
1

CSCI 5105

Instructor: Abhishek Chandra

Today

 Recovery

2

3

Recovery

 Operations to be performed to move from an
erroneous state to an error-free state

 Backward recovery: Go back to a previous
correct state

 E.g.: packet retransmission

 Forward recovery: Go to a new correct state

 E.g.: Error-correction codes

4

Recovery techniques

 Checkpointing

 Message logging

 Rebooting

2

5

Checkpointing

 Periodically store state on stable storage

 Mirrored/RAID disks, etc.

 At error-recovery, go back to the last
checkpointed state

 Problem: How do we rollback so that all process
go back to a consistent global state?

6

Cuts in Global State Space

 Cut: Partition of events representing a global state

 Set of last recorded event for each process

7

Distributed Snapshot

 Consistent cut:

 Receipt of a message m in the cut => sending of
m also in the cut

 If event a is in the cut, then all b s.t. b->a are in
the cut

 Distributed Snapshot:

 A consistent global state of the distributed system

 Recovery line: The most recent distributed
snapshot

8

Independent Checkpointing

 Each process periodically checkpoints independently
of other processes

 Upon a failure, work backwards to locate a
consistent cut

 Domino effect: Cascading rollbacks

3

9

Coordinated Checkpointing

 Processes synchronize before checkpointing
locally

 Synchronization techniques:

 Two-phase protocol

 Incremental snapshot

10

Two-phase protocol

 One process sends Checkpoint request

 Each recipient checkpoints current state,
queues up new local messages

 Send checkpoint-done message

Incremental snapshot

 Checkpointing between causally related
processes since last checkpointing

 Identify causally related processes incrementally

 Apply two-phase commit between these
processes

11 12

Message Logging

 Checkpointing is expensive

 Coordination, writing to stable storage

 Too few checkpoints => can lose lot of state,
need lot of recomputation, message passing

 Message logging

 Take infrequent checkpoints

 Log messages between checkpoints

 Recovery: Replay messages since last
checkpoint

4

Piecewise Deterministic Model

 Execution of each process takes place in a
series of intervals

 Within each interval, the execution is
deterministic

 E.g.: sequence of instructions, message sending

 Start of each interval is a non-deterministic
event

 E.g.: receipt of a message

 Can replay the intervals if we log the non-
deterministic events

13

Orphan Process

 Process whose state becomes inconsistent
because of another process’s crash/recovery

 Dependent on messages unlogged at crashed
process

 Goal: Prevent orphan processes

 When to log messages?

14

Orphan Process Definition

 Stable message: A message that cannot be lost

 DEP(m): Processes dependent on message m

 Receivers of m, causally dependent on m

 COPY(m): Processes with non-stable copy of m

 Orphan process: P in DEP(m), no process in
COPY(m)

15

Message-Logging Schemes

 Avoid orphan process:

 no process in COPY(m) => no process in DEP(m)

 Pessimistic logging:

 Ensures above property at time of message
sending

 At most one dependent process for any non-
stable message m

 Optimistic logging:

 Ensures above property after crash

 Roll back all orphan processes to a state where
they are not in DEP(m)

16

5

17

Rebooting

 Localize fault and reboot faulty component

 Applied to software components

 Requirement: Modularity, decoupling

 Basic idea: Fault dependent on a rare, transient
event

 Recursive rebooting

 Try shutting down the smallest faulty component
first

 Continue rebooting successively larger componets

