
A Classi�cation of Update Methods for Replicated DatabasesStefano Ceri� Maurice A.W. Houtsmay Arthur M. Keller Pierangela SamaratizComputer Science DepartmentStanford UniversityMay 5, 1994AbstractIn this paper we present a classi�cation of the methods for updating replicated databases. The maincontribution of this paper is to present the various methods in the context of a structured taxonomy, whichaccommodates very heterogeneous methods. Classes of update methods are presented through their generalproperties, such as the invariants that hold for them. Methods are reviewed both in their normal and abnormalbehaviour (i.e., after a network partition).We show that several methods presented in the literature, sometimes in independent papers with no cross-reference, are indeed very much related, for instance because they share the same basic technique. We also showin what sense they diverge from the basic technique. This classi�cation can serve as a basis for choosing themethod that is most suitable to a speci�c application. It can also be used as a guideline to researchers who aimat developing new mechanisms.1 IntroductionOne of the major obstacles to the development of distributed database applications consists in performing atomicupdates. Though many commercial distributed database systems support atomic updates through the two-phasecommit protocol, the use of this protocol has intrinsic limitations and disadvantages|including software complexity,cost and delay of execution, and reduced availability.These limitations become even more severe in the presence of replicated databases. Several reasons make datareplication very attractive, including the increased read availability (each application can select an arbitrary copyfor access) and reliability (each copy may serve as a backup). However, all these features are compromised if all thecopies are written atomically, because the write protocol requires all copies to be available at each write operation[23].Requirements of applications accessing replicated data seldom insist that all copies be updated atomically.Copies may remain inconsistent for certain time intervals, or during speci�c operations, without compromising�Stefano Ceri is partially supported by the LOGIDATA+ project of CNR Italy.yThe research of Maurice Houtsma has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.zOn leave from the University of Milan, supported by a scholarship from the Rotary Foundation1

the applications' semantics [5]. Therefore, several protocols have been developed in distributed databases forupdating replicated data without strictly requiring that all copies be atomically and synchronously updated (see,e.g., [3, 18, 24, 25, 29]). These protocols have very di�erent origins; some of them were designed in academic orresearch environments, but many others were designed by engineers while developing advanced applications.This paper presents a critical overview of protocols for updating replicated databases. We classify protocols, byunderstanding their common features and by stressing their relationships and dependencies. Protocols are analyzedin their normal operation, when the distributed database is functioning correctly, and in their abnormal operation,when failures occur. In particular, the most signi�cant kind of failure that can a�ect a replicated database is anetwork partitioning [9]. It occurs when some nodes of the database are disconnected, though operational, and canperform conicting updates. Strategies for dealing with network partitions are, therefore, analyzed. We concentratehere on update methods, and do not study the related problem of executing corrective actions when constraints donot hold anymore after temporary failures [15, 26].This paper is organized as follows. In Section 2 we classify the update strategies, and describe the properties(also called invariants) that hold for each class of update strategy. We also discuss the requirements that may beachieved by reading operations (queries) in correspondence to each class of update strategy.In Section 3, we informally describe the speci�c methods; we also explicitly indicate the dependencies betweenthem. This comparison emphasizes the commonalities and di�erences between methods, which generally are notexplicitly stated. As such, it constitutes a signi�cant new contribution.In Section 4, we deal with network partitioning. Again, we start by indicating the common features of thevarious recovery methods. After that, we describe each method.2 Taxonomy of Update MethodsA taxonomy of update methods to replicated databases is built progressively.2.1 Replicated dataReplicated data may be supported in three ways.Identical copies. No copies have special rights, properties, or treatment.Primary/secondary. One of the copies is selected as the primary copy, the other copies are secondary; theprimary copy is either inde�nitely decided (�xed primary), or it may transfer its role to another copy (non-�xed primary).Snapshot. A snapshot is a view, de�ned on a database schema; view expressions allow to build either replicatedor derived data. Snapshots are evaluated (or materialized) starting from a consistent database, and theninstalled at various sites, where they are not kept up-to-date. Periodically, they may be re-evaluated; snapshotre-evaluation is called refresh.2.2 Update strategiesThe update strategies described in the literature can broadly be classi�ed as follows:2

Synchronous all. All copies are updated synchronously; atomicity is guaranteed by the two-phase commit pro-tocol.Synchronous available. All available copies are updated synchronously; atomicity is guaranteed by the two-phase commit protocol. However, the write operation can take place even if some copies are not available;these copies will be updated later, through asynchronous mechanisms.Quorum-based. Updates occur only on a subset of the copies, which form a so-called quorum. The copiesin the selected quorum are updated synchronously. The copies which are not in the quorum are updatedasynchronously.Primary/secondary. Updates are performed on the primary copy. The secondary copies are updated asyn-chronously.Primary/backup. Updates are performed on the primary copy. One of the non-primary copies is designated asa backup; this backup is responsible for recovery on failure of the primary copy. Other secondary copies areupdated asynchronously.Independent. Updates are performed on arbitrary copies; consequently, copies may become inconsistent. Incon-sistencies can be automatically detected and sometimes corrected.2.3 InvariantsEach of the above classes of update methods is characterized by an invariant condition:Synchronous all. All replicas are up-to-date.Synchronous available. All available replicas are up-to-date. By assuming no network partition, there is onlyone possible subset of available copies at a time.Quorum-based. A write quorum of the replicas is up-to-date.Primary/secondary. The primary copy is always up-to-date.Primary/backup. The primary copy is always up-to-date (when accessible), the backup is the �rst copy to besubsequently updated, either synchronous or asynchronous.Independent. No copy is guaranteed to be up-to-date.2.4 Properties of update strategiesThe following properties are relevant in the context of the all update strategies.Recoverable. After a failure, a protocol is recoverable if it can produce a database state in which copies areconsistent.One-copy serializability. This property relates to the concurrency control; it holds when the interleaved exe-cution of transactions on a replicated database is equivalent to a serial execution of those transactions on aone-copy database. 3

The following properties are only relevant in the context of primary/backup strategies.Order-preserving. This property holds when transactions are executed at the backup site in the same logicalorder as at the primary site. Alternatively, transactions are not order-preserving; this may lead to inconsis-tencies.1-safeness. Transactions are 1-safe if they �rst commit at the primary copy and are later propagated to thebackup copy; committed transactions can be lost if the primary system fails.2-safeness. Transactions are 2-safe if update transactions are either reected at both the primary and the backup,or they are not reected at all. Two-phase commit is needed to guarantee this property.2.5 Query answersIn querying a replicated database, we may be interested into answers to queries with the following properties:Up-to-date. The answer to a query is consistent with the current situation of the world.Consistent. An application accesses data items from a consistent state (i.e., one produced by a serializableschedule). The database may have evolved, and therefore the answer may be not up-to-date.Partially Inconsistent. The answer to a query is inconsistent, but the amount of inconsistency is bound, to:� A number of versions (events) occurred since a consistent state.� An absolute value, limiting the di�erence with the up-to-date value.� The elapsed time since a consistent state was reached.Table 1 indicates the type of read action that must be done in order to achieve the abovementioned properties,assuming that replicated data are managed by the strategies that were classi�ed in Section 2.2.3 Method DescriptionTable 2 summarizes the update methods for replicated copies; entries in the matrix refer to algorithms shortlydescribed in the following.3.1 Detailed Descriptions of the MethodsAll methods described here are one-copy serializable, sometimes because of a special way of implementing them|inwhich case we explain so. Also, all primary/backup methods are order preserving and 1-safe. To some extend allmethods are recoverable, we will go into this in Sec. 4.ROWA Read One Write All [6]. A read operation may be executed on an arbitrary copy. A write operation hasto be executed on every copy. 4

Update StrategyType of answer synchronousall synchronousavailable quorum-based primary /secondary primary /backup independentup-to-date read any read anyavailable readquorum readprimary readprimary read any af-ter recover-ingconsistencyconsistent read any read any insnapshot read any insnapshot read any insnapshot read any insnapshot read any af-ter recover-ingconsistencypartially inconsistent N/A read any read any read any read any read anyTable 1: Read action in order to achieve answers' propertiesROWAA Read One Write All Available [10, 17]. A read operation may be executed on an arbitrary copy. A writeoperation does not write all copies of the item: it ignores any copies that are down. Thereby, the problem ofnot-up-to-date copies is introduced. When a failed copy starts working again, it does not reect the currentdatabase state. Transactions should be prevented from reading copies that have failed and recovered untilthese copies are brought up-to-date. All sites need to agree on the status table reecting the sites that areup. Moreover, to ensure one-copy serializability, the implementation of ROWAA should be such that logicalconicts between transactions are reected on physical copies as well. This has consequences, e.g., for theimplementation of commit; each transaction has to check that its view of the system is still correct, to avoidone transaction updating an item inaccessible to another transaction and vice versa.DOAC Directory-Oriented Available Copies [7]. A directory of a data item consists of the references to the setof copies of that data item. Like a data item, a directory may be replicated to increase availability. A readoperation is executed by �nding a directory copy of the item, using that directory copy to locate an availablecopy of the data item, and �nally reading such a copy. A write operation is executed by �nding a directorycopy of the item and issuing a write request to every copy of the data item listed in the directory. If someof the copies are unavailable the operation is aborted, the unavailable copies are deleted from all directoriesof the data item, and the operation is restarted. Note that this last step ensures one-copy serializability, asit guarantees that logical conicts are reected on physical copies. Also in this algorithm, all sites need toagree on the status table reecting the sites that are up.QC Quorum Consensus [16, 20]. A non-negative weight is assigned to each copy of a data item. For each item,a read threshold RT and a write threshold WT are de�ned, such that both 2 � RT and (RT +WT) are5

Update StrategyReplica synchronousall synchronousavailable quorum-based primary /backup primary /secondary independentno primary ROWA; MW ROWAA;DOAC QC; TQP;MW; VP; N/A N/A MAR; INDprimary N/A N/A N/A RDF; RBP;DIP1 ASAP;QUC; DF;DR; CT N/ATable 2: Classi�cation of update methodsgreater than the total weight of all copies of the item. A read (write) quorum of an item is any set of copiesof the item with a weight of at least RT (WT). Each read is translated into a set of reads on a read quorumand returns the most up-to-date copy|this one is guaranteed to contain the correct up-to-date value. Eachwrite is translated into a set of writes on a write quorum. This algorithm assumes that it is possible todetermine the `recentness' of an item, for instance, by having a timestamp associated to each item. Note thatthe quorum is formed dynamically for each transaction.TQP Tree Quorum Protocol [1, 2]. For each item, a logical tree is de�ned on its copies. For each data item aread/write quorum is de�ned in the following way. A read quorum is formed by selecting the root of thelogical tree; if it is inaccessible due to failure, the majority of the children of the root forms a read quorum;if any of the selected nodes fail, the majority of its children is also required to form a read quorum (thishappens recursively). A write quorum is formed by selecting the root and the majority of its children; foreach selected node the majority of the children is also selected, until reaching the leaves. Execution of theactual read and write operations is as described for Quorum Consensus. Note that also here a quorum isformed dynamically.MW Missing Writes [11, 12]. The assumption is made that a system knows reliable and failure periods of operation.During a reliable period, i.e., the system functions without any failure, Read One Write All is used. Whena failure occurs, a switch is made to using Quorum Consensus. In this way, transactions execute either innormal mode or in failure mode. If they don't know that a failure occurred, they execute in normal mode. Ifthey are aware of missing writes, they execute in failure mode. A transaction T1 is aware of missing writesfor a copy of an item if it attempts to write the copy without success, or if another transaction T2 is aware ofmissing writes and there exists a path from T2 to T1 in the serialization graph, i.e., T2 is executed before T1.VP Virtual Partition [13, 14]. Each site maintains a view consisting of the sites it believes it can communicatewith. Within each view Read One Write All is used. A transaction is initiated at a given site. If the1This is the only algorithm which explicitly supports the notion of a non-�xed primary. The other algorithms in this row can easilybe adapted to accommodate for a non-�xed primary. 6

transaction contains read (write) operations on a given item, it can commit only if the view of the site atwhich the transaction started contains a read (write) quorum of the item. Contrary to QC and TQP, VPworks with a �xed quorum assignment; the quorum can, therefore, not be adapted in case of failures.MAR Multi-Airline Reservation Updates are executed independently on di�erent copies and conicts have tobe resolved later [5]. In practice, several algorithms are used for this. One-copy serializability should beguaranteed by the reconciliation algorithm, which brings the database into a single consistent state.A particular example of such an algorithm is the demarcation protocol [4]. It does not treat copies as truereplicas anymore, but as independent copies. Local constraints are then formulated on each copy, whichensures that the independent copies can be merged again into a single logical copy later on. For instance,when there are 100 empty seats on an airplane and two independent copies, each copy is allowed to increasethe number of seats sold by at most 50. Note that the demarcation protocol assumes operations that changethe value of a data item to be commutative.IND Independent Each copy operates independently, updates are executed only on one copy. Queries executed ona copy are therefore not guaranteed to give an up-to-date answer, but this is accepted by the applications.Copies can exchange information about their updates, thereby integrating update information from othersites. In this way the database may be brought to a fully consistent and up-to-date state. Hence, again it isthe reconciliation algorithm that should guarantee one-copy serializability.RDF Remote Duplicate Database Facility. [29] The database system is assumed to consist of a primary site anda backup site. At the primary site, undo/redo log entries are written in a master log for every transaction.As this log is written, a copy is sent to a control process at the backup site. When a transaction commitsit is assigned a ticket, which determines the order in which transactions must install their updates (i.e., thechanges made) at the backup. To commit a transaction at the backup site, all the transactions with an earlierticket must already have been committed.This algorithm is order-preserving, as transactions commit in exactly the same order at the backup site as atthe primary site. It is not 2-safe but only 1-safe. If the primary site fails and some of its messages regardingcommitted transactions are lost, the backup site is not aware of these committed transactions and they arenot executed.RBP Remote Backup Procedure [19] The database system is assumed to consist of a primary site and a backupsite. Each site is composed of many stores, among which the data are partitioned. At the primary site two-phase commit is used, and each transaction is assigned a ticket upon its completion. The log is propagatedto the backup, either on a per transaction basis or on a per store basis. The log is kept at the action level,storing redo information, but no undo information; read-only transactions do not have to be propagated tothe backup site.At the backup site no real processing of transaction takes place. The backup site installs the changes thathappened on the primary site, but does not perform any computation by itself. Transactions do not necessarilycommit in proper ticket-order, as long as all transactions that a transaction that is about to commit dependson have already been committed, the result is correct. To detect such dependencies between transactions,the read-set of each transaction as well as the write-set is necessary. To ensure that the dependencies aresatis�ed, two-phase locking is used. 7

This algorithm is order-preserving, as transactions commit in the same logical order at the backup siteas at the primary site; this is due to the two-phase locking that preserves read/write dependency amongtransactions. It is not 2-safe but only 1-safe. If the primary site fails and some of its messages regardingcommitted transactions are lost, the backup site is not aware of these committed transactions and they arenot executed. The main di�erence between RBP and RDF is the parallelism that may be introduced by notenforcing commits at the backup site to be in proper ticket order.DIP Disaster protection [18] All data items are fully replicated over all sites. Duplexed disks are used on each siteto protect against disk crashes. Local updates are executed after checking the timestamp of the data itemwith time stamps of the copies of the data item on other sites. Thereby, updating an `old' value is avoided.After updating the data item at the site of the transaction, the update is executed as a separate transactionat the other sites.ASAP As Soon As Possible [7]. Write operations are executed on the primary copy. Committed writes arecollected and sent to all other copies as independent transactions.QUC Quasi Copies [3]. Information is controlled at a single central site, but the methods can also be applied incase of multiple central sites. Coherency conditions associated with a copy de�ne the allowable deviationsbetween an object and the copy. Coherency conditions can be related to time, version, or value. The centralsite, when operational, has to make sure that each remote site receives a message at least every s seconds. Ifa site does not receive any messages for s seconds it assumes the central site to have failed.Propagation of updates on the primary copy can be done in four di�erent ways:� Last minute: updates on the replicas are delayed up to the point where a coherency condition can beviolated;� Immediately: updates on the primary are propagated as soon as they occur;� Early: updates on the primary can be propagated at any time before violation of the conditions;� Delayed update: the installation of updates on the primary site is delayed so that no condition is violated.The values are installed when convenient.DF Di�erential File [28] A di�erential �le is used to record the changes made on the primary copy, this di�erential�le is then used to update the copies. The time of update depends on the algorithm, for instance, it can beon time of access of replica, on user demand, or periodically.DR Di�erential refresh [21] A timestamp is associated with tuples at the base table. To each copy, a snaptimeis associated, which reects the time when it was last refreshed. To each tuple in the copy an address isassociated stating where the corresponding base tuple is stored. The algorithm is started by sending thesnaptime to the base relation and checking it against the time associated with the base tuples. Hence, tupleswith a timestamp greater than the snaptime are refreshed (updated, inserted, or deleted) and afterwards thesnaptime time is updated. This technique requires maintaining the status of every possible address.This algorithm can be optimized in various ways. For instance, if each tuple in the base table stores the addressof the previous tuple, it is not necessary to maintain the status of every possible address. The address spacebetween the current address and the previous tuple is guaranteed to be empty. This information can be usedwhen updating the copy. 8

CT Copy token [22] Each item is associated a logical copy and a set of physical copies. Writes are enforced onthe logical copy and bu�ered until commit time, only then are they actually executed on the physical copies.Each logical item has a token associated with it, which is exclusively handed out to one of its physical copies.The copy that holds the token is regarded as the primary copy, i.e., all updates are performed on it andlater propagated to the other copies. If the copy holding the token becomes unavailable, a new token may behanded out.3.2 Dependencies between algorithmsSome of the algorithms that implement an update strategy depend on other algorithms, i.e., they use the otheralgorithms in their own implementation. Some of the algorithms may thus be classi�ed as basic, while others arederived from these basic ones. Let us study this in some more detail.In the following, we denote the dependencies between algorithms in the following way: Y X denotes thatalgorithm X is used in algorithm Y ; X = Y jZ denotes that algorithm X is equal to Y xor Z. We can thereforeexpress dependencies between algorithms as expressions in this language.MW = ROWA jQC + system status managementThe missing write algorithm (MW) uses either ROWA or QC, depending on the state of the system. The additionalcomponent of this algorithm is keeping track of the system status. This means that information about missingwrites has to be detected and propagated amongst the transactions.DOAC ROWAA + directory managementThe directory oriented available copy (DOAC) is based on ROWAA. The additional component of this algorithmis supporting a replicated directory structure, keeping track of all the copies of an item that are available in thesedirectories, and updating this information in case of system changes.TQP QC + logical quorum managementThe tree quorum protocol (TQP) is based on QC. The additional component of this algorithm is supporting alogical tree de�ned on the copies, and a special strategy for de�ning a quorum.V P QC;ROWAA+ view managementThe virtual partition algorithm (VP) is based on both QC and ROWAA. QC is used to de�ne a static quorumfor each view, within each view ROWAA is used. The additional component of this algorithm is de�ning andmaintaining the views, keeping track of available copies, and updating the view information if necessary (e.g.including new sites in views). RDF ASAP + ticket handlingThe remote duplicate database facility (RDF) is based on ASAP. The additional component of this algorithm ishanding out tickets to transactions that commit at the primary site, and using this information when installingupdates at the backup site. 9

ROWAA QC ASAP DFDOAC CT VP TQP RDF RBP DIP DRROWA MWSSSSSSo 6������7 SSSSSSo ������76- @@@@@@I 6������� 6Figure 1: Dependencies between update methodsRBP ASAP + ticket handlingThe remote backup protocol (RBP) is based on ASAP. The additional component of this algorithm is handingout tickets to transactions that commit at the primary site, and using this information when installing updates atthe backup site. RBP is basically the same as RDF, but less strict in the sense that transactions do not have tocommit in strict ticket order. DIP ASAP + safeness protectionThe disaster protection algorithm (DIP) is based on ASAP. The additional component of this algorithm is guar-anteeing safeness by duplicating writes and queueing committed transactions to the other site.DR DF + address managementThe di�erential refresh algorithm (DR) is based on DF. The additional component of this algorithm is keepingtrack of the status of each address in the base table to optimize the amount of data transmitted from the primaryto the copies. CT ROWAA+ token infoThe copy token algorithm (CT) is based on ROWAA. The additional component of this algorithm is keeping trackof the copy that holds the token.The dependencies that we have just described can be represented as a graph, with nodes representing algorithmsand arcs representing that one algorithm is used in the other. This is shown in Fig. 1, for the above-mentionedalgorithms. 10

4 Recovery from site failures and network partitionsA site failure occurs when one node of the network goes down; when it comes up, it performs a recovery; inparticular, copies are brought up-to-date by being over-written. The most critical failure that can a�ect replicateddatabases is a network partition; characterized by a failure of links connecting the nodes of the network so that twoor more sets of nodes remain operational, but disconnected from each other. In this context, a violation to one-copy serializability may occur, because two or more copies representing the same value can be written by di�erentapplications, resulting in an inconsistent database. All the reviewed methods make the following assumptions onthe detection of network failures:� On recovery a site knows that it has gone down.� Recovery is always started by the recovering site.� If a method allows continuous execution in case of network partitions, then it is assumed that partitions canbe detected. This happens either by:{ Having a primary site periodically sending a message to each site;{ Having each site monitoring the state of the network, discovering changes in the state (operational/failed)of a site or a communication link as soon as possible, and propagating new state information consistentlyto all sites in its partition.In the table 3 we represent for each class of algorithms: the conditions against which it is resilient to site failure,what happens in case of network partition, and the actions to be executed upon recovering from a failure.4.1 Description of methodsWe now analyse the speci�c types of failures that the algorithms previously introduced in Sec. 3 are resilient to,and what these algorithms do for implementing recovery. Note that recovery is an aspect that is often not explicitlydescribed in papers describing the algorithms, but more or less taken for granted.ROWA It is not resilient to failures. When a failure occurs the system stops working, thereby not introducinginconsistencies.ROWAA It only deals with site failures, in case of communication failures the database may get into an inconsis-tent state. If a site fails, the system continues to operate: updates are enforced at the operational sites. Whena failed site comes up, data items are initialized again using up-to-date copies or by executing a transactionthat writes into it. This brings the site to an up-to-date state.DOAC It only deals with site failures, in case of communication failures the database may get into an inconsistentstate. When a site goes down it is deleted from the directory of all the items of which it contains copies.Then, the system continues to operate. When the site comes up, for each data item, the system �nds adirectory and hence an available copy; this copy is read and its value is copied into the copy at the site thatcomes up. 11

Update StrategyDealingwithFailure synchronousall synchronousavailable quorum-based primary /backup primary /secondary independentresilient tosite failure all sites up at least onesite up read/writequorum up primary siteor backupsite up primary siteup at least onesite upin case of net-workpartition stops working continuesworkingbutdatabasemaybecomeinconsistent the partition con-taining a quorum(if existing) con-tinues to work continues towork the parti-tion contain-ing the pri-mary contin-ues to work continues toworkAction atrecovery none copy none repeat writeactions copy/repeatwrite actions noneTable 3: Failure behaviour of the various classes of algorithms
12

QC and TQP They deal both with site and communication failures. If a site goes down but the currentlyoperational sites form a quorum, the system continues to operate. Moreover, no actions are necessary whenthe failed sites come up. If many sites fail and the operational sites do not constitute a quorum for theoperation to be executed (read or write) then no transaction can be processed. Transactions can be queuedand executed when the total number of operational sites constitute a quorum, or simply ignored.MW It deals with both site and communication failures. When the system enters a reliable period of operation,all sites have to be brought up-to-date. This can be done by copying, for each data item, the value from anup-to-date copy.VP It deals both with site and communication failures. When a failed site comes up the views have to be updated.Upon inclusion in a view, the site is brought up-to-date using the copies present in the view. Note that a viewmay lose its read (write) quorum when a site fails, in which case read (write) actions are no longer allowedon that particular view.MAR It deals with both site and communication failures. As updates are executed independently, no specialalgorithm is necessary for recovery from failures. The same algorithm that is used to resolve conicts inabsence of failures can be used.IND It deals with both site and communication failures. If a site fails, the system continues to operate at theother sites. If the system has to be brought fully up-to-date and a site is down, the operational copies maybe brought to a consistent state. When a failed site comes up, nothing special has to be done; its updateswill be incorporated the next time the system has to be brought up-to-date. Recovery from a partition isdone in the same way as recovery from site failure.RDF & RBP It is assumed that both primary and backup site are full-edged distributed database systems.How primary and backup sites deal with failures, therefore, completely depends on their local strategy. Thespeci�c type of failure RDF and RBP were developed for are so-called disasters, i.e., a complete failure andstop of the primary site. When a disaster happens, the backup becomes primary. Before assuming theprimary role, the backup is brought up-to-date, i.e., all committed transactions received at the backup sitehave to be executed before it takes over. When the primary site comes back, the copies in it are similarlybrought up-to-date and the site regains its primary role.DIP It deals with both site and communication failures. If a site fails, its workload is temporarily taken over bythe other site. In case of disasters, i.e., a combination of site and communication failure, some transactionsmay be lost.ASAP It deals with most site and all communication failures. If the primary copy goes down, no transaction canbe processed. It is assumed that messages that are sent are eventually delivered; this means the networkshould, e.g., support stable message queues.QUC It deals with most site and all communication failures. If the primary copy goes down, no transaction canbe processed. If a non-primary copy fails, then the system continues to operate (on the primary copy andasynchronously on the other available copies). When the failed copy comes back the coherency conditions arechecked. If they are satis�ed nothing needs to be done. If the coherency conditions for the copy of an item arenot satis�ed, then the copy is brought up-to-date by copying in it the value contained in the primary copy.If the network goes down, the system continues to operate. Non-primary copies are informed of the failure13

and hence that some of the coherency conditions (which cannot be checked) may not be satis�ed. When thenetwork comes up, the coherency conditions are checked and the copies which do not satisfy the constraintsare brought up-to-date.DF & DR They deal with most site and all communication failures. If the primary copy goes down, no transactioncan be processed. If a non-primary copy goes down, updates on it are postponed until it is available again.CT In case of a partition, the group containing the token can continue working. Accessibility is lost if the sitewith the token or the communication medium fails. Upon recovery, sites are brought up-to-date using theinformation of the site holding the token.4.2 Dependencies between algorithmsAs was described in Sec. 3.2, algorithms sometimes depend on each other, or use the same basic strategy. Thisalso holds for the recovery part of the algorithms. We describe it here in the same way as we did in Sec. 3.2ROWAA = initialize recovering copyThe read one write all available algorithm (ROWAA) is a basic algorithm; upon recovery it initializes a copy again,either by copying the value from up-to-date copies, or by allowing a write operation on the copy that is recovering.DOAC ROWAA+ update directoriesThe directory oriented available copies algorithm (DOAC) is based on ROWAA. The additional component of thisalgorithm is updating the directories to include recovered copies.MW ROWAA+ update system statusThe missing writes algorithm (MW) is based on ROWAA. The additional component of this algorithm is updatingthe system status when copies have been recovered.V P ROWAA + update viewsThe virtual partition algorithm (VP) is based on ROWAA. The additional component of this algorithm is updatingthe views at each site, to include copies that have been recovered.CT ROWAA+ update token informationThe copy token algorithm (CP) is based on ROWAA. The additional component of this algorithm is updating thetoken information when copies have been recovered.RDF;RBP;DIP = propagate transactions to former primary, reverse rolesThe remote duplicate database facility (RDF), remote backup procedure (RBP) and disaster protection (DIP)algorithm all follow a similar strategy when recovering from failure. Transactions that were executed while theprimary site was down are propagated from the backup, installed at the former primary, and the former primarytakes over the primary role again from the backup. 14

QUC;DR;DF = if necessary, copy from available and restore conditionsThe actions at recovery time of the quasi-copy (QUC), di�erential �le (DF) and di�erential refresh (DR) algorithmsdepend on the database state. If some of the conditions do not hold anymore|e.g., the di�erence in value betweena copy and the primary is greater than allowed (QUC) or the copy is too old (DF, DR)|values have to be updated,e.g., by following the same strategy as ROWAA.QC; TQP;ASAP;MAR; IND = nothing specialFor the abovementioned algorithms no special action is required upon recovery. The algorithm keeps on functioningin the normal way; e.g., recovered sites can participate in a quorum, but their timestamp is used to note that theydo not contain an up-to-date value.5 ConclusionsThis paper has presented a survey of the methods for updating replicated databases. The main contribution ofthis paper is to present the various methods in the context of structured taxonomy, which has accommodatedvery heterogeneous methods. Classes are presented through their general properties, such as their invariants; mostdetailed comparisons refer to methods belonging to the same class. Methods are reviewed both in their normaland abnormal behaviour, after a network partition.We have shown that several methods presented in the literature, sometimes in independent papers with nocross-reference, are indeed very much related, for instance because they share the same basic technique. Thissurvey should serve as a basis for choosing the method that is most suitable to a speci�c application, and as aguideline to researchers aiming at the development of new mechanisms.References[1] D. Agrawal and A. El Abbadi \The tree quorum protocol: an e�cient approach for managing replicated data,"in Proc. 16th Int. Conf. on VLDB, Brisbane, Aug. 1990, pp. 243{254.[2] D. Agrawal and A. El Abbadi, \E�cient techniques for replicated data management," Proc. of the Workshopon Management of Replicated Data, Houston, TX, Nov. 1990, pp. 48{52.[3] R. Alonso, D. Barbara. H. Garcia Molina, S. Abad, \Quasi-copies: e�cient data sharing for informationretrieval systems," Proc. of the Int. Conf. on Extending Data Base Technology, EDBT'88.[4] D. Barbara, H. Garcia-Molina, The demarcation protocol: a technique for maintaining arithmetic constraintsin distributed database systems, CS-TR-320-91, Princeton University, April 1991.[5] D. Barbara, H. Garcia-Molina, \The case for controlled inconsistency in replicated data," Proc. of the Work-shop on Management of Replicated Data, Houston, TX, Nov. 1990.[6] P.A. Bernstein, N. Goodman, \An algorithm for concurrency control and recovery in replicated distributeddatabases," ACM TODS, 9(4), Dec. 1984, pp. 596{615.15

[7] P.A. Bernstein, V. Hadzilacos, N. Goodman, Concurrency Control and Recovery in Database Systems,Addison-Wesley, 1987.[8] S. Ceri, M.A.W. Houtsma, A.M. Keller, and P. Samarati, \A theory of independent updates and recovery," inpreparation.[9] S. Ceri and G. Pelegatti, Distributed database systems, McGraw-Hill.[10] A. Chan, D. Skeen, The reliability subsystem of a distributed database manager, Tech. Rep. CCA-85-02,Computer Corporation of America, 1986.[11] D.L. Eager, Robust concurrency control in distributed databases, Tech. Rep. CSRG #135, Computer SystemResearch Group, University of Toronto, Oct. 1981.[12] D.L. Eager, K.C. Sevcik, \Achieving robustness in distributed database systems," ACM-TODS, 8(3),Sept. 1983, pp. 354{381.[13] A. El Abbadi, D. Skeen, F. Christian, \An e�cient fault-tolerant protocol for replicated data management,"Proc. 4th ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, Portland, OR, March 1985,pp. 215{228.[14] A. El Abbadi, S. Toueg, \Availability in partitioned replicated databases," Proc 5th ACM SIGACT-SIGMODSymp. on Principles of Database Systems, Cambridge, MA, March 1986, pp. 240{251.[15] H. Garcia-Molian and K. Salem \Sagas" Proc. ACM Sigmod, 1987, pp. 249{259[16] D.K. Gi�ord, \Weighted voting for replicated data," Proc. 7th ACM-SIGOPS Symp. on Operating SystemsPrinciples, Paci�c Grove, CA, Dec. 1979, pp. 150{159.[17] N. Goodman, D. Skeen, A. Chan, U. Dayal, S. Fox, D. Ries, \A recovery algorithm for a distributed databasesystem," Proc. 2nd ACM SIGACT-SIGMOD, Symp. Database System Atlanta, GA, March 1983, pp. 8{15.[18] J.N. Gray, M. Anderton, \Distributed computer systems: four case studies", Proc. of the IEEE, Vol. 75, No.5, May 1987.[19] R.P. King, N. Halim, H. Garcia-Molina, C.A. Polyzois, \Management of a remote backup copy for disasterrecovery", ACM-TODS, 16(2), June 1991, pp. 338{368.[20] A. Kumar and A. Segev \Optimizing voting-type algorithms for replicated data," in Advances in DatabaseTechnology{EDBT'88, J.W. Schmidt, S. Ceri, and M. Missiko� (Eds.), LNCS 303, 1988, pp. 428{442.[21] B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms, \A snapshot di�erential refresh algorithm," Proc.ACM Sigmod, 1986, pp. 53{60.[22] T. Minoura and G. Wiederhold. \Resilient extended true-copy token scheme for a distributed database," IEEETSE, Vol. 8, No. 3, pp. 173{189.[23] C. Pu, A. Le�, \Replica control in distributed systems: an asynchronous approach,", Proc. ACM-SIGMOD'91,Denver, CO, May 1991. 16

[24] C. Pu and A. Le�, \Replica control in distributed systems: an asynchronous approach," Technical report No.CUCS-053-90, Columbia University, Jan. 1990.[25] C. Pu and A. Le�, \Epsilon-Serializability," Technical report No. CUCS-054-90, Columbia University,Jan. 1990.[26] A. Reuter and H. W�achter, \The contract model," IEEE Database Engineering bulletin Vol. 14, No. 1, March1991.[27] S.K. Sarin, C.W. Kaufman, and J.E. Somers, \Using history information to process delayed database updates,"Proc. 12th Int. Conf. on Very Large Data Bases, Kyoto, Japan, 1986.[28] D.G. Severance, G. Lohman, \Di�erential �les: their application to the maintenance of large databases,"ACM-TODS, 1(3), Sept. 1976.[29] Tandem Computers. Remote Duplicate Database Facility (RDF) System Management Manual, March 1987.

17

