
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Distributed System Types

 Distributed Architectures

Types of Distributed Systems

 Distributed Computing Systems

 Distributed Information Systems

 Pervasive Systems

3

Distributed Computing Systems

 High-Performance Computing

 Tightly-coupled, high-speed/capacity nodes

 Cluster Computing

 Collection of homogeneous computers over LAN

 Grid Computing

 Federated multi-admin heterogeneous clusters

 Cloud Computing

 Pay-per-use elastic virtualized resources

 IaaS, PaaS, SaaS

4

2

Distributed Information Systems

 Distributed File Systems

 Files and users are distributed

 Distributed Databases

 Distributed data and transactions

 World Wide Web

 Information and users are widely distributed

5

Pervasive Systems

 Ubiquitous Computing Systems

 Embedded devices, context-aware, interaction
with users

 Mobile Systems

 Mobile devices, can move with users

 Sensor networks

 Collection of sensors collecting and processing
data together

6

7

Distributed Architecture

 A distributed application runs across multiple nodes

 Software architecture: Logical organization

 How to organize the various pieces of the application?

 How do different pieces interact with each other?

 System architecture: Physical organization

 Where do different pieces of the application execute?

 Where is the control, user interface, computation,
data?

Software Architecture Styles

 How to implement a distributed application

 How are software components organized?

 How do they communicate with each other?

 Component: Module with a well-defined interface

 Implements some part of the application functionality

 Connector: Communication mechanism

 Will enable components to talk and coordinate

8

3

Layered Architecture

 Components are placed in multiple layers

 Each layer interacts with those above and below

 Common layering:

 Application-interface

 Processing

 Data

9

Object-based Architecture

 Each component is an object

 Encapsulates data and state

 Exposes an interface and methods

 Distributed objects

 Can be placed on different nodes

 Communication via (remote) method invocations

10

Service-Oriented Architecture (SOA)

 Each component is a service (possibly in a
different domain)

 Use service-specific interfaces

 Can have a complex implementation

11

Resource-Based Architecture

 Collection of resources managed by components

 Can be added, deleted, modified by other
applications

 REST (Representational State Transfer)

 Single naming system

 Common, small interface

 Self-contained messages

 Stateless execution

12

4

Publish-Subscribe Architecture

 Collection of autonomous processes

 Referentially decoupled: do not directly address
or communicate with each other

 Event-based coordination:

 Events generated by some processes

 Other processes notified of events

 Shared data space:

 Publishers: Post events as tuples

 Subscribers: Get tuples matching search pattern

13

Middleware

 A distributed layer between applications and
low-level OS

 Provides core functionality and services

 Applications can use these for higher-level
functionality

 May rely on per-node OS/software support

14

15

System Architecture

 How is a software architecture instantiated?

 Where are different software components placed?

 Centralized: Most functionality is in a single node

 Decentralized: Functionality is spread across
symmetrical nodes

 Hybrid: Combination of the two

16

Centralized Architecture

 Client-server: Core functionality is in the server

 Application is vertically distributed

 Distribution along functionality

 Logically different component at different place

 E.g.: UI at client, computation & data at server

5

17

Multi-tiered Architecture

 Could have variations on component distribution

 Different amount of functionality between client-server

 Only UI at client

 UI+partial processing at client

 UI+processing at client, data at server

 Multi-tiered server architecture:

 Server functionality can be split across multiple nodes

 E.g.: Front-end, Application server, Database

18

Decentralized Architecture

 Horizontal distribution of application

 Each component is identical in functionality

 Differ in the portion of data/state they operate on

 E.g.: File-sharing, parallel processing

19

Server Clusters

 Replication of functionality across nodes

 Multiple front-ends, app servers, databases

 Client requests are distributed among the
servers

 Load balancing

 Content-aware forwarding

20

Peer-to-Peer Systems

 Each component is symmetric in functionality

 Servent: Combination of server-client

 How does a node find the other?

 No “well-known” centralized server

 Overlay network: A logical network consisting of
participant components

 Nodes are processes/machines, links are
communication channels (e.g., TCP connections)

6

21

Types of P2P Systems

 Unstructured: Built in a random manner

 Each node can end up with any sets of
neighbors, any part of application data

 E.g.: Gnutella, Kazaa

 Structured: Built in a deterministic manner

 Each node has well-defined set of neighbors,
handles specific part of application data

 E.g.: CAN, Chord, Pastry

22

Unstructured P2P Architectures

 Each node has a list of neighbors to which it is
connected

 Communication to other nodes in the network
happens through neighbors

 Neighbors are discovered in a random manner

 Exchange information with other nodes to maintain
neighbor lists

 Application data is randomly spread across the
nodes

 Searching for a data item:

 Flooding or Random Walk

23

Structured P2P Architectures

 Nodes and data are organized deterministically

 Distributed Hash Tables (DHT)

 Each node has a well-defined ID

 Each data item also has a key

 A data item resides in the node with nearest key

 Each node has information about neighbors in
the ID space

 Searching for a data item:

 Routing through the DHT overlay network

Hierarchical Architecture

 Tree of nodes

 More scalable than a centralized architecture

 Each node handles only part of the network

 E.g.: DNS

24

7

25

SuperPeers

 Special peers that maintain an index

 Of other peers

 Of data items and their location

 Need for superpeers:

 Efficient search: Avoid flooding

 Location-awareness: Find “nearest” neighbors

 Easy Join: Node can easily find a starting peer

26

Hybrid Architecture

 Combination of centralized and distributed
architectures

 Some parts of the system organized as client-
servers

 Other parts organized in decentralized manner

27

Edge-Server Systems

 Servers on edge of the network

 Provide localized content and compute to users

 Decentralized set of content servers, may have
P2P relationship

 Client-Server relation to the users

 E.g.: Content Distribution Networks (CDNs) such
as Akamai

28

Collaborative Distributed Systems

 Work by user collaboration

 P2P in functionality

 Starting up is done in a client-server manner

 E.g.: Bittorrent, Napster

