every message to a Riak bucket.1

 What if you need to replicate messages from one broker to another that lives in a
data center miles away? For such use cases there’s the RabbitMQ shovel plugin. You
specify a queue name on the plugin’s configuration and a destination exchange on a
remote broker, and it will take care of shoveling the messages over the wire to the
remote exchange.

 That’s not all you can do with plugins. You don’t have to limit yourself to adding
new exchange types or authentication methods. With plugins you can do almost every-
thing that Erlang allows you to do; the limit is your imagination—and judgment. After
all, you don’t want the broker crashing because you tried to implement some wild
ideas on top of it. Now that you know what’s doable with RabbitMQ plugins, let’s see
where to find them.

12.1.2 Where do you find plugins?

The first place to look for RabbitMQ plugins is the page dedicated to them at the
RabbitMQ website: www.rabbitmq.com/plugins.html. There you can find a list of
maintained plugins and a second list of what are called experimental plugins. The former
are maintained by the RabbitMQ crew and are kept up to date with new broker
releases. Also you can file bugs and feature requests via the RabbitMQ mailing list at
http://lists.rabbitmq.com/cgi-bin/mailman/listinfo/rabbitmq-discuss. Though you
can do the same with the experimental plugins, you can’t be sure that there will be an
answer to your issues with them.

12.1.3 Installing plugins

You already saw that since RabbitMQ version 2.7.0, installing plugins is easy: just run a
command such as ./rabbitmq-plugins enable rabbitmq_management, restart the
server, and that’s about it. The plugin is ready to be used! Now the question is what
happens when you want to enable a plugin that’s not part of the broker distribution.

1 Buckets in Riak are a way to organize data in a way similar to the use of tables in SQL databases.
 www.it-ebooks.info

http://www.rabbitmq.com/plugins.html
http://www.rabbitmq.com/plugins.html#rabbitmq-auth-backend-ldap
http://www.rabbitmq.com/plugins.html#rabbitmq-auth-backend-ldap
http://lists.rabbitmq.com/cgi-bin/mailman/listinfo/rabbitmq-discuss
https://github.com/jbrisbin/riak-exchange
https://github.com/jbrisbin/riak-exchange
http://www.it-ebooks.info/

219RabbitMQ plugins
First you’ll have to download the plugin’s .ez files into the plugins folder2 of your
RabbitMQ installation and, after you have it there, run the usual ./rabbitmq-plugins
enable plugin_name command.

 Let’s try these instructions by enabling the STOMP plugin. Move into the sbin
folder of your RabbitMQ installation and type the following:

$./rabbitmq-plugins enable rabbitmq_stomp
The following plugins have been enabled:

rabbitmq_stomp

Plugin configuration has changed. Restart RabbitMQ
for changes to take effect.

Now stop the broker in case you had it running:

$./rabbitmqctl stop
Stopping and halting node rabbit@mrhyde ...
...done.

And then start it again to load the new plugin:

$./rabbitmq-server -detached
Activating RabbitMQ plugins ...
7 plugins activated:
* amqp_client-2.7.0
* mochiweb-1.3-rmq2.7.0-git
* rabbitmq_management-2.7.0
* rabbitmq_management_agent-2.7.0
* rabbitmq_mochiweb-2.7.0
* rabbitmq_stomp-2.7.0
* webmachine-1.7.0-rmq2.7.0-hg

As you can see, among the other plugins that were already installed, the server is list-
ing the rabbitmq_stomp-2.7.0 plugin together with the activated plugins. The
STOMP plugin will be up and running with its default configuration. To test that it
works as expected, let’s connect to RabbitMQ using the STOMP protocol with the
default user credentials. Let’s do so using nc, the netcat command-line utility:

$ nc localhost 61613

The previous command will open a connection to the server. All the input you type
now will be sent to the STOMP adapter which will try to parse the frames. Now enter
the following to start a session:

CONNECT
login:guest
passcode:guest

^@

After you input the credentials, you need to add an extra empty line, which will signal
an empty body, and then enter ^@ (the Control key together with the at symbol or @),

2 If you don't have the plugins folder, just create it inside RabbitMQ's installation directory. This folder can also
be safely removed later in case you don't want to use any plugin.
 www.it-ebooks.info

http://www.it-ebooks.info/

220 CHAPTER 12 Smart Rabbits: extending RabbitMQ
which signals the end of the frame. If everything went well you should get a reply with
a new session like this:

CONNECTED
session:session-ds/mGfvEV6TkPXPVcUv8YA==
heart-beat:0,0
version:1.0

With this small example we end our test of the STOMP plugin. Our goal was to install it
and see that with zero configuration you could get it up and running. You can quit the
session by entering ^c (Ctrl+C). If you want to learn more about using STOMP with
RabbitMQ you can consult the documentation at http://www.rabbitmq.com/
stomp.html.

12.1.4 Removing plugins

Now let’s say you don’t need the STOMP plugin anymore and want to remove it. That’s
easy to achieve by using the same rabbitmq-plugins commands that you’ve been
using so far. First you have to disable the plugin by running the following from the
sbin folder:

$./rabbitmq-plugins disable rabbitmq_stomp
The following plugins have been disabled:

rabbitmq_stomp

Plugin configuration has changed. Restart RabbitMQ
for changes to take effect.

Then you have to stop the server:

$./rabbitmqctl stop
Stopping and halting node rabbit@mrhyde ...
...done.

And then you can restart the server again:

$./rabbitmq-server -detached
Activating RabbitMQ plugins ...
6 plugins activated:
* amqp_client-2.7.0
* mochiweb-1.3-rmq2.7.0-git
* rabbitmq_management-2.7.0
* rabbitmq_management_agent-2.7.0
* rabbitmq_mochiweb-2.7.0
* webmachine-1.7.0-rmq2.7.0-hg

You can list the enabled plugins to make sure that the STOMP plugin has been disabled:

$./rabbitmq-plugins list -e
[e] amqp_client 2.7.0
[e] mochiweb 1.3-rmq2.7.0-git
[E] rabbitmq_management 2.7.0
[e] rabbitmq_management_agent 2.7.0
[e] rabbitmq_mochiweb 2.7.0
[e] webmachine 1.7.0-rmq2.7.0-hg
 www.it-ebooks.info

http://www.rabbitmq.com/stomp.html
http://www.rabbitmq.com/stomp.html
http://www.it-ebooks.info/

221Making your own plugins
You can see that the list option displays the enabled plugins along with their ver-
sions, and that the STOMP plugin doesn’t appear in that list. If you want to learn more
about the rabbitmq-plugins command you can find its manual page here: http://
www.rabbitmq.com/man/rabbitmq-plugins.1.man.html.

 Now that you’ve seen the power of plugins, it’s time to create your own plugin. Get
your fingers ready because in the next section you’ll be coding in Erlang.

12.2 Making your own plugins
So far we’ve discussed what you can do with plugins; now it’s time to create your own.
The goal will be to add your own custom exchange to RabbitMQ. Why might you need
a new exchange type? Imagine that you need to model a chat application with
RabbitMQ where you have a global room where all the users connect. Each user gets
their own queue that’s bound to the global fanout exchange. Every time a new message
is sent to the exchange, this message gets fanned out to every queue bound to it. Now
what happens when a new client connects to the chat room? Though they will get all the
new messages that are sent to the chat room, they won’t have any context about what
happened before they joined the conversation. Wouldn’t it be nice if you could deliver
the last 20 messages to the user to give them some context for what’s going on in the
chat room? With the default elements from AMQP that’s not possible. After a message
is consumed from a queue, it’s not seen anymore in the broker. You can change that if
you create an exchange that caches the last 20 messages that it has routed. Then when-
ever a new user connects to the room (which means a new queue is bound to the
exchange) your exchange will deliver the last 20 messages. Figure 12.1 explains the
idea: the area of the figure that’s separated with a dotted line is what your exchange will
add to your application. Though you might not need to implement a chat room using
RabbitMQ, there are cases when your new consumers need to know the last value seen
on this exchange. An easy way to implement that is with this kind of exchange.

Chat room
exchange

user_a user_b user_c

New
msg

New
msg

New
msg

New
msg

New
msg

Last N messages

new_user

Cached
msgs

Using the recent history exchange

user_x

Msg
cache

Figure 12.1 A chat room using the default
routing and using your custom exchange
 www.it-ebooks.info

http://www.rabbitmq.com/man/rabbitmq-plugins.1.man.html
http://www.rabbitmq.com/man/rabbitmq-plugins.1.man.html
http://www.it-ebooks.info/

222 CHAPTER 12 Smart Rabbits: extending RabbitMQ
In this section you’ll implement such an exchange, which will be called RabbitMQ
Recent History Exchange. As usual, the complete source code for this project can be
found with the code that accompanies this book. Look for the folder called rabbitmq-
recent-history-exchange. In the next section you’ll set up your development envi-
ronment in order to get ready to start creating plugins. Keep in mind that you’ll be
coding in Erlang.

12.2.1 Getting the RabbitMQ Public Umbrella

To write your own plugins you’ll need to set up a basic development environment to
build your plugins upon. The RabbitMQ developers have facilitated such a task for
you by creating an environment in what’s called the RabbitMQ Public Umbrella (from
now on let’s call it umbrella). Installing it is a matter of checking out its repository and
then adding your own plugin into that project structure. To get the umbrella code
you’ll have to set up Mercurial, which is a distributed revision control system similar to
Git. Mercurial is the system used by the RabbitMQ developers to publish and manage
their open source code. If you already have it installed, then you’re good to go. Mer-
curial is a multiplatform system, so you should be able to install it for your platform.
The installation procedure is simple; please go to the Mercurial website (http://
mercurial.selenic.com/) and download the version that suits your computer. Don’t
worry if you haven’t used Mercurial before; you’ll be using just a couple of commands
to get the umbrella source code.

 If you’ve been following along with the book code examples, then you probably
have Python installed already; if not, it’s time to do so because some tools under the
umbrella require it (including Mercurial itself). See the Python website for installa-
tion instructions: http://www.python.org/. The last requirement is to have Erlang
installed on your machine; if you can run RabbitMQ, then you must have it installed
as well. As with Python, please consult the Erlang website to get installation instruc-
tions: http://www.erlang.org/.

 Now let’s obtain the umbrella’s source code. Assuming you installed Mercurial,
you can get the code with the following command:

$ hg clone http://hg.rabbitmq.com/rabbitmq-public-umbrella/

Once the repository has been cloned to your computer, it’s time to get the projects
contained inside it. Run the following commands, but grab a cup of coffee since it
may take a while:

$ cd rabbitmq-public-umbrella
$ make co

As an optional step to check that your setup is working properly, you can run the fol-
lowing two commands to compile the rabbitmq-stomp plugin:

$ cd rabbitmq-stomp/
$ make

If everything went well you should see your console output ending like this:
 www.it-ebooks.info

http://mercurial.selenic.com/
http://mercurial.selenic.com/
http://www.python.org/
http://www.erlang.org/
http://www.it-ebooks.info/

223Making your own plugins
[elided] generate deps
[elided] fix test deps
sed -i -e 's|build/deps.mk|$(DEPS_FILE)|' build/deps.mk
rm -rf build/dep-ezs
mkdir -p build/dep-ezs
....
many lines trimmed out
....
touch dist/.done.0.0.0
touch dist/.done

The next thing to do is to create the folder structure for your plugin. Type cd .. to
move back to the umbrella folder before continuing to the next section.

12.2.2 Setting up the folder structure

You’ll build your plugin following the Open Telecom Platform (OTP) coding stan-
dards—you’ll follow a certain folder structure, file naming conventions, and source
code organization using several programming patterns that fit Erlang. Since this is a
book about RabbitMQ, we won’t have time to cover Erlang in detail but if you’re
curious and want to learn more, we recommend the book Erlang and OTP in Action
from Manning (http://manning.com/logan/) or Learn You Some Erlang for Great Good
(http://learnyousomeerlang.com/). The code presented will be easy to grasp even if
you don’t have any Erlang experience, but be warned that some techniques may seem
strange if you’ve never used Erlang or functional programming before.

 The folder structure for the plugin is simple. Since you’re going to call it RabbitMQ
Recent History Exchange, create a folder inside the umbrella project named rabbitmq-
recent-history-exchange. Inside it you’ll need one folder to hold your source code
called src. It’s that simple:

cd ..
mkdir rabbitmq-recent-history-exchange
cd rabbitmq-recent-history-exchange
mkdir src

The next step will be to include the umbrella build system into your project.

12.2.3 Including the plugin build system

To be able to use the umbrella build system, you need to add a couple of files to your
project root folder. The first file is called Makefile and will reference the umbrella
make file. Add the following content to it:

include ../umbrella.mk

By referencing the umbrella.mk file, you benefit from all commands already created
for you. There are commands that can package your plugin as an .ez file, and others
that can run your plugin inside the broker directly from the project folder, making it
easier to test your plugin. There are commands to clean up the built files and much
more. For a full list of options, consult the file README.makefiles inside the umbrella
folder.
 www.it-ebooks.info

http://manning.com/logan/
http://learnyousomeerlang.com/
http://www.it-ebooks.info/

224 CHAPTER 12 Smart Rabbits: extending RabbitMQ
 Now that your Makefile is in place, you can add your package.mk file that will con-
tain the plugin-specific configuration options for the build system. Create that file
inside your project folder and add the following content to it:

DEPS:=rabbitmq-server rabbitmq-erlang-client
RETAIN_ORIGINAL_VERSION:=true

As you can see, this is as simple as it can get. What you did here is specify the plugin
dependencies in the DEPS macro and set the RETAIN_ORIGINAL_VERSION macro to true
to tell the build system to pick up the plugin version number out of the version num-
ber that you’ll soon assign to the plugin. Since you’re going to build a custom
exchange, you need some functionality that’s already present on the rabbitmq-
server project and other features from the rabbitmq-erlang-client; therefore, you
specify in your package.mk file that your plugins depend on those two projects. The
cool thing here is that the umbrella build system will take care of resolving the depen-
dencies for you. Now that you have everything ready to start coding your plugin, let’s
continue by writing the application specification file.

12.2.4 Creating the Erlang application file

Now that you have the basic requirements in place, let’s create the application specifi-
cation file. You may be wondering what that is—what’s an application, after all? Erlang
programs are structured as applications where the modules that implement its func-
tionality are held. Things like the list of Erlang modules included with the application
or the configuration options are specified in the application specification file. When you
create your application specification file, you need to indicate a list of the Erlang mod-
ules included in your application, something that’s a bit tedious. Luckily this step can
be simplified by using application specification templates that later are automatically filled
with such information by the umbrella build system. This means that you don’t have to
worry about keeping the list of modules up to date; the build system will do that for you.
So although in a normal Erlang project you’ll create a plain application file, in this case
you’ll create a template for it and let the umbrella system fill in the information auto-
matically. Let’s create this template file inside the src folder and call it rabbitmq
_recent_history_exchange.app.src. The file will have the following content:

{application, rabbitmq_recent_history_exchange,
[{description, "RabbitMQ Recent History Exchange"},
{vsn, "0.1.0"},
{modules, []},
{registered, []},
{applications, [kernel, stdlib, rabbit, mnesia]}]}.

What you have here is an Erlang tuple, a compound data type that holds a fixed num-
ber of Erlang values (terms).3 If you simplify that structure you can see that it has the
following shape:

{application, application_name, [{key1, val1}, ..., {keyN, valN}]}.

3 If you want to know more about Erlang data types, consult http://www.erlang.org/doc/reference_manual/
data_types.html.
 www.it-ebooks.info

http://www.erlang.org/doc/reference_manual/data_types.html
http://www.erlang.org/doc/reference_manual/data_types.html
http://www.it-ebooks.info/

225Creating your custom exchange module
That’s a tuple with its first element made of the atom called application—atoms are
like symbols in Ruby or keywords in Clojure. The second element is an atom that holds
the application name. Finally, the third element is an Erlang list, delimited by the char-
acters [and]. This list is said to be a property list because it holds tuples made of
keys and values. If you see the contents in detail, you have, for example, the description
property {description, "RabbitMQ Recent History Exchange"} with the information
of what the application is doing. You can have any string there serving as the descrip-
tion. The vsn value specifies the version number of your application. Since you’ve just
created it, you’ll tag it as 0.1.0. Then comes the list that will hold the Erlang modules
used by your app. As we already said, this list will be automatically filled by the umbrella
build system. The property registered tells which processes will be registered by your
application, which for this example you’ll keep as an empty list. Finally, you specify
which applications must be running for the plugin to work properly. You require the
Erlang kernel and the standard library stdlib. On the RabbitMQ side, you need the
broker running; therefore you add the rabbit application there. As a last require-
ment, because you’ll use the Erlang Mnesia database, you also add it there.

 Before starting to write the exchange logic, let’s make sure the Makefile is set up
properly. Type make inside your plugin folder. You should start seeing a lot of output
on your command line. That’s normal: it's the build system making all your plugin
dependencies like the Erlang AMQP client and the broker itself. After the process is
finished, you’ll notice that you have some new folders in your project root. The most
interesting one is called dist or distribution folder, where your final plugin files will be
put. Try the following command at the terminal:

$ ls dist
amqp_client-0.0.0.ez rabbit_common-0.0.0.ez
rabbitmq_recent_history_exchange-0.1.0-rmq.ez

There you have your plugin files together with their dependencies. Though your
plugin still lacks functionality, you could at least test that the build system is prop-
erly set up. After you have your plugin final version, you’ll have to copy those files
into the plugins folder of your RabbitMQ installation. Now let’s start writing some
Erlang code.

12.3 Creating your custom exchange module
Source code in Erlang is organized inside modules. Modules hold functions that
implement the features offered by your applications. There are no classes or packages
like in Java or C#, which makes the structure flat and simple. Your plugin will need
only one module containing the custom exchange implementation. You’ll create a file
called rabbit_exchange_type_recent_history.erl inside the src folder and will
add content to it as you progress with this section.

 How do you know what goes inside an exchange? How can RabbitMQ know what
functions to call in your module in order to route messages through the exchange,
bind queues to it, and so on? In object-oriented programming you have the concept of
 www.it-ebooks.info

http://www.it-ebooks.info/

226 CHAPTER 12 Smart Rabbits: extending RabbitMQ
interfaces where you define a set of methods that your classes must implement as part
of the contract. So, for example, to implement the Visitor pattern you can check the
Visitor interface that will tell you that you need to provide a Visit method, an
Iterator will have to implement the methods hasNext and next, and so on. In Erlang
you have the same concept but with a different name: behaviour. Note the special Brit-
ish spelling in that word.

 An Erlang behaviour will specify which functions a module has to implement and
export, so code calling your module knows what to expect from it. Another difference
from the OOP world is that Erlang has no concept of visibility like in Java; for example,
there are no public/protected/private modifiers. What you have is just a list of func-
tions that your module exports. So if your module implements functions foo, bar, and
baz but only exports foo, then bar and baz can’t be called from outside. Just telling
which functions a module has to export is one part of the story; the other is the num-
ber of arguments a function accepts. Erlang has the concept of function arity—the
number of arguments a function takes. Erlang accepts functions with the same name
but with different arity; thus a behaviour can specify function foo/1 and foo/2, which
are different functions. When specifying function names, put a forward slash between
the function name and its arity. Now coming back to the question that fired the discus-
sion on behaviours: how do you know what goes inside an exchange? RabbitMQ
exposes an exchange behaviour called rabbit_exchange_type that tells which func-
tions you need to implement to have a well-behaved exchange. Since your exchange
will be a beefed-up fanout exchange that will cache the last 20 messages, you’ll base
your implementation in the code for the actual fanout exchange that comes with the
broker, which will simplify the task.

 In figure 12.2 you can see what you have to do differently from the default fanout
implementation. First, you need to cache routed messages. Whenever your exchange
routes a message, you’ll keep it on some database. That will be done in the function
called route/2. Then, when a queue is bound to your exchange, you have to deliver
the cached messages to it in case you have any. That will be handled in the function
add_binding/3. Finally, when your exchange is deleted, you have to drop the cache
to avoid memory leaks, which will be handled
by the function delete/3. Note that you have to
implement other functions as well. The ones
mentioned in the figure are those that differ
from the fanout exchange default implementa-
tion. As a last implementation detail you’ll use
Mnesia, the Erlang built-in database that’s
already used by RabbitMQ to store bindings
and exchange meta information. You’ll imple-
ment your exchange step by step and then, at
the end, we’ll show you the complete source
code for the module.

Caches up to
20 messages

Delivers
cached

messages
to new client

route/2

add_binding/3

delete/3

Recent history
exchange

Drops
cached

messages

Figure 12.2 Specific functions of recent
history exchange
 www.it-ebooks.info

http://www.it-ebooks.info/

227Creating your custom exchange module

rt
red
rs

S
beha
 Now let’s create the file rabbit_exchange_type_recent_history.erl inside the
src folder and add the following content to it.

-module(rabbit_exchange_type_recent_history).
-include_lib("rabbit_common/include/rabbit.hrl").
-include_lib("rabbit_common/include/rabbit_exchange_type_spec.hrl").

-behaviour(rabbit_exchange_type).

-export([description/0, serialise_events/0, route/2]).
-export([validate/1, create/2, delete/3, add_binding/3,

remove_bindings/3, assert_args_equivalence/2]).
-export([setup_schema/0]).

First, you provide the name of your module B, which has to match the filename
minus the .erl extension. Then, you include a couple of libraries that your module
requires C and define that your module implements the rabbit_exchange_type
behaviour D. Finally, you declare the list of functions that your module exports E.
Note that you have several export declarations in this code. You do that for readabil-
ity’s sake, since you could provide just one export with all the functions there. Each
export has an Erlang list inside delimited by the square brackets [] where you have a
comma-separated list of function names of the form function_name/arity. For exam-
ple, you have to implement a function called description that doesn’t take any argu-
ments, a function called route that accepts two arguments, and so on. The first two
export declarations are what the rabbit_exchange_type behaviour requires, whereas
the last one that includes setup_schema is related to your module only. As you can
see, you can export more functions than those required by the behaviour that you’re
implementing. Now let’s continue with the rest of the code.

12.3.1 Registering your exchange with RabbitMQ

For RabbitMQ to pick up your exchange and be able to use it, it has to know about its
existence. RabbitMQ maintains a registry where all the exchange types with their
respective module names are tracked. Let’s say you publish a message to a fanout
exchange. What RabbitMQ will do is to go to the registry and check which module
implements the fanout exchange. When it has the module name, it will proceed to
call the routing function on that module. In this case, you need to find a way to add
your exchange to that registry to make it available for the broker. RabbitMQ supports
the concept of boot steps—a series of steps that have to be called while the server starts
up. You’ll add one boot step to your module and then RabbitMQ will magically execute
it and add your exchange to the rabbit_registry. Add the following code to the
module to accomplish that.

Listing 12.1 rabbit_exchange_type_recent_history.erl

Module declarationB

C

Impo
requi
heade

pecify
viour

D

Module
exported
functionsE
 www.it-ebooks.info

http://www.it-ebooks.info/

228 CHAPTER 12 Smart Rabbits: extending RabbitMQ

-rabbit_boot_step({rabbit_exchange_type_rh_registry,
[{description, "recent history exchange type: registry"},

{mfa, {rabbit_registry, register,
[exchange, <<"x-recent-history">>,
?MODULE]}},

{requires, rabbit_registry},
{enables, kernel_ready}]}).

-rabbit_boot_step({rabbit_exchange_type_rh_mnesia,
[{description, "recent history exchange type: mnesia"},

{mfa, {?MODULE, setup_schema, []}},
{requires, database},
{enables, external_infrastructure}]}).

-define(KEEP_NB, 20).
-define(RH_TABLE, rh_exchange_table).
-record(cached, {key, content}).

A rabbit_boot_step B has the following components: a description telling what
the boot step is about (note that this is for documentation; it doesn’t matter what you
put there as long as it’s a string). Next is the mfa or module function arguments sec-
tion, where you invoke the function register in the rabbit_registry, passing as
arguments your exchange type and the module related to it. Your exchange type at
the AMQP level will be called x-recent-history. According to the AMQP spec, all the
custom elements that you add to the protocol need to have the x- prefix. Finally come
the requires and enables parts, where you tell RabbitMQ that in order to register
your exchange, the rabbit_registry has to be running already (which is obvious)
and that your exchange is a requirement for the kernel_ready event to be fired—
boot steps depending on the kernel_ready event will have to wait for your exchange
to be initialized.4

 You also take advantage of the rabbit_boot_step system to initialize your plugin C.
Since your plugin will use Mnesia to store the cached messages, you add an extra step
here to set up the database schema for your plugin; the mfa part of the boot step will
invoke the function setup_schema that belongs to your exchange module. The
?MODULE piece that you see there works similar to a C macro, so in this case it will be
expanded to your module name. Since the function setup_schema doesn’t require any
arguments, you provide an empty list [].

 Finally, you define a couple of macros, KEEP_NB and RH_TABLE D, which stand for
the number of messages that you want to keep in the cache and the name of the
Mnesia table that you’ll create. Speaking of Mnesia tables, you need to define the
schema for a table, and you do that with the -record declaration at the end. The
records that you’ll store will be called cached and they’ll have two elements: the key
and the content. In the key property, you’ll store the exchange name and in the con-
tent property you’ll keep a list of the last 20 messages that passed through the

Listing 12.2 rabbit_exchange_type_recent_history.erl

4 If you want to learn more about the RabbitMQ boot process you can consult the following document: https://
github.com/videlalvaro/rabbit-internals/blob/master/rabbit_boot_process.md.

Register
exchangeB

Initialize
database

C

Define
constants
and records

D

 www.it-ebooks.info

https://github.com/videlalvaro/rabbit-internals/blob/master/rabbit_boot_process.md
https://github.com/videlalvaro/rabbit-internals/blob/master/rabbit_boot_process.md
http://www.it-ebooks.info/

229Creating your custom exchange module
exchange. That will provide you with an easy-to-access map from exchange name to
cached messages. When the time comes to deliver the last 20 messages from the
cache, you’ll need to look up the message list by your exchange name. Let’s take a
look now at the setup_schema/0 function.

setup_schema() ->
case mnesia:create_table(?RH_TABLE,

[{attributes, record_info(fields, cached)},
{record_name, cached},
{type, set}]) of

{atomic, ok} -> ok;

{aborted, {already_exists, ?RH_TABLE}} -> ok
end.

The code in this function is simple to understand. First you have the function
header B with the function name, the list of arguments that go between parentheses
(in this case you have none), and the arrow -> that indicates what follows is the func-
tion body. There you have a case expression with the following shape:

case Expr of
Pattern1 ->
Body1;

...;
PatternN ->
BodyN

end

Erlang will evaluate Expr, and the Body part that gets executed will depend on the result
of that expression; you mark the end of the case expression with the word end. As you
can see, this works similarly to switch/case statements in other languages. In this func-
tion the Expr will be the call to mnesia:create_table C. Let’s look at it in detail:

mnesia:create_table(?RH_TABLE,
[{attributes, record_info(fields, cached)},
{record_name, cached},
{type, set}])

Here you create a table with the name rh_exchange_table because that’s the value
your ?RH_TABLE macro will expand to. The attributes or columns of your table will be
the fields of the cached record—key and content fields that you defined earlier. You
tell Mnesia that the name of the record used will be cached and that the type of your
table will be set, which means that there won’t be any duplicated values. If you store a
new value with the same key, then the old value will be overwritten by the new value.

 Coming back to your setup_schema function, if the result of Expr is {atomic, ok}
D that means your table was created, so you return ok. Note that in Erlang, as with
many functional languages, there are no return keywords. Functions implicitly
return the result of the last expression. Now if mnesia:create_table returned

Listing 12.3 rabbit_exchange_type_recent_history.erl

Function definitionB

Create
tableC

Creation succeededD
Creation failedE
 www.it-ebooks.info

http://www.it-ebooks.info/

230 CHAPTER 12 Smart Rabbits: extending RabbitMQ

{aborted, {already_exists, ?RH_TABLE}} E, you’ll also return ok becuase the
table is already present in Mnesia, probably from a previous RabbitMQ startup, so
there’s nothing else to do there.

12.3.2 Implementing the exchange behaviour

Now it’s time to start implementing the exchange behaviour. You’ll add a bunch of
functions whose implementation is simple, since you’ll be reusing the default imple-
mentation provided by RabbitMQ. Let’s add the following functions to your module.

description() ->
[{name, <<"recent-history">>},
{description, <<"List of Last-value caches exchange.">>}].

serialise_events() -> false.

remove_bindings(_Tx, _X, _Bs) -> ok.
validate(_X) -> ok.
create(_Tx, _X) -> ok.

assert_args_equivalence(X, Args) ->
rabbit_exchange:assert_args_equivalence(X, Args).

First you have a function called description B that’s only used for informative pur-
poses. It returns a property list having the exchange name and its description. Simple!
The next function is serialise_events C, which is used by RabbitMQ to determine
whether it has to serialize the binding events that your exchange accepts, and because
in this case you don’t need such functionality, you return false. The implementation
of remove_bindings, validate, and create D is straightforward. You return the atom
ok because you don’t need to do any bookkeeping when such operations happen to
your exchange; RabbitMQ will perform the default actions. Finally, you delegate the
call to assert_args_equivalence to the implementation provided by RabbitMQ’s
rabbit_exchange module E. You won’t get into details regarding these functions but
if you want to know more, consult the file called rabbit_exchange_type.erl inside
the server source code, which has an explanation for each of the behaviour functions.

 Now that you’ve implemented the basics, it’s time to define the functions that will
add that extra set of functionalities to your exchange. As you know, you need to mod-
ify the way that the functions route/2, delete/3, and add_binding/3 work. Let’s start
with by adding the code for route/2.

route(#exchange{name = XName},
#delivery{message = #basic_message{

content = Content
}}) ->

cache_msg(XName, Content),
rabbit_router:match_routing_key(XName, ['_']).

Listing 12.4 abbit_exchange_type_recent_history.erl

Listing 12.5 Message routing—rabbit_exchange_type_recent_history.erl

Exchange descriptionB

Binding event
serialization

C

Miscellaneous
functionsD

Exchange argument
equivalence

E

Extract exchange nameB

Extract message contentC

Cache messageD
Route messageE
 www.it-ebooks.info

http://www.it-ebooks.info/

231Creating your custom exchange module
As the name of the function implies, route takes two parameters: the exchange
record and the message that’s being routed. A record in Erlang works similar to a
struct in C: it’s a data structure that has fields mapping to values. One of the
advantages of records is that you can access their values by field name. Erlang has a
technique called pattern matching that can be used to extract bits of information out of
data structures, which simplifies data access and removes the need for temporary vari-
ables. In this case you’re just interested in the exchange name, so though the function
takes a record with all the exchange information, by putting the code
#exchange{name = XName} in the function header, you can extract the name value and
bind it to the variable XName B. Then you can use the variable that holds the exchange
name in the rest of the function body. Once you get used to this Erlang technique,
you’ll see how it simplifies code. You use the same idea to extract the message content
in the second argument to your function C and bind the value to the Content vari-
able. That variable will get the message delivery content—the AMQP message proper-
ties and payload.

 The body of the function is simple. First you call the function cache_msg/2, pass-
ing the exchange name and the message content D. You’ll soon see the code of that
function. Once the message is cached, you call the default rabbit_router E to pro-
vide your exchange with the same behaviour as provided by the fanout exchange. The
next step will be to write the code for cache_msg/2 and the auxiliary function called
store_msg/2. Add the following code to your module file.

cache_msg(XName, Content) ->
rabbit_misc:execute_mnesia_transaction(

fun () ->

Cached = get_msgs_from_cache(XName),

store_msg(XName, Cached, Content)
end).

store_msg(Key, Cached, Content) ->
mnesia:write(?RH_TABLE,

#cached{key = Key,

content = [Content|lists:sublist(Cached, ?KEEP_NB-1)]},
write).

The first function, cache_msg/2, takes two parameters: the exchange name and the
message content. In this function you need to access Mnesia to retrieve the messages
that may be in the cache and append to them the latest message. Because your
exchange can be called concurrently, you need to run the read and update operations
inside a transaction to ensure that you have consistent data. RabbitMQ provides a
helper function for that called rabbit_misc:execute_mnesia_transaction/1. That
function takes a function as argument and runs it in the context of a Mnesia

Listing 12.6 rabbit_exchange_type_recent_history.erl

Anonymous
function as
argument

Get cached messages

Store messages

Prepend
message
to list
 www.it-ebooks.info

http://www.it-ebooks.info/

232 CHAPTER 12 Smart Rabbits: extending RabbitMQ
transaction. As with many functional languages, Erlang provides the ability to define
anonymous functions, or funs as they’re are called in the Erlang world. Functions are
first-class citizens, which means they can be passed as normal values to other functions
and can also be returned by functions. If you’ve used JavaScript, then you’ve probably
used some anonymous functions when working with callbacks. The simplified syntax
for an Erlang fun is like this:

fun(Arg1, Arg2,, ArgN) ->
Expr1,
Expr2
...,
ExprN

end

The fun in this code doesn’t take any arguments since it closes over the arguments
passed to the cache_msg function. The first thing this fun will do is to retrieve the
cached messages by calling the helper function get_msgs_from_cache/1, which takes
the exchange name as argument. You bind the result of that function call to the vari-
able Cached and then pass that code to the function store_msg/3 that will take care
of storing the data. By having these two separate steps, you can reuse the code that
retrieves the data from Mnesia and the code that stores data in Mnesia as well.

 The function store_msg/3 is also simple. It calls the function write/3 from the
mnesia module. The first argument is the table name; the second argument is the
record that you want to store. Note that you use the exchange name as the value for
the key field. To store the cached content, you dynamically create an Erlang list using
the syntax [Head|Tail]. The head of the list will be the new cached element and the
tail will be a sublist of the last ?KEEP_NB - 1 elements that have already been cached. By
doing that, you make sure to have at most 20 elements in your cache. You may wonder
why you prepend the new element to the list head. Lists in Erlang are implemented as
linked lists, so it’s cheaper to prepend elements to the list first and then do a list
reverse when you want to deliver the messages in the same order as they arrived. The
last parameter to the Mnesia function is write, which is used to ask Mnesia for a write
lock to the ?RH_TABLE table. Now let’s see the code for the get_msgs _from_cache/1
function. Add the following code the your module file.

get_msgs_from_cache(XName) ->
rabbit_misc:execute_mnesia_transaction(

fun () ->
case mnesia:read(?RH_TABLE, XName) of

[] ->

[];
[#cached{key = XName, content=Cached}] ->

Cached
end

end).

Listing 12.7 rabbit_exchange_type_recent_history.erl

Return an
empty list

B

Return the
cached contentC
 www.it-ebooks.info

http://www.it-ebooks.info/

233Creating your custom exchange module
The code in this function is fairly simple, too. Again you use the
execute_mnesia_transaction/1 function, passing a fun that has a case expression
inside. The case expression will call mnesia:read/2 by providing it the table and the
exchange names. If the database returns an empty list denoted by [], you return that
empty list B. If you get a list with one element being the #cached record, you extract
from the record the exchange name and the content. Now you might be wondering why
you associate the value of the key field with the variable XName. This again has to do
with pattern matching in Erlang. In this case you use this technique as a sanity check to
ensure that you got a value that’s associated with the exchange name. How does that
work? When your function is called, the variable XName (which is the only argument the
function takes) will be bound to the value passed to the function. In Erlang, as with
many functional languages, variables don’t vary. Variables work the same way as vari-
ables do in high school math. The value bound to XName can’t be changed during the
scope and lifetime of your function execution. So the only way the second expression
of case will match is if the value contained in the key field matches the contents of the
XName variable. By doing that you make sure that you get back from Mnesia the values
that you cached for your current exchange. Even if this seems complex at the begin-
ning, it will simplify your code a lot later; you won’t need to add needless if/then/else
cases to your code because you’ll pattern match variables in advance. If the pattern
match fails, then your code won’t be executed at all. Coming back at the code, you can
see the second part of the case expression returns the cached content C.

 The function get_msgs_from_cache/1 ends the description of the code needed by
the exchange to route and cache messages. Now it’s time to see what you have to do
when somebody deletes one of your custom exchanges. The following code imple-
ments the delete/3 function. Let’s add it to the module.

delete(_Tx, #exchange{ name = XName }, _Bs) ->
rabbit_misc:execute_mnesia_transaction(

fun() ->

mnesia:delete(?RH_TABLE, XName, write)
end),

ok.

The delete/1 function is simple too. RabbitMQ will call it whenever the exchange has
to be deleted. Though it takes three arguments in this case, you’ll only use the second
one to extract the value of the exchange name and then use it to delete from Mnesia
the information belonging to that exchange. Keep in mind that there can be many
instances of your custom exchange type, each caching different messages. To prevent
memory leaks, whenever any instance of your exchange type is removed from the
server you have to take care to delete the messages associated with its name. The next
callback to implement is the one used to bind queues to your exchange. Add this code
to your source file.

Listing 12.8 rabbit_exchange_type_recent_history.erl
 www.it-ebooks.info

http://www.it-ebooks.info/

234 CHAPTER 12 Smart Rabbits: extending RabbitMQ

add_binding(_Tx, #exchange{ name = XName },
#binding{ destination = QName }) ->

case rabbit_amqqueue:lookup(QName) of
{error, not_found} ->

queue_not_found_error(QName);
{ok, #amqqueue{ pid = QPid }} ->

Cached = get_msgs_from_cache(XName),

Msgs = msgs_from_content(XName, Cached),

deliver_messages(QPid, Msgs)
end,
ok.

The function add_binding/3 will be called by RabbitMQ whenever a binding is added
to your exchange and lets you perform extra operations for the binding. For this use
case, a new binding means that a new client connected to the exchange, so it’s time to
deliver the messages in the Mnesia cache. Basically all the code you’ve seen before was
to support this function. To deliver messages to a queue, you need its Pid or process ID.
A Pid acts as an address where you can send messages (Erlang messages, not AMQP
messages). You can use a queue Pid to deliver messages by delegating to the queue
module the actual message delivery to the consumer. Keep in mind that in RabbitMQ,
consumers subscribe to queues, so at the exchange level you have no such concept as
consumers. To obtain a queue Pid, you call the helper function rabbit

_amqqueue:lookup/1 that takes the queue name as parameter B and returns either
its Pid or a tuple containing the atoms {error, not_found}. If RabbitMQ can’t find
the queue you’re looking for, then you return a protocol error to the user by calling
the function queue_not_found_error/1. If you get the actual QPid, retrieve the mes-
sages’ content contained in the cache and transform them to actual AMQP messages
by calling the function msgs_from_content/2 C, which will return a list of AMQP mes-
sages. Finally, you pass those messages over to the function deliver _messages/2,
which will iterate over the list of messages and will deliver each one to the queue.
After you handle message delivery, you return the atom ok back to the broker to signal
that the binding operation succeeded.

 To finish with the implementation, let’s take a look a the helper functions used in
the previous code.

queue_not_found_error(QName) ->

rabbit_misc:protocol_error(
internal_error,
"could not find queue '~s'",
[QName]).

msgs_from_content(XName, Cached) ->

Listing 12.9 rabbit_exchange_type_recent_history.erl

Listing 12.10 rabbit_exchange_type_recent_history.erl

Obtain
queue Pid

B

Convert
messages

C

Protocol errorB
 www.it-ebooks.info

http://www.it-ebooks.info/

235Creating your custom exchange module

nt

Crea

m

s
age

very"
lists:map(
fun(Content) ->

{Props, Payload} = rabbit_basic:from_content(Content),
rabbit_basic:message(XName, <<"">>, Props, Payload)

end, Cached).

deliver_messages(Queue, Msgs) ->
lists:map(

fun (Msg) ->
Delivery = rabbit_basic:delivery(false, false, Msg, undefined),
rabbit_amqqueue:deliver(Queue, Delivery)

end, lists:reverse(Msgs)).

The first function is a simple helper used to send a protocol error to the client B. It
takes the queue name as argument and uses it to format a string that tells the user that
the queue can’t be found. Then you have the function msgs_from_content/2 that
generates a list of AMQP messages out of the content received. Keep in mind that you
pass to this function a list of Content values; therefore you must map over that list
applying the fun that you define in there to each of the elements of the list. When you
call the map function, you have to remember to reverse the list of messages to get
them in the same order as they were received. To get the list in reverse order, you call
the Erlang function lists:reverse/1.

 An AMQP message is composed of a set of properties and the payload. You extract
those from the cached content by calling rabbit_basic/from_content/1 C, which
returns a tuple with the message payload and its properties. The next thing to do is to
add to the message the name of the exchange that routed it and the routing key used
to route the message. In this case you have a blank routing key denoted by the empty
binary term: <<"">>.5 You accomplish that by calling the function rabbit_basic:
message/4 D, where you pass the message properties and payload and you get back a
proper AMQP message.

 Last but not least you have the helper function deliver_messages/2 that takes a
queue Pid and a list of messages, and maps over that list to deliver each of the mes-
sages to the queue. The first thing your function does is wrap the message as a
delivery E by calling the function rabbit_basic:delivery/4. This function takes
four arguments: the first tells whether the message delivery is mandatory, which you
set as false; the second says that the message isn’t immediate; the third is the actual
message; and the last parameter is the message sequence ID, which in this case is
undefined. After you have your message delivery created, you finally send it to the
queue by calling the function rabbit_amqqueue:deliver/2 that takes the queue Pid
and the Delivery as parameters F.

5 For the purposes of this chapter let’s say that binaries are an efficient way to represent strings in Erlang. For
more information on binaries and other Erlang data types, see the nice introduction given by the book Learn
You Some Erlang for Great Good: http://learnyousomeerlang.com/starting-out-for-real#bit-syntax:.

Creates
message
properties
and conte

Ctes an
AMQP

essage

D

E Wrap
mess
as a
"deli

Delivers message
to queueF
 www.it-ebooks.info

http://learnyousomeerlang.com/starting-out-for-real#bit-syntax:
http://www.it-ebooks.info/

236 CHAPTER 12 Smart Rabbits: extending RabbitMQ
12.3.3 Compiling your custom exchange

That code completes your custom exchange. As you can see, it’s easy to extend
RabbitMQ and add new exchange types. You just have to follow a couple of rules
imposed by the Erlang behaviour that you want to implement. To ease your imple-
mentation, you could even base your exchange on the fanout type, making things
easier for you. Let’s recap what you just did: you overrode the implementations for
message routing, queue binding, and exchange deletion to be able to cache and
deliver messages. In order to have clean code and keep your functions short, you
wrote a couple of helpers to access Mnesia whether you needed to write to the cache
or to read messages from it.

 Now let’s try to compile and run RabbitMQ with your custom exchange plugin.
Luckily the umbrella build system includes a command that allows you to run your
plugin directly into the broker by automatically installing your plugin. Type the fol-
lowing command in your plugin folder:

$ make run-in-broker

You’ll see a lot of output when you press Enter. First your plugin will be built and, if
everything went well, RabbitMQ will be launched. You should see a message like the
following confirming that your plugin was enabled:

Activating RabbitMQ plugins ...
2 plugins activated:
* amqp_client-0.0.0
* rabbitmq_recent_history_exchange-0.1.0-rmq

The usual RabbitMQ logo will appear and after the rabbit registry is started, you should
see the following output:

external infrastructure ready
starting plugin registry ...done
starting auth mechanism cr-demo ...done
starting auth mechanism amqplain ...done
starting auth mechanism plain ...done
starting statistics event manager ...done
starting logging server ...done
starting exchange type direct ...done
starting exchange type fanout ...done
starting exchange type headers ...done
starting recent history exchange type: registry ...done
starting exchange type topic ...done

Pay attention to the line that says: starting recent history exchange type: registry
...done. That’s your plugin seamlessly integrated with the broker. Finally you’ll be left
at the Erlang command line. For now, don’t enter anything there. Later you’ll see how
to close it and exit Erlang. Before you write a consumer and a publisher, let’s see the
complete listing for your custom exchange module.
 www.it-ebooks.info

http://www.it-ebooks.info/

237Creating your custom exchange module

-module(rabbit_exchange_type_recent_history).
-include_lib("rabbit_common/include/rabbit.hrl").
-include_lib("rabbit_common/include/rabbit_exchange_type_spec.hrl").

-behaviour(rabbit_exchange_type).

-export([description/0, serialise_events/0, route/2]).
-export([validate/1, create/2, delete/3, add_binding/3,

remove_bindings/3, assert_args_equivalence/2]).
-export([setup_schema/0]).

-rabbit_boot_step({rabbit_exchange_type_rh_registry,
[{description, "recent history exchange type: registry"},

{mfa, {rabbit_registry, register,
[exchange, <<"x-recent-history">>,
?MODULE]}},

{requires, rabbit_registry},
{enables, kernel_ready}]}).

-rabbit_boot_step({rabbit_exchange_type_rh_mnesia,
[{description, "recent history exchange type: mnesia"},

{mfa, {?MODULE, setup_schema, []}},
{requires, database},
{enables, external_infrastructure}]}).

-define(KEEP_NB, 20).
-define(RH_TABLE, rh_exchange_table).
-record(cached, {key, content}).

description() ->
[{name, <<"recent-history">>},
{description, <<"List of Last-value caches exchange.">>}].

serialise_events() -> false.

route(#exchange{name = XName},
#delivery{message = #basic_message{

content = Content
}}) ->

cache_msg(XName, Content),
rabbit_router:match_routing_key(XName, ['_']).

validate(_X) -> ok.
create(_Tx, _X) -> ok.

delete(_Tx, #exchange{ name = XName }, _Bs) ->
rabbit_misc:execute_mnesia_transaction(

fun() ->
mnesia:delete(?RH_TABLE, XName, write)

end),
ok.

add_binding(_Tx, #exchange{ name = XName },
#binding{ destination = QName }) ->

case rabbit_amqqueue:lookup(QName) of
{error, not_found} ->

queue_not_found_error(QName);

Listing 12.11 rabbit_exchange_type_recent_history.erl
 www.it-ebooks.info

http://www.it-ebooks.info/

238 CHAPTER 12 Smart Rabbits: extending RabbitMQ
{ok, #amqqueue{ pid = QPid }} ->
Cached = get_msgs_from_cache(XName),
Msgs = msgs_from_content(XName, Cached),
deliver_messages(QPid, Msgs)

end,
ok.

remove_bindings(_Tx, _X, _Bs) -> ok.

assert_args_equivalence(X, Args) ->
rabbit_exchange:assert_args_equivalence(X, Args).

setup_schema() ->
case mnesia:create_table(?RH_TABLE,

[{attributes, record_info(fields, cached)},
{record_name, cached},
{type, set}]) of

{atomic, ok} -> ok;
{aborted, {already_exists, ?RH_TABLE}} -> ok

end.

%%private
cache_msg(XName, Content) ->

rabbit_misc:execute_mnesia_transaction(
fun () ->

Cached = get_msgs_from_cache(XName),
store_msg(XName, Cached, Content)

end).

get_msgs_from_cache(XName) ->
rabbit_misc:execute_mnesia_transaction(

fun () ->
case mnesia:read(?RH_TABLE, XName) of

[] ->
[];

[#cached{key = XName, content=Cached}] ->
Cached

end
end).

store_msg(Key, Cached, Content) ->
mnesia:write(?RH_TABLE,

#cached{key = Key,
content = [Content|lists:sublist(Cached, ?KEEP_NB-1)]},

write).

msgs_from_content(XName, Cached) ->
lists:map(

fun(Content) ->
{Props, Payload} = rabbit_basic:from_content(Content),
rabbit_basic:message(XName, <<"">>, Props, Payload)

end, Cached).

deliver_messages(Queue, Msgs) ->
lists:map(

fun (Msg) ->
Delivery = rabbit_basic:delivery(false, false, Msg, undefined),
rabbit_amqqueue:deliver(Queue, Delivery)

end, lists:reverse(Msgs)).
 www.it-ebooks.info

http://www.it-ebooks.info/

239Creating your custom exchange module
queue_not_found_error(QName) ->
rabbit_misc:protocol_error(

internal_error,
"could not find queue '~s'",
[QName]).

Now that your exchange is running, it’s time to test it. Let’s write a publisher and a
consumer to give it a try.

12.3.4 Taking your plugin for a test drive

To test your custom exchange you’ll create a couple of PHP scripts: one with a consumer
and the other with a producer. Your test will consist of starting a consumer and then
running the producer in a separate terminal window publishing 100 messages to your
recent history exchange. The expected result is that your consumer receives and con-
sumes all the messages. In a normal AMQP scenario, you shouldn’t see those messages
anymore in the server. In this case since you’re using your custom exchange, you should
have the last 20 messages still available in the exchange cache. To prove this, you’ll start
another consumer in a separate window and bind its queue to your exchange. By doing
that, you expect to receive the last 20 messages. Let’s create a file called
recent_history_consumer.php and add the following code there.

<?php

require_once('../path/to/lib/php-amqplib/amqp.inc');

define('HOST', 'localhost');
define('PORT', 5672);
define('USER', 'guest');
define('PASS', 'guest');
define('VHOST', '/');

$exchange = 'rh-exchange';

$conn = new AMQPConnection(HOST, PORT, USER, PASS, VHOST);
$ch = $conn->channel();

$ch->exchange_declare($exchange,
'x-recent-history',
false,
true,
false);

list($queue,,) = $ch->queue_declare('');

$ch->queue_bind($queue, $exchange);

$consumer = function($msg){
echo $msg->body, "\t";

};

$ch->basic_consume(
$queue,
'',

Listing 12.12 Recent history exchange consumer

Declare
recent
history
exchangeB

Bind
queue to
exchangeC

Subscribe
to queueD
 www.it-ebooks.info

http://www.it-ebooks.info/

240 CHAPTER 12 Smart Rabbits: extending RabbitMQ
false,
true,
false,
false,
$consumer);

echo "consuming from queue: ", $queue, "\n";

function shutdown($conn, $ch){
$ch->close();
$conn->close();

}

register_shutdown_function('shutdown', $conn, $ch);

while(count($ch->callbacks)) {
$ch->wait();

}
?>

The code here is similar to previous consumers that you’ve already seen in the book.
An important detail is that when you declare the exchange B, you specify its type as
x-recent-history to tell RabbitMQ that you want to use your custom exchange.
Keep in mind that if you’re running the broker without your plugin installed, then
this code will throw an exception and fail because RabbitMQ won’t be able to find the
module for that exchange type. After you create your exchange, you declare an anon-
ymous queue and bind it to the exchange C. Then you start consuming from the
queue D, passing the $consume callback to the basic_consume method. Your callback
will echo to STD_OUT the content of the messages received. Finally, you wait on the
channel for incoming messages E.

 Let’s continue coding your producer by creating a file called recent_history_
producer.php with the following code inside.

<?php

require_once('../path/to/lib/php-amqplib/amqp.inc');

define('HOST', 'localhost');
define('PORT', 5672);
define('USER', 'guest');
define('PASS', 'guest');
define('VHOST', '/');

$conn = new AMQPConnection(HOST, PORT, USER, PASS, VHOST);

$channel = $conn->channel();

for($i=0; $i<100; $i++) {
$msg = new AMQPMessage('msg_'.$i,

array('content_type' => 'text/plain'));
$channel->basic_publish($msg, 'rh-exchange');

}

Listing 12.13 Recent history exchange producer

Wait for
incoming
messages

E

Publish 100
messagesB
 www.it-ebooks.info

http://www.it-ebooks.info/

241Creating your custom exchange module
$channel->close();
$conn->close();
?>

As with your consumer, this code is similar to other producers that you’ve already cre-
ated in the book. What you do here is send 100 messages B to the exchange called
rh-exchange that you created in your previous script. To be able to identify each mes-
sage, you tag them with the value of your loop variable. Now let’s open three terminal
windows to test this code. Keep in mind that you should have left RabbitMQ running
from the previous call to make run-in-broker.

 Open a terminal window, cd into the folder where you saved the previous PHP
code, and type

$ php recent_history_consumer.php
consuming from queue: amq.gen-C56UdaXBTQdIeSEkiUPiZQ==

That will start a consumer and output the queue name from where it’s consuming.
Keep in mind that the queue name might be different in your machine.

 Then, on another terminal, you can launch the producer and send 100 messages
over RabbitMQ. Type the following:

$ php recent_history_producer.php

If everything went well and the messages got routed through the exchange to your
consumer, then in the first window you should see output like the following:

$ php recent_history_consumer.php
consuming from queue: amq.gen-nipi9vrRRoEOr/ZKI1kuaw==
msg_0 msg_1 msg_2 msg_3 msg_4 msg_5 msg_6
msg_7 msg_8 msg_9 msg_10 msg_11 msg_12 msg_13
msg_14 msg_15 msg_16 msg_17 msg_18 msg_19
... omitted output
msg_71 msg_72 msg_73 msg_74 msg_75 msg_76 msg_77
msg_78 msg_79 msg_80 msg_81 msg_82 msg_83 msg_84
msg_85 msg_86 msg_87 msg_88 msg_89 msg_90 msg_91
msg_92 msg_93 msg_94 msg_95 msg_96 msg_97 msg_98
msg_99

Now if you switch to the last window and start a second consumer, you should get the
last 20 messages. Let’s try that:

$ php recent_history_consumer.php
consuming from queue: amq.gen-V9qcoRYbOuSnWmgNx7DfXg==
msg_80 msg_81 msg_82 msg_83 msg_84 msg_85 msg_86 msg_87
msg_88 msg_89 msg_90 msg_91 msg_92 msg_93 msg_94 msg_95
msg_96 msg_97 msg_98 msg_99 msg_80 msg_81 msg_82 msg_83
msg_84 msg_85 msg_86 msg_87 msg_88 msg_89 msg_90 msg_91
msg_92 msg_93 msg_94 msg_95 msg_96 msg_97 msg_98 msg_99

Wow. The experiment just worked! Let’s see what happened. First, you started your
consumer, which declared the exchange named rh-exchange; that consumer bound
an anonymous queue to it and then subscribed to that queue. Then, you started a
 www.it-ebooks.info

http://www.it-ebooks.info/

242 CHAPTER 12 Smart Rabbits: extending RabbitMQ
separate window, published 100 messages, and as expected those messages were deliv-
ered to your initial consumer. Finally, you started another consumer in a separate win-
dow and without the need to publish any new messages, the last 20 messages were
delivered to the consumer. Let’s look at figure 12.3 to see how both tests look when
run at the same time.

 With this, you finish the exercise of creating your own plugin, namely your own
custom exchange. Now it’s time to stop the RabbitMQ instance that you’ve been using
for testing the plugin. To do that, type q(). at the Erlang command line. Note that
the dot . at the end is necessary. If you don’t include it, then the Erlang interpreter
will keep waiting for more input. When you’re back at the shell command line, you
can type ls dist/ to see the product of your hard work: your plugin’s .ez files.

$ ls dist/
amqp_client-0.0.0.ez
rabbit_common-0.0.0.ez
rabbitmq_recent_history_exchange-0.1.0-rmq.ez

If you want to install the plugin in your broker, then copy the file
rabbitmq_recent_history_exchange-0.0.0.ez into the plugin folder6 of your

6 The files rabbit_common-0.0.0.ez and amqp_client-0.0.0.ez are only needed while building your
plugin; they don’t need to be deployed into the server’s plugin folder because the contents of those files are
already shipped with RabbitMQ.

Figure 12.3 Testing the recent history exchange
 www.it-ebooks.info

http://www.it-ebooks.info/

243Summary
RabbitMQ installation and then run the following command followed by a server
restart:

rabbitmq-plugins enable rabbitmq_recent_history_exchange

If you wish to uninstall the plugin, you’ll have to first delete any exchange that you’ve
declared with the type x-recent-history and then you can proceed to disable the
plugin followed by a server restart. You can, if you want, remove the rabbitmq_recent
_history_exchange plugin files from the plugins folder.

12.4 Summary
If you thought that you were limited to the factory defaults when using RabbitMQ,
then with this chapter you learned otherwise. Many plugins are out there for
RabbitMQ, including officially supported ones like the Management plugin or the
STOMP plugin, which can add extra features and new protocols to the server, and
community-provided plugins like the Riak Exchange. You also went all the way down
the rabbit hole and implemented your own plugin. Of course we wanted to give you
something that goes beyond a mere Hello World project, so you created your own cus-
tom exchange. Along the way you had a quick overview of Erlang programming,
which can help later if you ever want to dig deeper into RabbitMQ’s source code to
learn more about its own internal behavior. To create your plugin, you learned about
the RabbitMQ Public Umbrella build system, which can be used to build the broker
from source as well as other plugins. All in all, now you can make the little rabbit
behave as you choose.

 Being able to bend RabbitMQ completely to your will through your own custom
code is the pinnacle of Rabbit knowledge … and the end of our journey. You started
with humble intentions: to free yourself from tight coupling and synchronous com-
munications between your applications. Now you can go far beyond that and build
industrial-strength messaging architectures that can power the next world-changing
app. Whether you’re really writing the next successful dog walking app, changing the
way doctors help patients, or helping a traveling dad see his daughter from the road,
we hope you’ll see the possibilities for messaging everywhere you build software. Most
of all, we hope that what we’ve written has helped you, so that you can focus on using
RabbitMQ instead of digging it out yourself. As our journey together has ended, your
journey with Rabbit is just beginning and there’s a whole world of messaging ahead. If
you need any help along the way, we’d love to hear from you (and help where we can)
on the RabbitMQ in Action forums. Enjoy Rabbit!
 www.it-ebooks.info

http://www.it-ebooks.info/

appendix A
Using Rabbit

from Java and .NET

Though we chose Python and PHP for their clarity and suitability as teaching lan-
guages, we realize there are a lot of .NET and Java programmers out there. Also,
most of the AMQP clients for different languages are similar in their interfaces. But
the Java and .NET clients diverge significantly enough from the other language cli-
ents that they warrant some advice on how to map the examples in RabbitMQ in
Action to those languages. With that in mind, we’ll translate a few examples from the
book into their .NET and Java equivalents. Specifically, we’ll show you how the Hello
World example would look in C#. Also, we’ll reimagine the alerting and RPC exam-
ples from chapter 4 in C# and Java, respectively. In each case, our goal is to stick as
closely as possible to the structure, comments, and naming conventions of the orig-
inal Python and PHP examples. Our hope is that this will help you build a mental
map so that when you look at any other example in the book, you can easily trans-
late that into how it would work in Java or .NET. As with the other examples in the
book, all of the source code for this appendix is available for download in the book’s
Github repository: https://github.com/rabbitinaction/sourcecode. In the reposi-
tory, you’ll find not only the .java and .cs source files, but also Visual Studio proj-
ects for the .NET examples that are ready to be built with msbuild. Without further
ado, let’s look at converting the Hello World example from chapter 2 into C#.
244

 www.it-ebooks.info

https://github.com/rabbitinaction/sourcecode
http://www.it-ebooks.info/

245Saying hello again (library options and Hello World)
A.1 Saying hello again (library options and Hello World)
Though the .NET universe has a plethora of languages to choose from that can lever-
age the RabbitMQ.NET client, we’ll focus on C#. In particular, all of the .NET exam-
ples in this appendix assume you’re using version 4.0 of the .NET framework
(including C# 4.0). But before you can dive into writing your C# Hello World, you
have to first install the RabbitMQ.NET client.

 The most recent version of the .NET Rabbit client will always be found at http://
www.rabbitmq.com/dotnet.html, and in our case we’ll use version 2.7.0. On the .NET
client download page you’ll find both autoinstaller (.MSI) and .ZIP packaged versions
of the client. We recommend using the .MSI for convenience, so download the .MSI
installer and run it (see figure A.1). The examples will assume it’s been installed into
the default location (C:\Program Files\RabbitMQ\DotNetClient).

Figure A.1 Installing the Rabbit .NET client
 www.it-ebooks.info

http://www.rabbitmq.com/dotnet.html
http://www.rabbitmq.com/dotnet.html
http://www.it-ebooks.info/

246 APPENDIX A Using Rabbit from Java and .NET
Now that you have the client installed, go ahead and create the Visual Studio project
(choose Empty Project) for your Hello World consumer, as in figure A.2.

 The last thing you need to do before starting to write your code is to add a refer-
ence to the RabbitMQ.NET client in your project. Otherwise, Visual Studio (or
msbuild) won’t be able to find it. First, right-click on References under your new proj-
ect in the Solution Explorer and select Add Reference (see figure A.3).
Next select the Browse tab (see figure A.4) and navigate to C:\Program Files
\RabbitMQ\DotNetClient\bin (or to the alternate location where you installed the cli-
ent). Then select RabbitMQ.Client.dll and click OK.

 With RabbitMQ.Net added to your project, create a new file in your project called
hello_world_consumer.cs to contain the Hello World consumer. First you’ll put the
imports into the consumer:

using System;
using System.Text;

using RabbitMQ.Client;
using RabbitMQ.Client.Events;

Importing RabbitMQ.Client gives you access to the classes for creating connections
and channels (IConnection and IModel), and also for managing consumption sub-
scriptions (QueueingBasicConsumer). You also have to import RabbitMQ.Client
.Events so you can access the arguments that are passed back to your consumer when
a message delivery event occurs.

Figure A.2 Creating the HelloWorldConsumer project
 www.it-ebooks.info

http://www.it-ebooks.info/

247Saying hello again (library options and Hello World)
Figure A.3 Adding a reference to the Visual Studio project

Figure A.4 Selecting the RabbitMQ.Net client reference
 www.it-ebooks.info

http://www.it-ebooks.info/

248 APPENDIX A Using Rabbit from Java and .NET
 Since your RabbitMQ server will likely not be on the same box as your consumer,
you’ll collect the Rabbit host to connect to as a command-line argument to the
consumer:

namespace HelloWorld {
class Consumer {

public static void Main(string[] args) {

if(args.Length < 1) {
Console.WriteLine("Must supply hostname.");
Environment.Exit(-1);

}

Now that you have started the class (HelloWorld.Consumer) that will form your con-
sumer and collected the RabbitMQ hostname to connect to, let’s connect to the
server and start creating your messaging fabric.

var conn_factory = new ConnectionFactory();

conn_factory.HostName = args[0];
conn_factory.UserName = "guest";
conn_factory.Password = "guest";

IConnection
conn = conn_factory.CreateConnection();

IModel chan = conn.CreateModel();

chan.ExchangeDeclare("hello-exchange",
ExchangeType.Direct,
true,
false,
null);

chan.QueueDeclare("hello-queue",
false,
false,
false,
null);

chan.QueueBind("hello-queue",
"hello-exchange",
"hola");

The first thing your consumer does is create a ConnectionFactory object that will
generate and manage the actual connection to the broker. After you’ve used the fac-
tory to create the connection B, you then use the connection object (conn) that’s
returned to create the channel C. You may notice that the channel object (chan) is of
type IModel, which represents the AMQP channel you’ll use. This is unlike any other
Rabbit client library (including the Java client), which all use the word channel to

Listing A.1 Creating the messaging fabric for your consumer

Establish
connection
to broker

B

Obtain channelC
Declare exchangeD

Declare queueE

Bind queue
and exchange
on key hola

F

 www.it-ebooks.info

http://www.it-ebooks.info/

249Saying hello again (library options and Hello World)

describe their representation of an AMQP channel.1 So don’t be confused when you
see the word model used in various classes in the RabbitMQ.NET client; it always refers
to a channel.

 With your channel created, you’re ready to start declaring the exchange and
queue that will form the fabric for your Hello World consumer and producer. As with
the original Hello World consumer in chapter 2, you want your exchange (hello-
exchange) to be declared D as a direct exchange that’s durable but not autodelete.
The second argument in the ExchangeDeclare call specifies that the exchange type
should be direct (ExchangeType.Direct). In the RabbitMQ.NET client, exchange
types are specified using constants from the ExchangeType class. If you wanted hello-
exchange to be a fanout exchange instead of a direct exchange, for example, you’d
use ExchangeType.Fanout instead.2

 You then create E your nondurable, non-autodelete queue (hello-queue) with
QueueDeclare, and bind it F to hello-exchange on the routing key hola.

 Finally, you’re ready to subscribe to hello-queue and start processing messages.

 QueueingBasicConsumer
 consumer = new QueueingBasicConsumer(chan);
 String consumer_tag = chan.BasicConsume("hello-queue",
 false,
 consumer);

 while(true) {
 BasicDeliverEventArgs
 evt_args = (BasicDeliverEventArgs)
 consumer.Queue.Dequeue();
 IBasicProperties msg_props = evt_args.BasicProperties;

 String
 msg_body = Encoding.ASCII.GetString(evt_args.Body);

 chan.BasicAck(evt_args.DeliveryTag,
 false);

 if(msg_body == "quit") {
 chan.BasicCancel(consumer_tag);
 break;
 } else

1 The use of model to describe a channel in the .NET client is a historic holdover from the early days of AMQP
when the thought was that other transports besides TCP (HTTP, SCTP, and so on) might be used for AMQP.
Since the channel concept is specific to the TCP transport, the .NET client was architected to use the more
generic term model for the same concept. Now that TCP is the only transport for AMQP, all of the newer clients
use the channel term.

2 ExchangeType is a convenience class. You can alternatively pass a string containing the exchange type to
ExchangeDeclare. For example, instead of specifying ExchangeType.Direct you could’ve passed the
string "direct" to ExchangeDeclare.

Listing A.2 Subscribe and process messages

Subscribe
consumerB

Start consumingC
Process
incoming
messagesD

Message
acknowledgementE

Stop consuming more
messages and quitF
 www.it-ebooks.info

http://www.it-ebooks.info/

250 APPENDIX A Using Rabbit from Java and .NET
 Console.WriteLine("Message Body: " + msg_body);

 }

 Environment.Exit(0);
 }
 }
}

There are a lot of moving parts in this last piece of your consumer, so let’s break it
down. First you set up B your consumer object (consumer) using the QueueingBasic-
Consumer convenience class. QueueingBasicConsumer divorces the actual arrival of
subscribed messages from the act of processing them with your code. When the chan-
nel object receives a new message that consumer is subscribed for, it fires consumer’s
HandleBasicDeliver method. This receives the message and stuffs it into a thread-
safe SharedQueue instance inside of the consumer object. This means new subscribed
messages can stream into consumer unblocked by the actions of your code actually
processing those messages from the SharedQueue. With consumer created, you start
the consumption by invoking BasicConsume on the channel with consumer as an argu-
ment. This tells the channel to subscribe to hello-queue and, when messages arrive
from the subscription, to stuff them into consumer’s SharedQueue.

 Though consumer does the heavy lifting of receiving subscribed messages, you still
need to process those messages yourself and acknowledge their receipt back to the
broker. In Python with the Pika client, you’d create a function to do the processing
and pass it as a callback to basic_consume. But as you’ve seen B, QueueingBasic-
Consumer doesn’t use a callback/event-based model. Instead, when messages arrive
they’re placed into a SharedQueue inside consumer and it’s up to you to poll that
SharedQueue and strip off messages for processing. Your polling mechanism in this
case is an C infinite while loop (while(true) {}) that endlessly polls the next mes-
sage from consumer, processes it, and starts over again. To remove a message from the
queue D, you call Dequeue() on the Queue property of consumer. This returns a

BasicConsume
You can call BasicConsume multiple times with different queues to subscribe to the
same consumer object. This will cause all messages from the different subscriptions
to be placed in the same SharedQueue in the consumer object. You can then use the
BasicDeliverEventArgs object passed with each message to determine which
queue it arrived from during processing (since they’ll all be mixed together in the
SharedQueue). You’d want to take this approach because consumer.Queue
.Dequeue() will halt execution waiting for a message if the SharedQueue is empty.
The effect would be that if you had multiple sequential Dequeue() calls on different
consumer objects, the Dequeue() on the first consumer object would prevent the
subsequent consumer object Dequeue() calls from being reached until the first con-
sumer object/subscription received a message. By using a single consumer object
for multiple subscriptions, you only need one Dequeue() call to service all the sub-
scriptions without blocking each other.
 www.it-ebooks.info

http://www.it-ebooks.info/

251Saying hello again (library options and Hello World)
BasicDeliverEventArgs object (evt_args) containing the AMPQ message properties
(including headers), message body, and the delivery tag you’ll need to acknowledge
the message. After you have evt_args, you break it apart into an IBasicProperties
object (msg_props) containing the headers and message properties (like .Content-
Type and .DeliveryMode), as well as the message body (msg_body), which in this case
is an ASCII-encoded string.

 At this point, you’ve successfully decoded the message’s body and extracted its
properties, so you can let Rabbit know that the message was successfully consumed E
by calling chan.BasicAck with the message’s delivery tag (evt_args.DeliveryTag).
You may notice that you also passed a second argument false to BasicAck. This tells
BasicAck you’ll only be acknowledging one message at one time. Finally, the only
thing left to do with your decoded message is print its contents to the user or termi-
nate F the app if the message contained quit.

 With your Hello World consumer converted to .NET, you need to convert your pro-
ducer so that you have something to consume! As has been the case throughout these
examples, the producer is much simpler than the consumer. You’ll use the same
imports as before, but add your Producer class instead (you can create the
hello_world_producer.cs file in a new Visual Studio project or add it to the one you
created for the consumer).

namespace HelloWorld {
class Producer {

public static void Main(string[] args) {

if(args.Length < 2) {
Console.WriteLine("Must supply hostname and " +

"message text.");
Environment.Exit(-1);

}

var conn_factory = new ConnectionFactory();

conn_factory.HostName = args[0];
conn_factory.UserName = "guest";
conn_factory.Password = "guest";

IConnection conn = conn_factory.CreateConnection();
IModel chan = conn.CreateModel();

chan.ExchangeDeclare("hello-exchange",
ExchangeType.Direct,
true,
false,
null);

string msg_body = args[1];
IBasicProperties msg_props = chan.CreateBasicProperties();
msg_props.ContentType = "text/plain";

chan.BasicPublish("hello-exchange",
"hola",

Listing A.3 Publishing messages in .NET

Collect
server and
message

B

Establish
connection
to broker

C

Declare exchangeD

Create
plaintext
message

E

Publish messageF
 www.it-ebooks.info

http://www.it-ebooks.info/

252 APPENDIX A Using Rabbit from Java and .NET
msg_props,
Encoding.ASCII.GetBytes(msg_body));

Environment.Exit(0);
}

}
}

In addition to the broker to connect to, you also need to collect the message to pub-
lish from the command line B. Then you’re ready to connect C and declare hello-
exchange D to make sure you have a place to publish to. Creating your message E to
publish is similar to the steps you used to process the message, just in reverse. First,
you grab the message contents from the command line and store them in the string
msg_body. Next, you create an IBasicProperties object (msg_props) to store your
message’s publishing properties and set the message’s content type to text/plain so
that the consumer knows the message body is plain ASCII text. Finally, you publish F
the message (msg_body) into hello-exchange with the routing key hola along with
the message properties you set in msg_props. You may notice that as a part of publish-
ing the message, you first converted it into a byte array using Encoding.ASCII.Get-
Bytes. AMQP (and RabbitMQ by proxy) is agnostic about the contents of the message
body. The only requirement is that it be a sequence of 8-bit bytes. Because of this, the
BasicPublish command in the Rabbit .NET client will only accept byte arrays for the
message body.

 With your C# consumer and producer written, let’s build and test them! For this
example, the RabbitMQ broker will be located in a different virtual machine
(192.168.241.1) than the Windows system hosting your consumer and producer.
First fire up two PowerShell instances3 (see figure A.5), and navigate one to your
Hello World consumer project and the other to your Hello World producer.
First build and start your consumer:

PS > msbuild
Microsoft (R) Build Engine Version 4.0.30319.1
[Microsoft .NET Framework, Version 4.0.30319.1]
Copyright (C) Microsoft Corporation 2007. All rights reserved.
...
Done Building Project "\HelloWorldConsumer.csproj" ...

Done Building Project "\HelloWorldConsumer.sln" (default targets).

Build succeeded.
0 Warning(s)
0 Error(s)

Time Elapsed 00:00:00.17
PS > .\bin\Debug\HelloWorldConsumer.exe 192.168.241.1

3 You may need to add the full path to your .NET framework to your system’s PATH environment variable. For
example, the path to the .NET framework on the test system used for the example is C:\Windows \Microsoft
.NET\Framework\v4.0.30319.
 www.it-ebooks.info

http://www.it-ebooks.info/

253Saying hello again (library options and Hello World)
Now in your other terminal build your producer and send a test message:

PS \HelloWorldProducer> msbuild
Microsoft (R) Build Engine Version 4.0.30319.1
[Microsoft .NET Framework, Version 4.0.30319.1]
Copyright (C) Microsoft Corporation 2007. All rights reserved.
...
Done Building Project "\HelloWorldProducer.csproj" ...

Done Building Project "\HelloWorldProducer.sln
" (default targets).

Build succeeded.
0 Warning(s)
0 Error(s)

PS > .\bin\Debug\HelloWorldProducer.exe 192.168.241.1 \
"Hello there world!"

PS >

Back in your consumer terminal, did it arrive?

PS > .\bin\Debug\HelloWorldConsumer.exe 192.168.241.1
Message Body: Hello there world!

Ba-da bing! Your C# consumer and producer worked! Since your C# Hello World apps
are direct ports of the original Python apps, they’ll also work with each other! To try

Figure A.5 Create terminals for your consumer and producer tests.
 www.it-ebooks.info

http://www.it-ebooks.info/

254 APPENDIX A Using Rabbit from Java and .NET
out some cross-language communication goodness (as seen in figure A.6), try using
the hello_world_producer.py from chapter 2 to publish a message to the C# con-
sumer that’s running!

 Now that you have the basics of using RabbitMQ with .NET mastered, let’s take a
quick run through converting your alerting server from the chapter 4 version to C#.

A.2 Alerting revisited: porting the alert app
to event-oriented .NET
With Hello World under your belt, you might think we’ve covered enough
RabbitMQ.NET basics for you to be able to mentally translate the examples in the rest
of the book. That’s 90% true. What we haven’t covered is how to consume messages
using an event-based approach. In the Python client Pika, all consumers are built
using callbacks (event-oriented) that are registered for each subscription and then
fired when messages for those subscriptions arrive. As you saw with the C# Hello
World consumer, using QueueingBasicConsumer to manage subscriptions and mes-
sage consumption requires a poll-based approach. But if you’re a .NET developer and
prefer event-oriented programming like us, you’re in luck—Rabbit.NET supports
event-oriented consumption using EventingBasicConsumer.4 To demonstrate how to

4 Unfortunately, the RabbitMQ Java client doesn’t have an event-oriented consumption interface available.

Figure A.6 Cross platform messaging in action!
 www.it-ebooks.info

http://www.it-ebooks.info/

255Alerting revisited: porting the alert app to event-oriented .NET
do event-oriented consumption in .NET, we’ll show the relevant parts of the alerting
server example from chapter 4 converted to C#. To see a full copy of the alerting
server consumer (and producer) in C#, check out the code in our companion exam-
ple code repository for the book: https://github.com/rabbitinaction/sourcecode.

 Before we get started, you’ll need to select a .NET JSON library since the original
alerting examples communicate using JSON. In this case you’ll use the JSON.NET 4.0
library from James Newton-King: http://json.codeplex.com/. After you’ve installed
the latest version from Codeplex, be sure to add a reference to the JSON.NET library in
your project (the default installer places it in C:\Program Files\JSON.NET\Bin\Net35).

 The primary change when moving to event-oriented consumption in .NET is to use
the EventingBasicConsumer class for your consumer object rather than using
QueueingBasicConsumer:

EventingBasicConsumer
c_consumer = new EventingBasicConsumer {Model = chan};

Note that EventingBasicConsumer doesn’t define a constructor, so you set
c_consumer’s Model property to refer to the channel object (chan) directly at instanti-
ation time. What makes EventingBasicConsumer event-oriented is that it uses C#
events and delegates internally, and fires a list of defined callbacks when a message is
received for the consumer’s subscription. To add a function (critical_notify in this
case) to that list of callbacks, you add it to the consumer object’s Received property
and then issue BasicConsume:

c_consumer.Received += critical_notify;
chan.BasicConsume("critical",

false,
c_consumer);

The only requirements for an EventingBasicConsumer callback function are that its
return type be void and that it accept IBasicConsumer and BasicDeliverEventArgs
objects as its two arguments. Let’s see what this looks like in the C# version of
critical_notify.

private static void critical_notify(IBasicConsumer consumer,
BasicDeliverEventArgs eargs) {

string[] EMAIL_RECIPS = new string[]
{"ops.team@ourcompany.com"};

IBasicProperties msg_props = eargs.BasicProperties;
String msg_body = Encoding.ASCII.GetString(eargs.Body);

msg_body = JsonConvert.DeserializeObject
<string>(msg_body);

send_mail(EMAIL_RECIPS,
"CRITICAL ALERT",
msg_body);

Listing A.4 Critical notify subscription callback handler

Extract
message
body and
properties

B

JSON-decode
message body

C

Email
decoded
message
bodyD
 www.it-ebooks.info

https://github.com/rabbitinaction/sourcecode
http://json.codeplex.com/
http://www.it-ebooks.info/

256 APPENDIX A Using Rabbit from Java and .NET
Console.WriteLine("Sent alert via e-mail! Alert Text: " +
msg_body + " Recipients: " +
string.Join(",", EMAIL_RECIPS));

consumer.Model.BasicAck(eargs.DeliveryTag,
false);

}

Your critical_notify callback is fired by EventingBasicConsumer for any messages
received in the critical queue (as with the chapter 4 original). The EventingBasic-
Consumer object passes in a reference to itself via the consumer argument, and then a
copy of the received message via the eargs argument. As before, you’ll extract B the
message properties and message body. But because the message body is actually JSON-
encoded, you’ll use the JSON.NET library C to further decode the message body into
a .NET data type. Then you’ll send the alert email D and notify the user onscreen.
Where things get interesting is E where you acknowledge the message. Since Basi-
cAck is a method of the channel object, you need to get access to that object in order
to acknowledge the message. You do that by way of the Model property on the con-
sumer object that was passed in. As you may remember, the .NET client calls AMQP
channels models, and the Model property of consumer contains a reference to the chan-
nel that received the message being consumed. So acknowledging your message is as
simple as invoking consumer .Model.BasickAck() and supplying the DeliveryTag
for the message contained in eargs. That’s all there is to writing a callback function
for EventingBasicConsumer.

 Using event-oriented message consumption in .NET is really that simple. Definitely
check out the full code for this C# consumer in the examples repository for RabbitMQ
in Action. Enough .NET; let’s show some love to Java and see how to use Rabbit with the
world’s most popular bytecode interpreter.

A.3 RPC with your coffee:
implementing AMQP RPC with Java
In the last section of this appendix you’ll reimplement the RPC client and server from
section 4.3 using the RabbitMQ client for Java. The client will send a message contain-
ing the client version and the current timestamp encoded as a JSON object. The mes-
sage will look like this:

{"client_name": "RPC Client 1.0",
"time" : 1320846509}

When the request has been sent to the server, the client will then wait for the server
reply. The server will take the JSON object out of the AMQP message, extract the mes-
sage timestamp, and then it will reply with the word Pong! followed by the original
timestamp sent by the client.5

5 In this section you’ll implement an RPC client and server to illustrate how to translate the examples from
chapter 4. Having said that, it’s worth mentioning that the official RabbitMQ Java client implements basic
RPC functionality as described here: http://www.rabbitmq.com/api-guide.html#rpc.

Acknowledge
messageE
 www.it-ebooks.info

http://www.rabbitmq.com/api-guide.html#rpc
http://www.it-ebooks.info/

257RPC with your coffee: implementing AMQP RPC with Java
A.3.1 Obtaining the Java libraries

The first thing you need to do is to download the latest version of the RabbitMQ Java
client. You can go directly to the client download page located here and then select
the package that matches your platform: http://www.rabbitmq.com/java-client.html.

 For this example you’ll download the one named Binary, compiled for Java 1.5 or
newer (zip). Create a folder called java-rpc and then download the library using wget.
Alternatively, you can point and click with your browser to get the file downloaded to
the new folder:

$ mkdir java-rpc
$ cd java-rpc
$ wget http://www.rabbitmq.com/releases/rabbitmq-java-client/\
v2.7.0/rabbitmq-java-client-bin-2.7.0.zip

Now that you’ve downloaded the library, you’ll unzip its contents and then copy the
*.jar files into a folder called lib that you’ll use to keep the libraries used by the
application:

$ unzip rabbitmq-java-client-bin-2.7.0.zip
$ mkdir lib
$ cp rabbitmq-java-client-bin-2.7.0/*.jar lib/

Since you also need to send JSON messages, download Douglas Crockford’s org.json
Java library:

$ wget http://search.maven.org/remotecontent\
?filepath=org/json/json/20090211/json-20090211.jar \
-O lib/json-20090211.jar

If you type ls lib, you should see the following files inside:

$ ls lib/
commons-cli-1.1.jar commons-io-1.2.jar
json-20090211.jar junit.jar
rabbitmq-client-tests.jar rabbitmq-client.jar

A.3.2 Setting up the class path

As you know, every time you run a Java program, you have to specify the class path so
the JVM knows where to find the packages and the classes required by your program.
The class path can start to get lengthy easily, so you’ll create a shell variable that will
hold the class path information so you don’t have to type it over and over again. On
Unix-like systems you can create a variable to hold our class path like this:

$ export CP=.:./lib/commons-io-1.2.jar:./lib/commons-cli-1.1.jar:\
./lib/rabbitmq-client.jar:./lib/json-20090211.jar

On Windows you’ll have to replace colons with semicolons in order to separate .jar
files. The command used is set instead of export:

set CP=.;./lib/commons-io-1.2.jar;./lib/commons-cli-1.1.jar;\
./lib/rabbitmq-client.jar;./lib/json-20090211.jar
 www.it-ebooks.info

http://www.rabbitmq.com/java-client.html
http://www.it-ebooks.info/

258 APPENDIX A Using Rabbit from Java and .NET
Whenever you want to run one of your Java consumers/producers, you’ll use that
class path variable. Now that you have the basic setup out of the way, it’s time to code
your RPC server and client. In the rest of this section you’ll jump right into the Java
code. If you want to know more about the library, you can read the online API guide
at http://www.rabbitmq.com/api-guide.html, and the Javadocs are located here:
http://www.rabbitmq.com/releases/rabbitmq-java-client/v2.7.0/rabbitmq-java-client-
javadoc-2.7.0/.

A.3.3 Creating an RPC Server

As with every Java program, first you need to import the classes that you’ll use in your
program, so create a file called Client.java inside the java-rpc folder. We’ll describe
the code of this class step by step, and then at the end we’ll provide the whole source
file. Let’s start by describing the import directives:

import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.QueueingConsumer.Delivery;
import com.rabbitmq.client.AMQP.BasicProperties;
import org.json.JSONObject;

As you can see in that snippet, you import the ConnectionFactory, Connection, and
Channel classes from the RabbitMQ client which are needed to establish a connection
to the broker and then to obtain a channel. The classes QueueingConsumer and
QueueingConsumer.Delivery are used to get a RabbitMQ consumer and to manage
message deliveries respectively. With the AMQP.BasicProperties class, you’ll create
AMQP properties for your messages. The final class that you include is the JSONObject
class from the org.json package that’s used to load JSON objects in memory.

 Now let’s look at the init() method of your class where you’ll create the AMQP
connection, obtain a channel, and then use that channel to start your AMQP fabric by
declaring the exchange, queues, and finally binding them together. Here’s the code.

public Server init()
throws Exception {

ConnectionFactory factory = new ConnectionFactory();
factory.setUsername("rpc_user");
factory.setPassword("rpcme");
connection = factory.newConnection();

channel = connection.createChannel();

channel.exchangeDeclare("rpc", "direct");
channel.queueDeclare("ping", false, false, false, null);
channel.queueBind("ping", "rpc", "ping");

consumer = new QueueingConsumer(channel);
channel.basicConsume("ping", false, "ping", consumer);

Listing A.5 Server init method

Create a
connection

B

Create a
channel

C

Set up
AMQP fabricD

Start
consumerE
 www.it-ebooks.info

http://www.rabbitmq.com/api-guide.html
http://www.rabbitmq.com/releases/rabbitmq-java-client/v2.7.0/rabbitmq-java-client-javadoc-2.7.0/
http://www.rabbitmq.com/releases/rabbitmq-java-client/v2.7.0/rabbitmq-java-client-javadoc-2.7.0/
http://www.it-ebooks.info/

259RPC with your coffee: implementing AMQP RPC with Java

ge
System.out.println(
"Waiting for RPC calls..."

);

return this;
}

The first thing you have to do is create an instance of the ConnectionFactory class B
that you’ll use to set up your connection. As you can see, the factory accepts calls to
methods like setUsername and setPassword where you provide the required connec-
tion information. The ConnectionFactory class also has methods like set-

VirtualHost and so on. In this case you’ll connect using the rpc_user name and
rpcme password. Once the factory is set up, you can call the method newConnection in
order to obtain the connection object, which you then use to get a channel object C.
As you can see, you don’t declare the connection or the channel variables since you’ll
add them as members of your class.

 Then you use the channel to set up your AMQP fabric D. First you declare an
exchange by calling exchangeDeclare on the channel object. The parameters passed
to that method are the exchange name and type. Then you declare a queue called
ping. The remainder of the parameters stand for durable, exclusive, autodelete, and
extra arguments respectively. As you can see, you created a nondurable, non-
autodelete, nonexclusive queue. After the queue is created, you bind it to the ping
exchange by using the ping routing key.

 The final step of your init method is to start the consumer. First you obtain a new
instance of a QueueingConsumer by passing it the channel object E. Then you sub-
scribe to the ping queue by calling the basicConsume method. You also use the string
ping as your consumer tag and pass the consumer object as the message callback so
every time a new message is delivered it’ll be sent to your consumer. The mysterious
second parameter to the basicConsume method specifies that you’re consuming in
non-auto-ack mode—you’ll issue a message acknowledgment for each message deliv-
ery that you receive.

public void serveRequests() {
while (true) {

try {

Delivery delivery = consumer.nextDelivery();
BasicProperties props = delivery.getProperties();

channel.basicAck(delivery.getEnvelope().getDeliveryTag(),
false);

System.out.println(
"Received API call...replying..."

);

channel.basicPublish(
"",
props.getReplyTo(),

Listing A.6 Serving RPC requests

Get next
message

B

Acknowled
messageC

Reply back
to clientD
 www.it-ebooks.info

http://www.it-ebooks.info/

260 APPENDIX A Using Rabbit from Java and .NET
null,
getResponse(delivery).getBytes("UTF-8")

);

} catch (Exception e){
System.out.println(e.toString());

}
}

}

In this method you enter an endless loop where you process one message at a time.
You get the last message sent by the server by calling nextDelivery on the consumer
object B. The delivery object has both the message payload and the message proper-
ties that you’ll later use in your method. Then you acknowledge the message back to
the server by calling basicAck C where you pass the message delivery tag, which you
obtain by first getting the message envelope out of the delivery object and then by
chaining the call to getDeliveryTag. You can also use the Envelope object to obtain
the exchange used to route the message by calling getExchange or the message rout-
ing key by calling getRoutingKey, and so on.

 Finally, you send your reply back to the client by calling basicPublish to send a
message D to the anonymous exchange using as routing key the reply_to property
from the original client request. The null parameter indicates that the message isn’t
mandatory. The response message itself is created by calling the method get-
Response, which you’ll implement right away. To sum up what happens in this
method: First you get the next delivery out of the consumer. You use that delivery to
extract the message properties. You acknowledge the message using the message enve-
lope to get the delivery tag, and after that you publish a reply back to the client. Let’s
now see the code for the getResponse method.

private String getResponse(Delivery delivery) {
String response = null;
try {

String message = new String(delivery.getBody(), "UTF-8");

JSONObject jsonobject = new JSONObject(message);

response = "Pong!" + jsonobject.getString("time");
}
catch (Exception e){

System.out.println(e.toString());
response = "";

}
return response;

}

The method takes a Delivery object as parameter so it can extract the message body
B and stores it in the message variable as a string. The next thing you need to do is to
parse that string as a JSON object so you can get the timestamp sent by your client C

Listing A.7 Creating the RPC response

Get next
body as
String

B

Convert
to JSONC

Extract time
valueD
 www.it-ebooks.info

http://www.it-ebooks.info/

261RPC with your coffee: implementing AMQP RPC with Java
and then send it back together with the string Pong!D. To extract a property from a
JSONObject instance, you call the getString method, which takes the object property
key as parameter to return its value.

 Finally, let’s see the main method of your Server class where you instantiate the
server so it can wait for client requests. Here’s the code.

public static void main(String[] args) {
Server server = null;
try {

server = new Server();
server.init().serveRequests();

} catch(Exception e) {
e.printStackTrace();

} finally {
if(server != null) {

server.closeConnection();
}

}
}

The code there is simple. Apart from the try/catch/finally logic, you just create an
instance of your Server class, initialize it by calling init, and finally chain the method
call to serveRequests to start processing messages. The full code of the class is pre-
sented next, including the method closeConnection that you use in the finally
block.

import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.QueueingConsumer.Delivery;
import com.rabbitmq.client.AMQP.BasicProperties;
import org.json.JSONObject;

public class Server
{

private Connection connection;
private Channel channel;
private QueueingConsumer consumer;

public Server Server(){
return this;

}

public Server init()
throws Exception {

ConnectionFactory factory = new ConnectionFactory();
factory.setUsername("rpc_user");
factory.setPassword("rpcme");
connection = factory.newConnection();

Listing A.8 Server main method

Listing A.9 RPC Server full code

Server initialization

Resources cleanup
 www.it-ebooks.info

http://www.it-ebooks.info/

262 APPENDIX A Using Rabbit from Java and .NET
channel = connection.createChannel();
channel.exchangeDeclare("rpc", "direct");
channel.queueDeclare("ping", false, false, false, null);
channel.queueBind("ping", "rpc", "ping");

consumer = new QueueingConsumer(channel);
channel.basicConsume("ping", false, "ping", consumer);

System.out.println(
"Waiting for RPC calls..."

);

return this;
}

public void closeConnection() {
if (connection != null) {

try {
connection.close();

}
catch (Exception ignore) {}

}
}

public void serveRequests() {
while (true) {

try {

Delivery delivery = consumer.nextDelivery();
BasicProperties props = delivery.getProperties();

channel.basicAck(delivery.getEnvelope().getDeliveryTag(),
false);

System.out.println(
"Received API call...replying..."

);

channel.basicPublish(
"",
props.getReplyTo(),
null,
getResponse(delivery).getBytes("UTF-8")

);

} catch (Exception e){
System.out.println(e.toString());
}

}
}

private String getResponse(Delivery delivery) {
String response = null;
try {

String message = new String(delivery.getBody(), "UTF-8");
JSONObject jsonobject = new JSONObject(message);
response = "Pong!" + jsonobject.getString("time");

}
catch (Exception e){

System.out.println(e.toString());
 www.it-ebooks.info

http://www.it-ebooks.info/

263RPC with your coffee: implementing AMQP RPC with Java
response = "";
}
return response;

}

public static void main(String[] args) {
Server server = null;
try {

server = new Server();
server.init().serveRequests();

} catch(Exception e) {
e.printStackTrace();

} finally {
if(server != null) {

server.closeConnection();
}

}
}

}

Now that you have the server fully implemented, let’s compile it by running the fol-
lowing command:

$ javac -cp ./lib/rabbitmq-client.jar:./lib/json-20090211.jar \
Server.java

That command should have created your Server.class file:

$ ls Server.class
Server.class

A.3.4 Creating your RPC client

Let’s move on now so you can start coding your client. You’ll create a file called
Client.java and add your code there. As usual, the complete source code will be given
at the end of this section. The first thing to add is the list of imports:

import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.QueueingConsumer.Delivery;
import com.rabbitmq.client.AMQP.BasicProperties;
import org.json.JSONStringer;
import org.json.JSONException;

The only difference here from the previous server code are the JSON libraries that you
need to import. Because in the client you have to create a JSON object, you’ll import
the JSONStringer object that lets you create JSON strings in an OOP way. The JSON-
Exception is required because when you convert the JSON object to a string, it might
throw an exception. What follows is the class init method:
 www.it-ebooks.info

http://www.it-ebooks.info/

264 APPENDIX A Using Rabbit from Java and .NET

public Client init()
throws Exception {

ConnectionFactory factory = new ConnectionFactory();
factory.setUsername("rpc_user");
factory.setPassword("rpcme");
connection = factory.newConnection();
channel = connection.createChannel();
return this;

}

The code here is similar to that used by the server. You create an instance of the
ConnectionFactory object and then set up the user and password. You get a
Connection instance and from there you obtain a channel object. You keep the chan-
nel and the connection objects as members of your class. After you have the connec-
tion, you need to set up your consumer.

public Client setupConsumer()
throws Exception {

replyQueueName = channel.queueDeclare().getQueue();
consumer = new QueueingConsumer(channel);
channel.basicConsume(replyQueueName, false, consumer);
return this;

}

The important bit from that method is that you declare an anonymous queue and let
RabbitMQ generate a queue name for you. You keep that name in the member vari-
able replyQueueName. Later you’ll use that variable as the value of your reply_to mes-
sage property.

public String call(String message) throws Exception {
String response = null;

channel.basicPublish(
"rpc",
"ping",
getRequestProperties(),
message.getBytes()

);

System.out.println("Sent 'ping' RPC call. Waiting for reply...");

while (true) {
Delivery delivery = consumer.nextDelivery();
response = new String(delivery.getBody(), "UTF-8");
break;

}

return response;
}

Listing A.10 Client init method

Listing A.11 Client consumer setup

Listing A.12 Sending the RPC request

Send RPC requestB

Add request propertiesC

Wait for RPC replyD
 www.it-ebooks.info

http://www.it-ebooks.info/

265RPC with your coffee: implementing AMQP RPC with Java
The call method accepts a string as parameter, which will represent the message pay-
load that you want to send to the server. You’ll publish that message B to the rpc
exchange using the string ping as routing key. You’ll create your message properties
object by calling the method getRequestProperties C. Then you wait for a reply
inside the while (true) loop D. To receive a message from RabbitMQ you use the
same technique that you employed on the server code. After you have the delivery,
you get the message body as a string and return that response to whomever called the
method. Let’s see now how you can create the message properties that will include
your replyQueueName as part of the reply_to message’s basic properties.

private BasicProperties
getRequestProperties() {

return new BasicProperties
.Builder()
.replyTo(replyQueueName)
.build();

}

This method is simple. You create a BasicProperties object that uses a builder tech-
nique where you can chain calls to set each of the basic properties that you might
need. In this case you’ll only set the replyTo property, but you can also use this tech-
nique to set properties like correlationId or deliveryMode. Now let’s see the main
method.

public static void main(String[] args) {
Client client = null;
String response = null;

try {
client = new Client();
client.init().setupConsumer();
response = client.call(Client.createRequest());
System.out.println("RPC Reply --- " + response);

}
catch (Exception e) {

e.printStackTrace();
}
finally {

if (client!= null) {
try {

client.close();
}
catch (Exception ignore) {}

}
}

}

Listing A.13 Creating the message’s basic properties

Listing A.14 Client main method

Call RPC serverB
 www.it-ebooks.info

http://www.it-ebooks.info/

266 APPENDIX A Using Rabbit from Java and .NET
The code here is similar to that which initializes the server. The interesting bit is how
you call the server B. After you have the consumer instance, you execute the call
method and then wait for a reply from the server. Note that for a user of your RPC cli-
ent, there’s no apparent difference between doing a local method call from an RPC
call, so be careful in this regard because an RPC call is many orders of magnitude
slower than a local method call. The missing piece of this puzzle is the
Client.createRequest code that you use to generate the JSON string you send to the
server. Let’s see that code now.

public static String createRequest()
throws JSONException {

float epoch = System.currentTimeMillis()/1000;
JSONStringer msg = new JSONStringer();
return msg

.object()

.key("client_name")

.value("RPC Client 1.0")

.key("time")

.value(Float.toString(epoch))

.endObject().toString();
}

First you get the current UNIX timestamp, which you need to send with your RPC mes-
sage. Then you create an instance of the JSONStringer object, which provides an OOP
interface to build the JSON object. As you can see there, you create the JSON object
and set the client_name and time properties with the values RPC Client 1.0 and
Float.toString(epoch) respectively.

 Let’s sum up how the client works. First you have to instantiate your RPC client
inside the main method of your class. After you have a Client instance, you can use
the call method to get a reply from the server. The JSON object that you send as a
message is constructed inside the createRequest method. During the client initializa-
tion, you also declared a queue in the server for the client and kept the queue name
in the object state. That name is passed along with your JSON object to the server so
the server will know where to reply to. Once you get the reply back from the server,
you print it to the console and exit the program. Before terminating the app, you take
care to clean up resources by closing the connection. Here’s the complete code for
the RPC client including the Client.close method.

import com.rabbitmq.client.ConnectionFactory;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.Channel;
import com.rabbitmq.client.QueueingConsumer;
import com.rabbitmq.client.QueueingConsumer.Delivery;
import com.rabbitmq.client.AMQP.BasicProperties;
import org.json.JSONStringer;

Listing A.15 Generating the JSON request

Listing A.16 RPC client full code
 www.it-ebooks.info

http://www.it-ebooks.info/

267RPC with your coffee: implementing AMQP RPC with Java
import org.json.JSONException;

public class Client {

private Connection connection;
private Channel channel;
private String replyQueueName;
private QueueingConsumer consumer;

public Client init()
throws Exception {

ConnectionFactory factory = new ConnectionFactory();
factory.setUsername("rpc_user");
factory.setPassword("rpcme");
connection = factory.newConnection();
channel = connection.createChannel();
return this;

}
public Client setupConsumer()
throws Exception {

replyQueueName = channel.queueDeclare().getQueue();
consumer = new QueueingConsumer(channel);
channel.basicConsume(replyQueueName, false, consumer);
return this;

}

public String call(String message) throws Exception {
String response = null;

channel.basicPublish(
"rpc",
"ping",
getRequestProperties(),
message.getBytes()

);

System.out.println("Sent 'ping' RPC call. Waiting for reply...");

while (true) {
Delivery delivery = consumer.nextDelivery();
response = new String(delivery.getBody(), "UTF-8");
break;

}

return response;
}

public void close() throws Exception {
connection.close();

}

private BasicProperties
getRequestProperties() {

return new BasicProperties
.Builder()
.replyTo(replyQueueName)
.build();

}

public static String createRequest()
 www.it-ebooks.info

http://www.it-ebooks.info/

268 APPENDIX A Using Rabbit from Java and .NET
throws JSONException {
float epoch = System.currentTimeMillis()/1000;
JSONStringer msg = new JSONStringer();
return msg

.object()

.key("client_name")

.value("RPC Client 1.0")

.key("time")

.value(Float.toString(epoch))

.endObject().toString();
}

public static void main(String[] args) {
Client client = null;
String response = null;

try {
client = new Client();
client.init().setupConsumer();
response = client.call(Client.createRequest());
System.out.println("RPC Reply --- " + response);

}
catch (Exception e) {

e.printStackTrace();
}
finally {

if (client!= null) {
try {

client.close();
}
catch (Exception ignore) {}

}
}

}
}

Let’s compile that code by executing the following command:

$ javac -cp ./lib/rabbitmq-client.jar:./lib/json-20090211.jar \
Client.java

If the compilation was successful, then you should have a new Client.class file:

$ ls Client.class
Client.class

Now start your RabbitMQ server so you can test drive your RPC clients and server.
Keep in mind that you need the same setup as from chapter 4—you need to have the
rpc_user configured in your broker.

A.3.5 Testing your RPC client and server

Open two terminal windows and then type the following on the first to start your
server:

$ java -cp $CP Server
Waiting for RPC calls...
 www.it-ebooks.info

http://www.it-ebooks.info/

269Summary
Your server should then be ready to accept client requests. Let’s move on to the sec-
ond terminal window, set up the CP variable as explained before, and then type

$ java -cp $CP Client
Sent 'ping' RPC call. Waiting for reply...
RPC Reply --- Pong!1.32087475E

You’ll see the reply being printed on the screen right away. On the other hand, in the
terminal window where the server is running, you should see the following output:

Received API call...replying...

With this example we finish our coverage of the RabbitMQ client for Java. As an exer-
cise, try to run the Python RPC server with the Java client or vice versa to test the
interoperability of both AMQP clients.

A.4 Summary
When we started this appendix, you might have had RabbitMQ’s basics under your belt,
but using those basics from Java and .NET might’ve proven elusive. Now you’ve con-
verted the Hello World (chapter 2) and alerting server (chapter 4) examples into .NET,
and have a functional RPC client and server in Java that will fully interoperate with their
Python originals (chapter 4). We hope this whirlwind jaunt through using Rabbit with
Java and .NET has provided the necessary mental map for utilizing all of the concepts
and examples in the book with your interpreted bytecode language of choice.
 www.it-ebooks.info

http://www.it-ebooks.info/

appendix B
Online resources

In this appendix we gathered some interesting online resources that should make
your life easier whenever you go looking for some information related to
RabbitMQ, whether that’s a client library for your favorite programming language
or the latest messaging design pattern to use for your current problem. Well, let’s
be fair: we can’t cover all of your needs but we’ll make the effort by listing resources
that have been helpful to us.

B.1 Websites you should know
Let’s start by reviewing some websites:

 RabbitMQ official documentation—This is the place to go first if you’re looking
for information about RabbitMQ. Since we started writing this book, the
resources available on the official websites have augmented considerably. See
here for more details: http://www.rabbitmq.com/documentation.html.

 AMQP references—If you want to get a deeper understanding of AMQP, you can
visit the protocol’s official website (http://amqp.org/) where you can find
the specifications of its various versions (http://amqp.org/resources/down-
load). Apart from those links, the RabbitMQ developers created an AMQP
Quick Reference at http://www.rabbitmq.com/amqp-0-9-1-quickref.html.
Whenever you want to know what the fourth argument to that AMQP method
means, go and check that web page.

 Enterprise Integration Patterns —If you’re interested in knowing more about
messaging and integration patterns, then the book Enterprise Integration Pat-
terns written by Gregor Hohpe and Bobby Woolf is the one to read. The
small caveat we must mention for an AMQP user is that all the examples are
targeted for technologies like JMS or MSMQ. You’ll need to translate the con-
cepts slightly. Also many patterns are already part of RabbitMQ itself. The
good thing is that you don’t need to buy the book to get started. The pat-
tern narratives and diagrams are released under the Creative Commons
270

 www.it-ebooks.info

http://www.rabbitmq.com/documentation.html
http://amqp.org/
http://amqp.org/resources/download
http://amqp.org/resources/download
http://www.rabbitmq.com/amqp-0-9-1-quickref.html
http://www.rabbitmq.com/amqp-0-9-1-quickref.html
http://www.rabbitmq.com/amqp-0-9-1-quickref.html
http://www.it-ebooks.info/

271AMQP libraries and related OSS projects
Attribution License so you can read them online at http://www.eaipatterns.com/
eaipatterns.html. Patterns like Publish Subscribe, Competing Consumers and many
others were covered in the examples we presented in chapter 4.

 Ruby AMQP gem documentation site—The Ruby AMQP gem website is filled with
documentation and examples of how to use RabbitMQ and AMQP. Examples
even have funny rabbit drawings: http://rubyamqp.info/.

 RabbitMQ development RSS feed—The RabbitMQ Mercurial repository offers an
RSS feed with the latest code changes to the server. It’s interesting if you want to
keep up with what’s going on at the bleeding edge: http://hg.rabbitmq.com/
rabbitmq-server/rss-log.

B.2 Blogs
 RabbitMQ official blog—The RabbitMQ team maintains a blog at http://

www.rabbitmq.com/blog/ where you can find them discussing new develop-
ments in the broker, providing tips about performance, and much more. Be
sure to keep an eye on that blog.

 Jason’s plans —Jason’s own blog was what started it all when we were looking for
some examples of how to use RabbitMQ and AMQP back in 2009. His article
called “Rabbits and warrens” has been an inspiration for many through the years.
From time to time, someone rediscovers it and it pops up again on Twitter. Check
it out here: http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/.

 Alvaro’s blog —Alvaro maintains a blog where he discusses messaging and many
other software topics. There you can find small articles explaining things like
implementing RPC with RabbitMQ and Haskell: http://videlalvaro.github.com/
2010/10/rpc-over-rabbitmq.html.

B.3 AMQP libraries and related OSS projects
 Developer tools and learning material—The RabbitMQ official website has a list of

open source projects that are related to RabbitMQ in one way or another:
http://www.rabbitmq.com/devtools.html. There you can find links from AMQP
libraries to Github repositories offering alternate exchange implementations—
even video tutorials created by the community!

B.3.1 Client libraries

Here we list some interesting libraries for AMQP and RabbitMQ in particular:

 Java—Besides the official Java client, you have other options to integrate Java
and RabbitMQ. The Spring framework offers the Spring AMQP library: http://
www.springsource.org/spring-amqp.

The Mule ESB also offers integration with AMQP and RabbitMQ. You can
find more details at https://github.com/mulesoft/mule-transport-amqp/
blob/master/GUIDE.md.
 www.it-ebooks.info

http://rubyamqp.info/
http://hg.rabbitmq.com/rabbitmq-server/rss-log
http://hg.rabbitmq.com/rabbitmq-server/rss-log
http://www.rabbitmq.com/blog/
http://www.rabbitmq.com/blog/
http://blogs.digitar.com/jjww/2009/01/rabbits-and-warrens/
http://www.rabbitmq.com/devtools.html
http://www.springsource.org/spring-amqp
http://www.springsource.org/spring-amqp
https://github.com/mulesoft/mule-transport-amqp/blob/master/GUIDE.md
https://github.com/mulesoft/mule-transport-amqp/blob/master/GUIDE.md
http://videlalvaro.github.com/2010/10/rpc-over-rabbitmq.html
http://videlalvaro.github.com/2010/10/rpc-over-rabbitmq.html
http://www.eaipatterns.com/eaipatterns.html
http://www.eaipatterns.com/eaipatterns.html
http://www.it-ebooks.info/

272 APPENDIX B Online resources
Finally, LShift, the company that originally created RabbitMQ, has an experi-
mental RabbitMQ component for Apache Camel: https://github.com/lshift/
camel-rabbitmq.

 .Net/C#—For C# you have the official client that was covered in the previous
appendix, and Spring AMQP also provides a library to use with their Spring
Integration framework. The link is the same as for Java: http://www.spring-
source.org/spring-amqp.

Apart from that library, Mike Hadlow created a library called EasyNetQ that
he presents at https://github.com/mikehadlow/EasyNetQ/wiki/Introduction.
The goals for his library were to have “Zero or at least minimal configuration” and a
“Simple API.”

 Python—In the book we used the library called Pika. Marek Majkowski, one of
the RabbitMQ developers, started working on a new one called Puka and he
explains the design reasons behind his new library at http://www.rab-
bitmq.com/blog/2011/07/08/puka-rethinking-amqp-clients/.

 C—For C there’s a library called rabbitmq-c written and maintained by David
Wragg, which also works for RabbitMQ. The library has been wrapped by C++
and Objective-C users as well. The library is hosted at the RabbitMQ Mercurial
repository: http://hg.rabbitmq.com/rabbitmq-c/.

 PHP—For PHP we used the php-amqplib client library, which is a pure PHP
implementation. There’s also a PECL extension for AMQP that you can find at
http://pecl.php.net/package/amqp. At the time of this writing, that library is
under heavy development. Keep in mind that it depends on the rabbitmq-c
library.

Another pure PHP library is worth mentioning due to its active development
and documentation efforts by its author. It’s called amqphp and can be found at
https://github.com/braveSirRobin/amqphp.

 Ruby—For Ruby you can try the Ruby AMQP Gem that we mentioned earlier
(http://rubyamqp.info/). If you’re using JRuby there’s an alternate library
called hot_bunnies that you can find at https://github.com/ruby-amqp/
hot_bunnies. The good news is that it’s maintained by one of the AMQP Gem
authors too.

 Erlang—If you need to use RabbitMQ from Erlang, the language in which
RabbitMQ is written, a client library is offered by the RabbitMQ team. This
library is used by most of the RabbitMQ plugins, so chances are you’re using it
indirectly in your RabbitMQ installation. Details on its usage can be found on
the RabbitMQ official website: http://www.rabbitmq.com/erlang-client-user-
guide.html.

 JavaScript, Node.js, and web messaging—Though JavaScript is a frontend language,
lately server-side frameworks have appeared that present the language as an
interesting choice for backend programming. Node.js is a server that allows you
 www.it-ebooks.info

https://github.com/lshift/camel-rabbitmq
https://github.com/lshift/camel-rabbitmq
http://www.springsource.org/spring-amqp
http://www.springsource.org/spring-amqp
https://github.com/mikehadlow/EasyNetQ/wiki/Introduction
http://www.rabbitmq.com/blog/2011/07/08/puka-rethinking-amqp-clients/
http://www.rabbitmq.com/blog/2011/07/08/puka-rethinking-amqp-clients/
http://hg.rabbitmq.com/rabbitmq-c/
http://pecl.php.net/package/amqp
https://github.com/braveSirRobin/amqphp
https://github.com/ruby-amqp/hot_bunnies
https://github.com/ruby-amqp/hot_bunnies
http://rubyamqp.info/
http://www.rabbitmq.com/erlang-client-user-guide.html
http://www.rabbitmq.com/erlang-client-user-guide.html
http://www.it-ebooks.info/

273Discussions and mailing lists
to write server-side code in JavaScript, and as you can imagine we didn’t have to
wait long before someone wrote an AMQP client for it. The main library is called
node-amqp and it’s maintained by Theo Schlossnagle, the author of the book
Scalable Internet Architectures. More on the library here: https://github.com/
postwait/node-amqp.

There’s also a library called Rabbit.js, which implements several messaging
patterns for the web. It was created by Michael Bridgen, one of the RabbitMQ
developers. More details here https://github.com/squaremo/rabbit.js.

 Clojure —For Clojure you have a library called langohr, which was created by
Michael Klishin, one of the maintainers of the Ruby AMQP Gem and the
hot_bunnies library. The library design is built on top on his experience writing
the Ruby clients. The library wraps the Java official library into idiomatic Clojure.
Here’s the Github repository: https://github.com/michaelklishin/langohr.

 Scala—For Scala there’s an AMQP library that can be used directly with the
AKKA Scalability framework. Documentation for the library can be found in its
repo at http://doc.akka.io/docs/akka-modules/1.3.1/modules/amqp.html.

 Haskell—If you want to use RabbitMQ with Haskell, take a look at this package
on hackage: http://hackage.haskell.org/package/amqp. There’s a getting
started guide here: http://videlalvaro.github.com/2010/09/haskell-and-
rabbitmq.html.

 NoSQL—RabbitMQ has also been integrated with some NoSQL databases; most
notable is the work by Jon Brisbin, who’s been working on bridging RabbitMQ
with Riak. There’s an alternate RabbitMQ exchange that logs messages into
Riak at https://github.com/jbrisbin/riak-exchange. Also, if you want to receive
change notifications of what’s going on in your Riak database, Jon wrote a Riak
post-commit-hook. More information here: https://github.com/jbrisbin/riak-
rabbitmq-commit-hooks.

B.4 Discussions and mailing lists
 Mailing list—If you want to get in touch with the RabbitMQ community, includ-

ing its developers, there are a couple of places you can head to. First there’s the
official mailing list at http://lists.rabbitmq.com/cgi-bin/mailman/listinfo/
rabbitmq-discuss. The list is very active and you can find answers to your ques-
tions, sometimes even the same afternoon. If you’re having trouble with
RabbitMQ, that’s the best place to go if you want to ask for help.

 IRC channel—If you prefer more live communication there’s the #rabbitmq IRC
channel on the http://freenode.net/ network. Feel free to chime in; there are
always members from the community who are willing to help.

 Twitter—Finally, if you want to know what people are saying about RabbitMQ in
real time you can subscribe to the #rabbitmq hash tag on Twitter: http://
twitter.com/#!/search?q=%23rabbitmq.
 www.it-ebooks.info

https://github.com/postwait/node-amqp
https://github.com/postwait/node-amqp
https://github.com/squaremo/rabbit.js
https://github.com/michaelklishin/langohr
http://hackage.haskell.org/package/amqp
http://videlalvaro.github.com/2010/09/haskell-and-rabbitmq.html
http://videlalvaro.github.com/2010/09/haskell-and-rabbitmq.html
https://github.com/jbrisbin/riak-exchange
https://github.com/jbrisbin/riak-rabbitmq-commit-hooks
https://github.com/jbrisbin/riak-rabbitmq-commit-hooks
http://lists.rabbitmq.com/cgi-bin/mailman/listinfo/rabbitmq-discuss
http://lists.rabbitmq.com/cgi-bin/mailman/listinfo/rabbitmq-discuss
http://twitter.com/#!/search?q=%23rabbitmq
http://twitter.com/#!/search?q=%23rabbitmq
http://freenode.net/
http://doc.akka.io/docs/akka-modules/1.3.1/modules/amqp.html
http://www.it-ebooks.info/

274 APPENDIX B Online resources
B.5 Summary
With more than 30 links to new resources in this appendix, there’s plenty to read if
you want to dig even deeper into the rabbit hole. We provided a selection of links
from interesting websites and blogs and a small commentary on each of the libraries
that we mentioned here. You can see that with RabbitMQ and AMQP, you don’t need
to be locked into a particular language solution. Finally, if you want to get in touch
with the community, you can do so via traditional email, direct IRC chat, or keep track
of what’s happening with RabbitMQ users in real time via Twitter.
 www.it-ebooks.info

http://www.it-ebooks.info/

appendix C
Installing RabbitMQ

on Windows
As with most programs that originate on UNIX, installing RabbitMQ on Windows is
different than the installation instructions we covered in chapter 1. Fortunately, the
kind folks at Rabbit HQ have provided MSI-based installers that make the process rather
painless. But before you install Rabbit, you must first install a recent version of Erlang
from http://www.erlang.org/download.html. Generally, the latest version of Erlang
available from erlang.org will work with the latest version of RabbitMQ. So go ahead
and grab the download labeled Windows Binary File (see figure C.1).

Figure C.1 Downloading the Erlang for Windows installer
275

 www.it-ebooks.info

http://www.erlang.org/download.html
http://www.it-ebooks.info/

276 APPENDIX B Installing RabbitMQ on Windows
After you’ve downloaded the Erlang installer (otp_win32_R14B04.exe in this case),
you’ll browse to your Downloads directory and run it (see figure C.2).

 All of the defaults in the Erlang for Windows installer are acceptable when using
Rabbit, so click Next (or Finish) on all the stages of the installer wizard to deploy a
default installation of Erlang.

 Next, download the RabbitMQ for Windows installer (see figure C.3) from http://
www.rabbitmq.com/download.html.

 Using the RabbitMQ for Windows installer is as easy as the Erlang installer: run the
downloaded installer file (see figure C.4) and click through the stages using the
defaults.

Figure C.2 Installing Erlang for Windows
 www.it-ebooks.info

http://www.rabbitmq.com/download.html
http://www.rabbitmq.com/download.html
http://www.it-ebooks.info/

277
Figure C.3 Downloading the RabbitMQ for Windows installer

Figure C.4 Installing RabbitMQ for Windows
 www.it-ebooks.info

http://www.it-ebooks.info/

278 APPENDIX B Installing RabbitMQ on Windows
When the installer finishes, you’ll have a fully functional copy of RabbitMQ running
as a Windows service! If you open up a command prompt and run cd C:\Program
Files\RabbitMQ Server\rabbitmq_server-2.7.0 you should see the same directory
structure as on any other platform RabbitMQ supports. One thing that’s different
from the UNIX versions of RabbitMQ is that utilities in the .\sbin subdirectory end
with .bat. For example, instead of running .\sbin\rabbitmqctl, on Windows you’d
run .\sbin\rabbitmqctl.bat. Also, the first time you run any of the utilities (like
rabbitmqctl.bat) that communicate with Rabbit via Erlang, you’ll receive a warning
from the Windows Firewall (see figure C.5) asking whether to allow network access for
erl.exe. Go ahead and allow erl.exe to access “private” networks.

That’s all there is to it! You now have a fully functional copy of RabbitMQ running on
your Windows system! All of the examples in this book will work as well with the Win-
dows version of Rabbit (especially the .NET examples in appendix A) as they do with
the UNIX version. That’s the beauty of Rabbit!

Figure C.5 Allow network access for erl.exe in Windows Firewall.
 www.it-ebooks.info

http://www.it-ebooks.info/

index
A

access control lists 44
acknowledging messages 18,

81, 197
acknowledgments 197

auto-ack mode 199
pending-acknowledgment

list 199
actions, separating from

requests 61–63
active/standby pairs.

See warrens
Advanced Message Queuing

Protocol 5
accessing logs 53, 55
and Java 256, 269
and TCP 14
basic.ack command 18
basic.consume

command 17, 45
basic.get command 17, 45
basic.publish command 45
basic.reject command 18
cancellation

notifications 116
decoupling with 61–63
exchange.declare

command 21, 45
exchange.delete

command 45
labels 13
monitoring queues 186, 190
permissions 45
queue.bind command 45
queue.declare

command 19, 45

queue.delete command 45
queue.purge command 45
RPC client in Java 263–268
RPC server in Java 258–263
simulation checks 170–172
transactions 27

alerting, and .NET 254, 256
alerts 65–74

and topic exchanges 66
from messages 69
generating 73
queues 68
severity levels 66
tagging 66–68

Amazon Web Services 97
amq.direct exchange 50
amq.fanout exchange 50
amq.rabbitmq.log

exchange 53
amq.topic exchange 50
AMQP. See Advanced Message

Queuing Protocol
AMQPSSLConnection

class 214
anonymous exchange 201
anonymous functions 232
/api/nodes 181
/api/queues 190

messages_ready 190
messages_unacknowledged

190
application programming

interfaces
REST 154
zero-effort 64

application specification
templates 224

asynchronous processing, par-
allel processing 74–80

asynchronous
programming 61–86

fire-and-forget 65, 80
load balancing 63
remote procedure calls

80–86
sending alerts 65–74

authentication
Basic 160
LDAP 217

Authorization header 160
auto_ack parameter 18
auto_delete parameter 68
auto-ack mode 199
auto-delete parameter 19
avocado farming

example 127–134
consumer 134
producer 134

B

badrpc,nodedown error 55
Base64 encoding 160
Basic authentication 160
basic_cancel command 32
basic_consume command

31, 55
basic_publish 84
basic.ack command 18
Basic.Ack confirmation

type 35
basic.consume command

17, 45
basic.get command 17, 45
279

 www.it-ebooks.info

http://www.it-ebooks.info/

280 INDEX
Basic.Nack confirmation
type 35

basic.publish command 45, 91
basic.reject command 18
BasicConsume 250
BasicProperties class 73
batch processing 65
behaviours 226

for custom exchanges
230–235

rabbit_exchange_type 226
binary data type 132
bindings 16, 20–23

after node failure 113
effect on delivery speed

197–198
memory usage 202
metadata 89
routing keys 20
viewing 50–51
wildcards 23

block_on_flow_control 73
boot steps 227

adding 227
rabbit_boot_step 228

build system 223

C

C#. See .NET
cacertfile 212
caching 231
cancellation notifications 116
certfile 212
certificate authorities 205

setting up 206, 209
certificate revocation list 207
certificates 204–205

certificate authorities
205–209

certificate revocation lists 207
client certificates 211
root certificate 209
server certificates 210

chan_recv channel 15
chan_sendX channel 15
channels 14

chan_recv 15
chan_sendX 15
in Java 258
publishing to mirrored

queues 104
rebuilding after node

failure 113
routing to queues 91

class path 257
classes

AMQPSSLConnection 214
BasicProperties 73
Exception 171

client certificates 211
clients, granting access with

REST 157
clustering 87–106

across long distances
126–135

active/standby pairs
121–123

and persistent messaging 26
architecture 89–94
distributing exchanges

91–92
distributing nodes 97–100
failing nodes 112–119
goals 88
lack of redundancy 26
load balancer-based master/

slave clusters 123–126
metadata 89
on Amazon Web Services 97
on multiple machines

97–100
Pacemaker 122
queues 89–91
RAM versus disk nodes

92–94
setting up clusters 94–97
Shovel plugin 126–135
upgrading nodes 100
with warrens 121–123
See also clusters

clusters
adding nodes 96
and queues 89–91
architecture 89–94
checking with /api/

nodes 181
failing nodes 112–119
getting status of 99
monitoring 180–185
on multiple machines

97–100
RAM versus disk nodes

92–94
setting up 94–97
upgrading nodes 100
when disk node is down 93
See also clustering

Coffee Bean Model 62
CohesiveFT 6

command line
and Management

plugin 150–153
creating exchanges 152
curl 150
installing rabbitmqadmin

script 152
purging queues 152

commands
basic_cancel 32
basic_consume 31
basic.ack 18
basic.consume 17
basic.get 17
basic.reject 18
exchange.declare 21
queue.declare 19
rabbitmqctl add_vhost 25
rabbitmq-plugins 219–220

compiling, custom
exchanges 236–239

CONFIG_FILE environment
variable 41

configuration files 41–43
dump_log_write_threshold

42
msg_store_file_size_limit 43
nested hashtables 41
queue_index_max_journal

_entries 43
ssl_listeners 42
ssl_options 42
tcp_listeners 42
vm_memory_high

_watermark 42
configure permissions 44–47
configuring

backends in HAProxy 111
HAProxy 110–112
HAProxy statistics page 112
importing from JSON

files 142–143
memory cap 181
Shovel plugin 130–135

Confirm.SelectOk confirma-
tion type 35

connection errors 115
connections, SSL 204–214
consumer callbacks 69
consumer cancellations 105
consumer_tag 69
consumers 13–16

and .NET 246
auto-ack mode 199
cluster-aware 116
 www.it-ebooks.info

http://www.it-ebooks.info/

281INDEX
consumers (continued)
consumer callbacks 69
distributing messages to

multiple 17
event-based consumers in

.NET 255
in Java 258
lack of in Erlang 234
monitoring 185–194
surviving node failure 114

consumption loops, rebuilding
after node failure 113

content_type header 117
Content-Type header 160
creating

custom exchange
modules 225–243

Erlang application specifica-
tion file 224–225

queues 19
vhosts 25

CRITICAL Nagios exit
code 169

CRL. See certificate revocation
list

cURL 156
curl command-line tool 150
custom exchange

modules 225–243
custom exchanges 218

behaviours 230–235
compiling 236–239
registering 227–230

custom plugins 221–243
and rabbit_boot_step 228
build system 223
compiling 236–239
Erlang application specifica-

tion file 224–225
Erlang application specifica-

tion templates 224
folder structure 223
makefiles 225
Mercurial 222
Python 222
RabbitMQ Public

Umbrella 222–223
testing 239, 243
version numbers 225

D

declaring exchanges 202
declaring queues 201

decoupling 61–86
fire-and-forget 65, 80
free APIs 64

delete function 233
deleting exchanges 233
delivery mode 25
delivery-mode property 196
detecting connection

failures 115
direct exchanges 21

effect on delivery speed 198
routing 198

disk nodes 92–94
setting up 96

distributing exchanges 91–92
distribution folder 225
dog walking example 61
dump_log_write_threshold 42
durable parameter 25
durable queues 69

redeclaring 90
when cluster node goes

down 121
durable store 200

E

easy_install 29
ejabberd 7
encoding Base64 160
environment variables

CONFIG_FILE 41
RABBITMQ_NODE_PORT

94
RABBITMQ_NODENAME

94
epmd, Erlang Port mapper

Daemon 58
epoll 110
Erlang 6–8

angle brackets 132
application specification

file 224–225
application specification

templates 224
badrpc,nodedown error 55
behaviours 226
compared to Java 38
cookies 55, 96
Erlang Port Mapper

Daemon 58
Erlang term storage 197
function arity 226
functions 226
funs 232

lists 232
monitoring the VM 141
nodes 38–40, 56
pattern matching 231–233
ping function 58
process count 203–204
process_count 59
process_limit 59
rpc module 59
troubleshooting 57
tuples 224

Erlang cookies 55, 96, 138
copying to other nodes 98

Erlang nodes 56
name versus sname 56

Erlang Port Mapper Daemon.
See epmd

Erlang term storage 197
Erlang VM monitoring 141
errors 55–59

badrpc,nodedown 55
connection errors 115

event-based consumers in
.NET 255

event-based messaging with
.NET 254–256

examples
avocado farming

example 127–134
converting to use .NET

244–269
converting to use Java

256–269
dog-walking example 61,

167, 194
ping 82
reward system example 74
sending alerts 65–74

Exception class 171
exception handlers 115
exchange.declare

command 21, 45
exchange.delete command 45
exchanges 16, 20–23

after node failure 113
amq.direct 50
amq.fanout 50
amq.rabbitmq.log 53
amq.topic 50
and .NET 249
anonymous exchange 201
binding exchange names to

variables 231
compiling custom

exchanges 236–239
 www.it-ebooks.info

http://www.it-ebooks.info/

282 INDEX
exchanges (continued)
creating via command

line 152
custom behaviours 230–235
custom exchange

modules 225–243
custom types 218
declaring 202
deleting 233
direct 21
distributing 91–92
durable parameter 25
effect on delivery speed

197–198
fanout 21, 75
headers 21
in Java 259
list_exchanges command 51
managing via web

console 146–147
memory usage 202
metadata 89
rabbit_exchange_type 226
registering custom

exchanges 227–230
Riak Exchange 218
routing keys 20
topic 21–22
viewing 50–51

exclusive parameter 19, 81
execute_mnesia_transaction

231
EXIT_CRITICAL 178
EXIT_UNKNOWN 178
EXIT_WARNING 180
experimental plugins 218
Extensible Messaging and

Presence Protocol 7
.ez files 140

F

fabric 176
fail_if_no_peer_cert 212
failing clients 112–119
failure

cancellation
notifications 116

dealing with 87, 106
detecting connection

failure 115
failing clients 112–119
lost connections 112–119

fanout exchanges 21
effect on delivery speed 198

parallel processing 75
routing 198

files
.ez files 140
configuration files 41–43
Erlang application specifica-

tion file 224–225
makefiles 225
persistency log files 26
rabbitmq.config 130

fire-and-forget processing
65–80

alerts 65–74
parallel processing 74–80

flow, message delivery flow 199
folders

distribution folder 225
structure for plugins 223

function arity 226
functions 226

anonymous 232
arguments 226
arity 226
delete 233
execute_mnesia_transaction

231
funs 232
reverse 235

funs 232

G

Garnock-Jones, Tony 7

H

HAProxy 110–112
and warrens 123
backup option 124
configuring 110–112

backends 111
statistics page 112

epoll 110
installing 110
round-robin 111
testing failover 125

hash tables
and REST API 156
for creating users 164
JSON decoding 161

headers
and REST API 156
Authorization 160
content_type 117

Content-Type 160
Pika header parameter 70
reply_to 81

headers exchange 21
health checks 168–194

/api/nodes 181
AMQP simulation

checks 170–172
and REST API 172–176
checking aliveness 172–176
checking for bad

connections 171
checking HTTP response

from API call 179
checking whether RabbitMQ

daemon is
functioning 170–172

determining queue warning
thresholds 193

EXIT_CRITICAL 178
EXIT_UNKNOWN 178
EXIT_WARNING 180
for clusters 180–185
for consumers 185–194
for nodes 181
for queues 186–190
HTTP status codes 179
monitoring for configura-

tion checks 176–180
monitoring queues with

REST 190–193
safe argument 174
testing message publishing

and consuming 172–176
See also Nagios

Hello World example, convert-
ing to Java and .NET
245–254

high availability with
warrens 121

Hohpe, Gregor 62
HTTP

and REST API 164
checking HTTP response

from API call 179
status codes 179
verbs 156

httplib library 159

I

IBM 4
iMatix 5
installing

on Windows 275–278
 www.it-ebooks.info

http://www.it-ebooks.info/

283INDEX
installing (continued)
plugins 218–220
RabbitMQ 8, 10
Shovel plugin 129

interfaces, compared to
behaviours 226

J

Java
and AMQP 256–269
channels 258
consumers 258
converting examples to

use 256–269
exchanges 259
libraries 257
messaging 258–269
queues 259
RPC client 263–268
RPC server 258–263
setting up class path 257
testing RPC 268

Java Message Service (JMS) 4
JavaScript Object Notation

(JSON)
and .NET 255
and REST API 156
and RPC 82–86
exporting configuration

files 142–143
JSON decoding 161–164
JSON encoding 160

JBoss 6
JMS. See Java Message Service
JPMorgan Chase 5
JSON libraries 263
json library 159
JSON. See JavaScript Object

Notation 82

K

keyfile 212

L

labels 13
libraries

httplib 159
Java 257
JSON 263
json 159
OpenSSL 204

linked lists 232
list reverse 232
list_exchanges command 51
list_permissions command 46
list_queues command 49
listeners, SSL listeners 211–213
lists

linked 232
list reverse 232
reverse function 235

load balancers 108–112
HAProxy 110–112
master/slave clusters

123–126
load balancing 108–112

configuring backends 111
eliminating need for 63
HAProxy 110–112
round-robin 111

LOG_BASE environment
variable 52

logs 39, 52–55
accessing in real-time 53–55
amq.rabbitmq.log 53
RABBITMQ_NODEMANE-

sasl.log 52
RABBITMQ_NODENAME

.log 52
reading 52
rotating 53

lost connections 112–119
LShift 6

M

maintained plugins 218
makefiles 225
Management plugin 137–153,

176
command-line

interface 150–153
creating users 143–144
enabling 139–141
features 138
importing configuration

from JSON files 142–143
installing command-line

tool 152
managing exchanges

146–147
managing queues 148–149
managing user

permissions 145–146
managing users 143–146

REST API 155
user roles 143
versus rabbitmqctl 138
web console 141–143

Management Web UI. See web
console

master queue 101
master/slave clusters, load bal-

ancer–based 123–126
memory

effect on speed 201–203
exceeding memory cap 181
exchanges 201
usage 201–203
word size 201

memory cap 181
memory errors 181
memory usage 201–203

bindings 202
exchanges 202
word size 201

Mercurial 222
message delivery

checking whether queue is
empty 200

flow 199
speed of 200

message flow 199
message queuing history 3–5
message_count attribute 187
messages 12, 36

accessing statistics with
REST 158–161

acknowledgements 18
acknowledging 197
and .NET 246
bindings 16, 20–23
caching 231
channels 14
consumers 13–16
converting into alerts 69
delivering 200
delivering to multiple

queues 21
delivery mode 25
delivery-mode 196
durability 25–28, 196
durable store 200
exchanges 16, 20–23
Hello World example 28–32
ID 33
in Java 258–269
labels 13
listing message counts 49–50
no-ack flag 197
 www.it-ebooks.info

http://www.it-ebooks.info/

284 INDEX
messages (continued)
nonpersistent versus

persistent 196
payload 13
persistence 25–28
preserving 101–105
producers 13–16
publisher confirms 33–35
queues 13, 16–20
receiving 17
rejecting 18
routing 230
routing algorithms 197–198
routing keys 20
speed of delivery 195, 215
TCP 14
test messages 241
testing message publishing

and consuming 172–176
transactions 27
transient store 200
unacknowledged 190
unconsumed 190

messages_ready 190
messages_unacknowledged

190
messaging 12, 36

and .NET 246
bindings 16, 20–23
channels 14
consumers 13–16
exchanges 16, 20–23
Hello World example 28–32
in Java 258–269
message

acknowledgment 197
message durability 196
monitoring 185–194
monitoring fabric 176–180
no-ack flag 197
persistence 196
persistent 25–28
producers 13–16
queues 13, 16–20
routing 231
routing algorithms 197–198
routing keys 20
speed 195, 215
TCP 14
transactions 27

metadata
binding metadata 89
exchange metadata 89
queue metadata 89
vhost metadata 89

Metalogic 5
methods

Pika method parameter 70
start_consuming() 70

Microsoft Message Queue 4
mirrored queues 101–105

checking synchronization
status 103

consumer cancellations 105
declaring 101–104
how they work 104–105
master versus slave

queues 101
on only some nodes 102
synchronized_slave_pids 103

Mnesia 9, 41, 226
configuration options 42
execute_mnesia_transaction

231
troubleshooting 57

models. See channels
monitoring 167–194

AMQP simulation
checks 170–172

checking aliveness 172–176
checking for bad

connections 171
checking whether RabbitMQ

daemon is
functioning 170–172

clusters 180–185
configuring changes

176–180
consumers 185–194
health checks 168–194
messaging fabric 176–180
Nagios exit codes 168
nodes 181
queues 158, 176–186, 190
queues using REST 190–193
testing message publishing

and consuming 172–176
with /api/queues 190
with Nagios 168–194

MQSeries 4
msg_store_file_size_limit 43
MSMQ. See Microsoft Message

Queue
MySQL 6

N

Nagios 168–194
AMQP simulation

checks 170–172

and REST API 172–176
checking aliveness 172–176
checking for bad

connections 171
checking HTTP response

from API call 179
checking whether RabbitMQ

daemon is
functioning 170–172

creating health checks 169
exit codes 168
HTTP status codes 179
monitoring clusters 180–185
monitoring consumers

185–194
monitoring for configura-

tion changes 176–180
monitoring nodes 181
monitoring queues 186–190
monitoring queues with

REST 190–193
status codes 168
testing message publishing

and consuming 172–176
See also health checks

nested hashtables 41
.NET

alerting 254–256
consumers 246
converting examples to

use 244–269
downloading client 245
event-based messaging

254–256
exchanges and queues 249
JSON library 255
messaging 246
models. See also channels

netcat 219
no_ack 69
no-ack flag 197
node dictionaries,

checking 183
node names 94
node() function 58
nodes 38–40, 56

adding to clusters 96
checking dictionaries 183
copying Erlang cookies 98
distributing 97–100
failure 112–119
monitoring 181
name versus sname 56
node names 94
node() function 58
 www.it-ebooks.info

http://www.it-ebooks.info/

285INDEX
nodes (continued)
ping function 58
process_count 59
process_limit 59
RABBITMQ_NODE_PORT

environment variable 94
RABBITMQ_NODENAME

environment variable 94
RAM versus disk 92, 94
resetting 100
starting 38–39

node versus application 40
stopping 39–40, 94

node versus application 40
upgrading 100

notifications. See alerts

O

O’Hara, John 6
OK Nagios exit code 168
Open Telecom Platform

(OTP) 88
OpenSSL library 204
openssl utility 206
OTP. See Open Telecom

Platform

P

Pacemaker 122
parallel processing 74–80
parameters

auto_ack 18
auto-delete 19
durable 25
exclusive 19
passive 19
requeue 18

passive argument 187
passive parameter 19
pattern matching 231–233
payload 13
pending-acknowledgment

list 199
permissions 43–47

access control lists 44
managing via web

console 145–146
per vhost 24
read, write, and

configure 44–47
users 43–44

persistence 196

persistency log files 26
persistent messaging 25–28

and clustering 26
when to use 26

PHP 48
and SSL 213

php-amqplib library 48
Pid. See process ID
Pika 29, 66

body parameter 70
channel parameter 70
consumer_tag 69
header parameter 70
method parameter 70
no_ack 69

ping example 82
ping function 58
plugins 217–243

and LDAP 217
and rabbit_boot_step 228
build system 223
creating 221–243
custom 221–243
custom exchange types 218
enabling 139
Erlang application specifica-

tion file 224–225
Erlang application specifica-

tion templates 224
experimental 218
folder structure 223
installing 218–220
maintained 218
makefiles 225
Management plugin

137–153, 176
Mercurial 222
Python 222
RabbitMQ Public

Umbrella 222–223
STOMP 217
testing 239–243
uninstalling 220–221
version numbers 225
where to find 218

presses, effect on speed 204
private queues 81
process ID (PID) 91
process_count 59
process_limit 59
processes

effect on speed 203
Erlang process count

203–204
limit 203–204

producers 13–16
cluster-aware 117
generating alerts 73
surviving node failure 114

programming languages, using
more than one 64

public key infrastructure. See
certificates

public-key cryptography. See
certificates

publisher confirms 28, 33–35,
92

Basic.Ack 35
Basic.Nack 35
Confirm.SelectOk 35

publishers
confirms 28
publisher confirms 33–35

publish-subscribe 3
Python 28, 222

string formatting 164

Q

queue_args 102
queue_declare command 54

passive argument 187
queue_index_max_journal

_entries 43
queue, memory usage 201
queue.bind command 45
queue.declare command 19, 45

x-ha-policy argument 101
queue.delete command 45
queue.purge 45
queues 13, 16–20

/api/queues 190
acknowledgements 18
after node failure 113
and .NET 249
and alerts 68
and multiple consumers 17
and REST API 159
auto-delete 19
basic.consume command 17
basic.get command 17
checking whether empty 200
clustering across long

distances 126
creating 19, 149
declaring 201
delivering to multiple 21
determining warning

thresholds 193
 www.it-ebooks.info

http://www.it-ebooks.info/

286 INDEX
queues (continued)
direct exchange 21
durable 69
durable parameter 25
durable store 200
effect on speed 201
escaping queue names 159
fanout exchange 21
in clusters 89–91
in Java 259
in single-node setup 89
list_queues command 49
listing 49–50, 148
managing via web

console 148–149
master versus slave 101
metadata 89
mirrored 101–105
monitoring 158, 186–190

configuration 176
with REST 190–193

no-ack flag 197
passive parameter 19
private 19, 81
process ID 234
purging via command

line 152
queue_declare command 54
queue.declare command 19
receiving messages 17
redeclaring durable

queues 90
redeclaring nondurable

queues 90
rejecting messages 18
reply queue 84
topic exchange 22
transient store 200

R

Rabbit Technologies 7
rabbit_boot_step 228
rabbit_durable_exchange

table 202
rabbit_durable_queue

table 201
rabbit_exchange table 202
rabbit_exchange_type 226
rabbit_queue table 201
rabbit_reverse_route table 202
rabbit_route table 198,

201–202
rabbit_semi_durable_route

table 202

rabbit_topic_trie_binding
table 202

rabbit_topic_trie_edge
table 202

RabbitMQ
advantages of 8
folder structure 9
history 5–7
installing 8–10
installing on Windows

275–278
language independence 64
logs 39
managing via web

console 141–143
package 9
running 9–10
server 9
using with .NET 244–269
using with Java 256–269

RabbitMQ application,
starting 39

RabbitMQ broker, running 9
RabbitMQ Public

Umbrella 222–223
build system 223

rabbitmq_management. See
Management plugin

RABBITMQ_NODE_PORT
environment variable 94

RABBITMQ_NODENAME
environment variable 94

RABBITMQ_NODENAME.log
52

RABBITMQ_NODENAME-
sasl.log 52

rabbitmq.config file 130, 211
angle brackets 132
auto_ack setting 132
broker directives 131
declarations directives 131
destinations section 131
prefetch_count setting 132
publish_fields setting 133
publish_properties

setting 132
queue setting 132
reconnect_delay setting 133
sources section 131
tx_size setting 132

rabbitmqadmin script 150–153
creating exchanges 152
installing 152
purging queues 152
why to use 150–151

rabbitmqctl 47, 55
add_vhost command 25
Erlang cookies 56
list_exchanges command 51
list_permissions

command 46
list_queues command 49
listing message counts 49–50
listing queues 49–50
managing users 43–44
-n argument 96
-n option 40
-p option 47
reset command 100
rotate_logs command 53
set_permissions

command 45
setting up nodes 95
stopping nodes 40
versus Management

plugin 138
versus REST 158
versus REST API 154
viewing exchanges and

bindings 50–51
viewing statistics 47–51

rabbitmq-plugins
command 219–220

rabbitmq-server command 94
rabbitmq-server script 41, 141
rabbit-server script, LOG_BASE

environment variable 52
Radestock, Matthias 6
RAM nodes 92–94

setting up 96
RAM, running out of 181
Ranadivé, Vivek 3
Read Eval Print Loop

(REPL) 58
read permissions 44–47
registered property 225
registering custom

exchanges 227–230
remote procedure calls

(RPCs) 80–86
and Java 256–269
and JSON 82–86
private queues 81
RPC client in Java 263–268
RPC server in Java 258–263
sending

acknowledgements 81
testing in Java 268

removing plugins 220–221
REPL. See Read Eval Print Loop
 www.it-ebooks.info

http://www.it-ebooks.info/

287INDEX
reply_to 81
Representational State Trans-

fer (REST)
See also REST API
checking aliveness with

172–176
req command 208
requests, separating from

actions 61–63
requeue parameter 18
resp_payload dictionary 161
REST API

accessing statistics 158–161
and hash tables 156
and headers 156
and HTTP verbs 156, 164
and URLs 155
automatically creating vhosts

and users 161–165
Basic authentication 160
capabilities 157
granting client access 157
health checks 174
listing users 164
monitoring queues

with 190–193
versus rabbitmqctl 158
See also Representational

State Transfer
reverse function 235
reward system example 74
Riak Exchange 218
Richardson, Alexis 5
root certificate 209
rotate_logs command 53
routing 91

algorithms 197–198
publisher confirms 92
testing 241

routing keys 73, 235
blank 235
direct exchange 21

routing tables,
rabbit_route 198

rpc module 59
RPC. See remote procedure

calls

S

Sackman, Matthew 7
safe argument 174
SASL. See System Application

Support Libraries

Secure Sockets Layer (SSL)
certificates 204–205
connections 204–214
enabling listeners 211–213
testing 213–214

security
certificates 204–205
with SSL 204–214

separation of concerns 61–86
fire-and-forget 65–80
using multiple programming

languages 64
separation, between vhosts 24
server certificates 210
servers 38–43

active/standby pairs
121–123

configuration files 41–43
logs 52–55
starting/stopping node ver-

sus starting/stopping
application 40

viewing statistics 47–51
set_admin command 158
set_permissions command 45
Shchepin, Alexy 7
Shovel plugin 126–135

configuring 130–135
installing 129
running 134

slave nodes, loss of 105
slave queues 101
solid state drives 26
ssl_listeners 42, 212
ssl_options 42, 212
start_consuming() method 70
starting nodes 38–39

versus starting
application 40

startup, boot steps 227
statistics

accessing with REST
158–161

resp_payload dictionary 161
STOMP 217

installing the plugin 219
stopping

nodes 39–40
stopping node versus stop-

ping application 40
stopping nodes 94
synchronized_slave_pids 103
synchronous programming 61

load balancing 63
System Application Support

Libraries (SASL) 52

T

tagging, alerts 66
tcp_listeners 42
Teknekron 3
templates, Erlang application

specification
templates 224

testing
custom plugins 239–243
routing 241
RPC in Java 268
test messages 241

The Information Bus 3
TIBCO 4
topic exchanges 21–22

effect on delivery speed 198
routing 198
sending alerts 66
wildcards 23

transactions 27
committing 27

transient store 200
Transmission Control Protocol

(TCP) 14
tries 198, 202
troubleshooting 55–59

Erlang 57
Erlang cookies 55
Mnesia 57
nodes 56
ping function 58

tuning 168–185
tuples 224

U

uniform resource locators
(URLs), and REST
API 155

uninstalling plugins 220–221
Unix 8, 10
UNKNOWN Nagios exit

code 169
user roles 143
users 43–44

and vhosts 24
automatically creating with

REST 161–165
creating 143–144
deleting with REST API 164
hash tables for creating 164
listing with REST API 164
managing permissions

145–146
 www.it-ebooks.info

http://www.it-ebooks.info/

288 INDEX
users (continued)
managing via web

console 143–146
user roles 143

V

variables, values don’t
change 233

vendor lock-in 4
vhosts

/ 24
and REST API 159
automatically creating with

REST 161–165
creating 25
escaping vhost name 159
metadata 89
permissions 24
rabbitmqctl -p 47
separation between 24

virtual hosts. See vhosts
vm_memory_high_watermark

42
vsn property 225

W

WARNING Nagios exit
code 169

warrens 121, 126
advantages of 121
and high availability 121
defined 121
load balancer-based master/

slave clusters 123–126
Pacemaker 122
testing failover 125
with shared storage 122

web console 141–143
creating users 143–144

importing configuration
from JSON files 142–143

managing exchanges 146–
147

managing queues 148–149
managing user

permissions 145–146
managing users via 143–146
monitoring Erlang VM 141
user roles 143

WebSphere MQ 4
Windows, installing on 275–

278
word size 201
write permissions 44–47

X

XMPP. See Extensible Messag-
ing and Presence Protocol
 www.it-ebooks.info

http://www.it-ebooks.info/

Videla ● Williams

T
here’s a virtual switchboard at the core of most large applica-
tions where messages race between servers, programs, and
services. RabbitMQ is an effi cient and easy-to-deploy queue

that handles this message traffi c eff ortlessly in all situations,
from web startups to massive enterprise systems.

RabbitMQ in Action teaches you to build and manage scalable
applications in multiple languages using the RabbitMQ mes-
saging server. It’s a snap to get started. You’ll learn how message
queuing works and how RabbitMQ fi ts in. Th en, you’ll explore
practical scalability and interoperability issues through many
examples. By the end, you’ll know how to make Rabbit run like
a well-oiled machine in a 24 x 7 x 365 environment.

What’s Inside
● Learn fundamental messaging design patterns
● Use patterns for on-demand scalability
● Glue a PHP frontend to a backend written in anything
● Implement a PubSub-alerting service in 30 minutes fl at
● Confi gure RabbitMQ’s built-in clustering
● Monitor, manage, extend, and tune RabbitMQ

Written for developers familiar with Python, PHP, Java, .NET,
or any other modern programming language. No RabbitMQ
experience required.

Alvaro Videla is a developer and architect specializing in
MQ-based applications.
Jason J. W. Williams is CTO of DigiTar, a messaging service
provider, where he directs design and development.

For access to the book’s forum and a free eBook in all formats, owners
of this book should visit manning.com/RabbitMQinAction

$44.99 / Can $47.99 [INCLUDING eBOOK]

RabbitMQ IN ACTION

ENTERPRISE ARCHITECTURE

M A N N I N G

“In this outstanding work,
two experts share their years
of experience running large-
scale RabbitMQ systems.”
— Alexis Richardson, VMware

Author of the Foreword

“Well-written, thoughtful,
and easy to follow.”—Karsten Strøbæk, Microsoft

“Soup to nuts on
RabbitMQ; a wide variety of

in-depth examples.”
—Patrick Lemiuex, Voxel Internap

“Th is book will take you
to a messaging wonderland.”

—David Dossot
coauthor of Mule in Action

SEE INSERT

www.it-ebooks.info

http://www.it-ebooks.info/

	brief contents
	contents
	foreword
	preface
	acknowledgments
	Alvaro
	Jason

	about this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the authors

	about the cover illustration
	1 Pulling RabbitMQ out of the hat
	1.1 Living in other people’s dungeons
	1.2 AMQP to the rescue
	1.3 A brief history of RabbitMQ
	1.4 Picking RabbitMQ out of the hat (and other open options)
	1.5 Installing RabbitMQ on Unix systems
	1.5.1 Why environment matters—living la vida Erlang
	1.5.2 Getting the package
	1.5.3 Setting up the folder structure
	1.5.4 Firing Rabbit up for the first time

	1.6 Summary

	2 Understanding messaging
	2.1 Consumers and producers (not an economics lesson)
	2.2 Building from the bottom: queues
	2.3 Getting together: exchanges and bindings
	2.4 Multiple tenants: virtual hosts and separation
	2.5 Where’s my message? Durability and you
	2.6 Putting it all together: a day in the life of a message
	2.7 Using publisher confirms to verify delivery
	2.8 Summary

	3 Running and administering Rabbit
	3.1 Server management
	3.1.1 Starting nodes
	3.1.2 Stopping nodes
	3.1.3 Stopping and restarting the application: what’s the difference?
	3.1.4 Rabbit configuration files

	3.2 Asking permission
	3.2.1 Managing users
	3.2.2 Rabbit’s permissions system

	3.3 Checking up
	3.3.1 Viewing statistics
	3.3.2 Understanding RabbitMQ’s logs

	3.4 Fixing a bad Rabbit: troubleshooting
	3.4.1 badrpc,nodedown and other Erlang-induced problems

	3.5 Summary

	4 Solving problems with Rabbit: coding and patterns
	4.1 A decoupling story: what pushes us to messaging
	4.1.1 An asynchronous state of mind (separating requests and actions)
	4.1.2 Affording scale: a world without load balancers
	4.1.3 Zero-effort APIs: why be locked into just one language?

	4.2 Fire-and-forget models
	4.2.1 Sending alerts
	4.2.2 Parallel processing

	4.3 Remember me: RPC over RabbitMQ and waiting for answers
	4.3.1 Private queues and sending acknowledgements
	4.3.2 Simple JSON RPC with reply_to

	4.4 Summary

	5 Clustering and dealing with failure
	5.1 Batteries included: RabbitMQ clustering
	5.2 Architecture of a cluster
	5.2.1 Queues in a cluster
	5.2.2 Distributing exchanges
	5.2.3 Am I RAM or a disk?

	5.3 Setting up a cluster on your laptop
	5.4 Distributing the nodes to more machines
	5.5 Upgrading cluster nodes
	5.6 Mirrored queues and preserving messages
	5.6.1 Declaring and using mirrored queues
	5.6.2 Under the hood with mirrored queues

	5.7 Summary

	6 Writing code that survives failure
	6.1 Load balancing your Rabbits
	6.1.1 Installing HAProxy
	6.1.2 Configuring HAProxy

	6.2 Lost connections and failing clients between servers
	6.3 Summary

	7 Warrens and Shovels: failover and replication
	7.1 Warrens: another way of clustering
	7.2 Setting up load balancer–based master/slave clusters
	7.3 Long-distance communication and replication
	7.3.1 Shoveling your Rabbits: an introduction to the Shovel plugin
	7.3.2 Installing Shovel
	7.3.3 Configuring and running Shovel

	7.4 Summary

	8 Administering RabbitMQ from the Web
	8.1 Beyond rabbitmqctl: the RabbitMQ Management plugin
	8.1.1 Why you need the Management plugin
	8.1.2 Management plugin features
	8.1.3 Enabling the Management plugin

	8.2 Managing RabbitMQ from the web console
	8.2.1 Monitoring the Erlang VM
	8.2.2 Importing configuration from JSON files

	8.3 Managing users from the web console
	8.3.1 Creating users
	8.3.2 Managing users’ permissions

	8.4 Managing exchanges and queues from the web console
	8.4.1 Listing queues
	8.4.2 Creating queues

	8.5 Back to the command line
	8.5.1 Why another CLI?
	8.5.2 CLI administration the easier way
	8.5.3 Installing rabbitmqadmin script
	8.5.4 Purging queues, creating exchanges, and more

	8.6 Summary

	9 Controlling Rabbit with the REST API
	9.1 What can you do with the RabbitMQ REST API?
	9.2 Granting your clients access
	9.3 Accessing statistics
	9.4 Automating vhost and user provisioning
	9.5 Summary

	10 Monitoring: Houston, we have a problem
	10.1 RabbitMQ monitoring: keeping an eye on your warren
	10.1.1 Writing health checks for Nagios
	10.1.2 Checking that RabbitMQ is alive with AMQP simulation checks
	10.1.3 Checking aliveness with the REST API
	10.1.4 Creating a watchdog for configuration changes
	10.1.5 Monitoring your cluster status

	10.2 Making sure consumers are consuming
	10.2.1 Monitoring queue levels through AMQP
	10.2.2 Using the REST API to watch queue levels
	10.2.3 Rules of thumb for establishing a queue count baseline

	10.3 Summary

	11 Supercharging and securing your Rabbit
	11.1 The need for speed
	11.1.1 Message durability
	11.1.2 Message acknowledgment
	11.1.3 Routing algorithm and bindings
	11.1.4 Delivering messages

	11.2 Memory usage and process limits
	11.2.1 Memory usage
	11.2.2 Erlang process count

	11.3 SSL connections
	11.3.1 SSL certificates
	11.3.2 Setting up a certificate authority
	11.3.3 Generating the root certificate
	11.3.4 Generating the server certificates
	11.3.5 Generating the client certificates
	11.3.6 Enabling SSL listeners in RabbitMQ
	11.3.7 Testing your RabbitMQ SSL setup

	11.4 Summary

	12 Smart Rabbits: extending RabbitMQ
	12.1 RabbitMQ plugins
	12.1.1 What can you do with plugins?
	12.1.2 Where do you find plugins?
	12.1.3 Installing plugins
	12.1.4 Removing plugins

	12.2 Making your own plugins
	12.2.1 Getting the RabbitMQ Public Umbrella
	12.2.2 Setting up the folder structure
	12.2.3 Including the plugin build system
	12.2.4 Creating the Erlang application file

	12.3 Creating your custom exchange module
	12.3.1 Registering your exchange with RabbitMQ
	12.3.2 Implementing the exchange behaviour
	12.3.3 Compiling your custom exchange
	12.3.4 Taking your plugin for a test drive

	12.4 Summary

	appendix A Using Rabbit from Java and .NET
	A.1 Saying hello again (library options and Hello World)
	A.2 Alerting revisited: porting the alert app to event-oriented .NET
	A.3 RPC with your coffee: implementing AMQP RPC with Java
	A.3.1 Obtaining the Java libraries
	A.3.2 Setting up the class path
	A.3.3 Creating an RPC Server
	A.3.4 Creating your RPC client
	A.3.5 Testing your RPC client and server

	A.4 Summary

	Appendix B Online resources
	B.1 Websites you should know
	B.2 Blogs
	B.3 AMQP libraries and related OSS projects
	B.3.1 Client libraries

	B.4 Discussions and mailing lists
	B.5 Summary

	Appendix C Installing RabbitMQ on Windows
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

