
1

CSCI 5105

Instructor: Abhishek Chandra

2

Today

 Distributed Computing

 Distributed Scheduling

 Parallel Processing

 Clusters

Distributed Computing

 Processes executing on distributed computing
resources

 Typically group of processes executing together to
accomplish common task

 Main issues:

 How to manage distributed computing resources
efficiently (E.g.: high utilization, throughput, etc.)?

 How to coordinate related processes, part of a
single application?

3

Distributed Computing Environments

 Multiprocessor systems:

 Tightly-coupled, may have shared memory

 Small SMPs vs. large MPPs (Parallel computing)

 Cluster computing:

 Independent machines connected over LAN

4

2

Distributed Scheduling

 Question: Given a set of nodes and a set of
processes, where to execute these processes?

 Depends on computing platform

 MPPs

 Clusters

5

Parallel Computing

 Massively Parallel Processors (MPPs)

 100s-1000s of CPUs connected via fast interconnect
bus

 May have NUMA architecture, distributed memory

 E.g.: supercomputers

 Parallel jobs:

 Consist of large number of processes

 Processes typically work in sync, may communicate

 Processes submitted in batches, scheduled on the
system

6

7

Space Sharing

 Used for groups of processes

 Need to run together

 Partition CPUs into sets

 Each set runs one process group

 Non-preemptible until all processes finish

 Job scheduling:

 FIFO: Jobs run in arrival order

 Priority: High-priority jobs assigned CPUs first

 What about utilization?

Backfilling

 Allow low priority jobs to get ahead if:

 They can fit

 Do not impact the start time of high priority jobs

8

3

Time Sharing

 Allow each CPU to run multiple processes

 Use local scheduler on each CPU

 E.g.: Round-robin

 Benefits?

9 10

Gang Scheduling

 Extends time-sharing

 Problem: Processes communicating heavily

 Goal: Avoid delay in communication,
synchronization

 Ensure processes from same group (gang) are
scheduled together

 Need synchronization of scheduling quanta

 Co-scheduling: Variant of gang scheduling that
allows part of the gang to execute in parallel

11

Cluster Computing

 Multi-computer system:

 Machines connected over a LAN

 Could be homogeneous or heterogeneous

 Issues:

 No shared memory

 Processes cannot move easily

 Each node has a local scheduler

 Question: How to allocate processes across nodes?

 Case 1: Processes originate on machines

 Case 2: Jobs submitted by users

 12

Distributed Processor Allocation

 Assume homogeneous cluster

 Processes arrive continuously

 Started on one of the machines

 Approach 1: Keep each process on original
machine, use local scheduler

 Problem?

 Load imbalance: Probability that at least one
processor is idle while a job is waiting

 How does this relate to avg. load in the system?

4

13

Load Balancing

 Allocate/move processes to balance load across
machines

 Design issues:

 Centralized vs. distributed?

 How to measure load?

 Pre-emptive vs. non-preemptive?

 Who initiates the allocation/migration?

Centralized Load Balancing

 Central monitor:

 Measure loads

 Assigns processes to nodes

 Advantages?

 Disadvantages?

14

15

Distributed Load Balancing

 Each node makes its own decisions

 Transfer policy: When to transfer a process?

 E.g.: Threshold-based

 Selection policy: Which process to transfer?

 New, low migration cost, long execution time

 Location policy: Where to send the process?

 Random, nearest, least-loaded

 Information policy: Who sends the information,
to whom, and when?

 On-demand, periodic, state-change-driven

16

Initiating Process Migration

 Sender-initiated: Overloaded node initiates
process migration

 Receiver-initiated: Underloaded node looks for
work

 Hybrid: Each node can act as both sender and
receiver

 Maintain two thresholds (high and low load)

5

Resource Management

 Assume possibly heterogeneous cluster

 Jobs submitted by users

 Could consist of multiple processes

 Assign processes to nodes

 Goals:

 Meet job requirements

 Maximize resource utilization

17 18

Matchmaking

 Resource providers, resource consumers

 Providers specify their resource constraints. E.g.: OS,
CPU speed, memory, etc.

 Consumers specify their resource requirements. E.g.:
need Windows XP, 1GHz CPU, 512M RAM, etc.

 Specifications provided in a specification language
(e.g.: XML)

 Matchmaker matches requirements to constraints

 E.g.: Condor

19

Bidding-based Process Allocation

 Economic model

 Nodes advertise resources with prices

 Processes bid on resources

 Highest bidders win resources

 Questions:

 Who organizes bids and advertisements?

 How to determine prices?

 E.g.: Amazon Spot Instances

Multi-Framework Resource
Management

 Two-level resource management

 Global resource manager: Provides coarse-grained
resource allocation

 Application-specific resource schedulers: Perform
application-specific scheduling

 E.g.: Mesos, YARN, Awan

20

6

 Each node has a certain number of slots

 Could correspond to CPUs, processes, VMs

 Application-specific scheduler:

 Requests slots based on number of jobs

 Global Resource Manager:

 Offers certain number of slots to application managers

 App scheduler could take or refuse

 Once slots are allotted:

 App scheduler can schedule jobs internally

21

Two-level Resource Management

