GRAPH LAPLACEANS AND THEIR APPLICATIONS

e Back to graphs - define graph Laplaceans
e Properties of graph Laplaceans
e Graph partitioning —

e Introduction to clustering



Graph Laplaceans - Definition

» “Laplace-type’ matrices associated with general undirected graphs
— useful in many applications

» Given a graph G = (V, E) define

e A matrix W of weights w;; for each edge
e Assume Wi, 2 O,, W;; — 0, and Wi; — Wy V(’L,j)

e The diagonal matrix D = diag(d;) with d; = Zj# (I
» Corresponding graph Laplacean of G is:

L=D-W

» Gershgorin's theorem — L is positive semidefinite.
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»  Simplest case:

o 1if (¢,7) € E&t # 3 L o N
w”_{O clse D = diag dz—Zwm

i JF1
Example: - .
: 1 —1 0 0 0
Consider the graph
: 2 —1 2 0 0 -1
) L=|0 0 1 0 -1
0 0 0 1 -1
o o O -1 -1 —1 3
4 5 3 u _




#| Define the graph Laplacean for the @ ® ® ®

, _ _ 9 10 11 12
graph associated with the simple mesh
shown next. [use the simple weights of g ® ® ®
0 or 1]. What is the difference with the ° 6 ! 8
discretization of the Laplace operator for
: : @ @ @ @
case when mesh is the same as this graph? 4 o 3 4

Proposition:
(i) L is symmetric semi-positive definite.
(ii) L is singular with 1 as a null vector.
(iii) If G is connected, then Null(L) = span{ 1}
(iv) If G has kK > 1 connected components Gy, Ga, - -+ , G,
then the nullity of L is k and Null(L) is spanned by the vectors
20) 5 =1,.--, k defined by:

- 1ifz € G;
(7)y. — J
(277)i = {O if not.




Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly w = 1 is
a null vector for L. The vector D~'/24 is an eigenvector for the
matrix D~Y2LD~1/2 = T — D~Y2W D~1/2 associated with the
smallest eigenvalue. It is also an eigenvector for D~Y/2W D—1/2
associated with the largest eigenvalue. By the Perron Frobenius
theorem this is a simple eigenvalue... (iv) Can be proved from the
fact that L can be written as a direct sum of the Laplacian matrices

for G-+ ,Gr. B
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A few properties of graph Laplaceans

Define:  oriented incidence matrix H: (1)First orient the edges

t~ jintot — jorj — i (2) Rows of H indexed by vertices
of G. Columns indexed by edges. (3) For each (2, 7) in E, define

the corresponding column in H as \/w (i, 7)(e; — €;).

Example: |In previous ex- 1 0 0 0
ample (P. 11-3) orient ¢ — j -1 1 o0 O
so that 7 > ¢ [lower triangular H=|0 0 1 0
matrix representation]. 0 0 0 1
Then matrix H is: — O —1 —1 -1

Property 1 L=HHT

#] Re-prove part (iv) of previous proposition by using this property.
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A few properties of graph Laplaceans

Strong relation between ! Lz and local
distances between entries of a

» |let L = any matrixs.t. L = D —
W, with D = diag(d;) and

wi; >0, di = ) w
JF1

Property 2:  for any x € R"™ :

1
x'Lr = > E w;j|T; — x; 2
1,J
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Property 3: (generalization) for any Y € RX™ .

1
Tr[YLY '] = §Z’wz’jllyi — ;|
ij

» Note: y; = j-th colunm of Y. Usually d < m. Each column
can represent a data sample.

Property 4: For the particular L = I — % 11"

XLX'" = XX " == n x Covariance matrix

Property 5: L is singular and admits the null vector
1 —ones(n,1)
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Property 6:  (Graph partitioning) Consider situation when w;; €
{0,1}. If  is a vector of signs (1) then

x' Lx = 4 X (‘number of edge cuts’)
edge-cut = pair (2, 7) with &; # x;

» (Consequence: Can be used to partition graphs

» Would like to minimize (L, x) subjecttox € {—1,1}" and

el = 0 [balanced sets]



»  WII solve a relaxed form of this problem

#] What if we replace & by a vector of ones (representing one
partition) and zeros (representing the other)?

#| Let & be any vector and y = 4+« 1 and L a graph Laplacean.
Compare (Lx, x) with (Ly,y).
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» Consider any symmetric (real) matrix A with eigenvalues Ay <
Ay < - < A, and eigenvectors Uy, ¢+ o, Uy,

» Recall that: min (Az, x) _

(Min reached for x = u;) z€R" (x, ) '
» |n addition: min (Az, x) _

(Min reached for x = u5) zlu (a,x) ’
» For a graph Laplacean u; = 1 = vector of all ones and

» ...vector us is called the Fiedler vector. It solves a relaxed form
of the problem -




. (Lz, ) : (Lx, x)
min min

%
re{-1,1}7 1%2=0 (T, T) zern; 1Tz=0 (T, T)

» Define v = wuy then lab = sign(v — med(v))




Recursive Spectral Bisection

1 Form graph Laplacean

2 Partition graph in 2 based
on Fielder vector

3 Partition largest subgraph
in two recursively ...

4 ... Until the desired num-
ber of partitions is reached
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Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice
et al., Miller, Vavasis, Teng et al ]

3. Graph Theory techniques — multilevel,... [use graph, but no coor-
dinates]

e Currently best known technique is Metis (multi-level algorithm)

e Simplest idea: Recursive Graph Bisection; Nested dissection
(George & Liu, 1980; Liu 1992]

e Advantages: simplicity — no coordinates required
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Example of a graph theory approach

» Level Set Expansion Algorithm

» Given: p nodes ‘uniformly’ spread in the graph (roughly same
distance from one another).

» Method: Perform a level-set traversal (BFS) from each node
simultaneously.

» Best described for an example on a 15 X 15 five — point Finite
Difference grid.

» See [Goehring-Saad '94, See Cai-Saad '95]

» Approach also known under the name ‘bubble’ algorithm and
implemented in some packages [Party, DibaP]
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Clustering

»  Problem: we are given n data items: @1, o, - -
like to ‘cluster’ them, i.e., group them so that each group or cluster
contains items that are similar in some sense.

» Example: materials

Superhard

Superconductors ‘
: Catalytic

Multi-ferroics

Photovoltaic

Ferromagnetlc

Thermo-electric

, T,,. Would

» Example: Digits

PCA - digits: 5 -7

» Refer to each group as a ‘cluster’ or a ‘class’

» ‘Unsupervised learning’

9-17

— Glaplacians




What is Unsupervised learning?

“Unsupervised learning” : methods do not exploit labeled data

>
>
>
>
>

Example of digits: perform a 2-D projection

Images of same digit tend to cluster (more or less)

Such 2-D representations are popular for visualization

Can also try to find natural clusters in data, e.g., in materials

Basic clusterning technique: K-means




Example: Community Detection

» Communities modeled by an ‘affinity’ graph [e.g., 'user A sends
frequent e-mails to user B’]

» Adjacency Graph represented by a sparse matrix

4 {,?iif-ifi‘-.ﬁg'fr‘":- ;:' 3’ i}}‘ < Ori ginal
N1 :.:l RS ..,.::' ]
Ay o N0 S g matrix
’"'";.’ l-.. "..;':hv:i"‘-.,...'i .
G gl e 1 PERC A ey Goal: Find
‘” 5"".' f-.-"",:‘ ".."re-.r& "':.'.:'. .
RPN '....4 Y ,3., ordering SO
.. ‘oo ,-0.. ™o
'.Mo"}'. r'! ."-.0 i "-‘::"'t'. .’ %"':".
- iiE "-n .:a.tf"'f:.-?. ?P.s:'“'_;g:’ e bIOdeS are
s el RIVTRR STV as dense  as
e R
AL :,Ji".. £1¥%y o4 possible —

» Use blockm% techniques for sparse matrices
» Advantage of this viewpoint: need not know # of clusters.

[data: www-personal.umich.edu/~mejn/netdata/|
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www-personal.umich.edu/~mejn/netdata/

Example of application | Data set from :

http://www-personal .umich.edu/~mejn/netdata/

» Network connecting bloggers of different political orientations
[2004 US presidentual election]

» ‘Communities’: liberal vs. conservative

»  Graph: 1,490 vertices (blogs) : first 758: liberal, rest: conser-
vative.

» Edge: 1 — 7 : a citation between blogs 2 and 3

» Blocking algorithm (Density theshold=0.4): subgraphs [note:
density = |E|/|V|?]

» Smaller subgraph: conservative blogs, larger one: liberals
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http://www-personal.umich.edu/~mejn/netdata/

