Neural Network Meets DCN: Traffic-driven Topology
Adaptation with Deep Learning

MOWEI WANG, Tsinghua University, China

YONG CUI", Tsinghua University, China

SHIHAN XIAO, Huawei Technologies, China

XIN WANG, Stony Brook University, USA

DAN YANG, Beijing University of Posts and Telecommunications, China
KAI CHEN, Hong Kong University of Science and Technology, China
JUN ZHU, Tsinghua University, China

The emerging optical/wireless topology reconfiguration technologies have shown great potential in improving
the performance of data center networks. However, it also poses a big challenge on how to find the best
topology configurations to support the dynamic traffic demands. In this work, we present xWeaver, a traffic-
driven deep learning solution to infer the high-performance network topology online. xWeaver supports
a powerful network model that enables the topology optimization over different performance metrics and
network architectures. With the design of properly-structured neural networks, it can automatically derive
the critical traffic patterns from data traces and learn the underlying mapping between the traffic patterns
and topology configurations specific to the target data center. After offline training, xWeaver generates
the optimized (or near-optimal) topology configuration online, and can also smoothly update its model
parameters for new traffic patterns. We build an optical-circuit-switch-based testbed to demonstrate the
function and transmission efficiency of our proposed solution. We further perform extensive simulations to
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flow completion time.
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1 INTRODUCTION

Data center network (DCN) is the key infrastructure of cloud computing. With the fast growth of
large-scale cloud services, the traffic in today’s DCNs shows high spatial-temporal dynamics [10,
11, 28, 42, 47]. Conventional wired data centers generally adopt a static network topology and thus
have to be overprovisioned to handle the worst-case traffic patterns (e.g., the Clos networks [6, 22]).
With the complex topology design and the increasing network scales, data centers are challenged
by the significant cost in maintenance, cabling, heat and power consumption [18, 47].

To address the traffic dynamics at low cost, recent work proposes to construct topology-reconfigurable
DCNs by introducing the new network components such as optical circuit switches (OCS) or wire-
less radios into the DCNs [13, 14, 16, 18, 19, 23, 24, 33, 35, 36, 41, 51, 53, 55, 56]. Rather than relying
on heavy network overprovision, they provide flexible high-bandwidth optical/wireless links to
handle the traffic dynamics on demand. Specifically, the agile optical/wireless links can be quickly
switched to construct a proper runtime topology to meet the current traffic demands. With such
flexibility in changing the network topology, these DCN architectures show the great potential
to approach the performance of a fully provisioned network while significantly reducing the
complexity and cost in maintenance, cabling and power [18, 24].

The key challenge in supporting the topology-reconfigurable architectures is how to obtain
the optimal (or near-optimal) topology configuration for the given traffic demands. Focusing on
the local link configuration for an OCS switch based on its port demands [18], previous work
generally ignores the interactions between OCS switches and the wired network topology. Recent
studies [12, 34] show that it is beneficial to adapt the link configuration of an OCS switch along with
a single electrical switch. Inspired by these observations, the goal of this work is to construct the best
global topology to meet the overall traffic demands in a practical DCN. A straightforward method
is to model the global interactions between traffic and topology with respect to the optimization
objective. However, this is non-trivial as the transmission performance of a topology is affected
by many practical system factors, such as the specific routing protocols and congestion control
strategies. The modeling becomes more difficult if using the higher-layer application performance
as the optimization objective (e.g., the Hadoop job completion time [40]). As shown in the previous
work, even if we only consider the simplistic case with one OCS switch and one electrical switch, it
often requires solving an integer linear programming (ILP) problem that is unscalable [23, 24, 34]
due to the discrete property of topology configurations. The above modeling challenges drive
existing work to resort to heuristic solutions that are simple, fast but potentially far away from
optimal [16, 18, 23, 24, 51].

To address the above challenges, in this paper, we present xWeaver, a traffic-driven deep learning
system for the topology configuration in DCNs. The motivation is that the neural network used
in deep learning can build up a comprehensive interaction model between traffic and topology
automatically with little human efforts. State-of-the-art deep learning technologies, e.g., the convo-
lutional neural network (CNN), are known to be good at learning complex models from data in
image processing [45]. Recently, they have made impressive performance breakthroughs in many
fields where they are the first to surpass human-level performance (e.g., the image classification [25],
game of go [46], etc.). It is also a new trend to apply machine learning techniques on solving the
networking problems [52].

Different from the conventional ILP-based modeling, in our system, the neural network does
not need to keep solving a complex model online. Instead, in the offline phase, xWeaver uses a
specialized neural network to learn and store the critical features of the optimal (or near-optimal)
solutions. The parameters of the neural network can be trained offline from the history traces,
which are rich and easily available in today’s DCNs. The parameters can be also updated with
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Fig. 1. The example topology case of 4-port Fat-tree.

new data available. After the offline training, the topology inference through neural network is
generally fast !, especially supported by the speed-up using the advanced hardwares [26, 50]. Thus
it can be easily applied for online topology configuration.

Motivated by the merits of deep learning, in this work, we take the initiative to answer two
key questions: “Can neural networks learn the traffic patterns in DCN?" and “Can neural networks
learn the global interactions between traffic and topology configuration?". In xWeaver, we design two
properly-structured neural networks (named the SCNN and FPNN) to address the above questions
in details. xWeaver has three key design features:

e Expressive learning framework (§3): Rather than being restricted to simple optimization
objectives or specific network architectures, xWeaver provides a framework to support
an expressive network model. Specifically, it can flexibly support the optimization over
both conventional flow-level performance metrics and comprehensive application-level
performance metrics in a unified way.

e Data-driven feature extraction (§4): In order to extract the critical features in traffic and
topology that are related to the self-defined optimization objective, we design a novel separate-
structured convolutional neural network (SCNN) in xWeaver and train its parameters from
historical data. With the speed-up of the well-trained SCNN, we propose an efficient method
that can automatically label high-score topologies for the corresponding traffic demands.

e Traffic-topology mapping learning (§5): We design a traffic-topology-mapping neural
network (FPNN) to capture the essential interactions between traffic and topology configura-
tions. FPNN uses a partial structure of SCNN for the traffic feature encoding. Further, we
develop a specialized probability graph model to enhance the output performance of FPNN
taking advantage of the prior human knowledge about the network architecture.

Our simulations show that xWeaver can support much higher flow performance than conven-
tional solutions under different traffic and topology conditions (§6). We implement an OCS-based
testbed and our experimental results confirm the learning efficiency and demonstrate the high
performance of xWeaver on handling different traffic demands (§7). Finally, after discussing the
practical application issues (§8), we introduce the related work (§9) and draw the conclusions (§10).

1To compute the topology output given traffic input, a neural network takes only one weight-forwarding through its neural
layers [45].
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2 WHY DEEP LEARNING?

In this section, we will present two key observations to demonstrate the natural advantages and
challenges of applying deep learning to solving the global topology configuration problem.

OBSERVATION 1. Each global topology configuration can optimally support a specific class of traffic
demands, while each class has a unique distribution pattern.

Traffic demand pattern. To illustrate the observation 1, we consider a specific example as follows.
Suppose there is a DCN architecture with a topology of 4-port Fat-tree [6] and 8 ToR switches. In
the example of Fig. 1 %, there is a 16-port OCS switch that connects all the ToR switches, which
allows a ToR switch to connect to another arbitrary ToR switch. We fix the Fat-tree links and only
reconfigure OCS links according to a specific traffic demand matrix. The optimization objective is
defined as minimizing the time to transmit the demand matrix.

Since the Fat-tree is fixed, we use a matrix of size 8 X 8 to describe the topology configuration
of the OCS switch. Then we randomly generate 10000 ToR-to-ToR demand matrix of size 8 X 8
and obtain the corresponding optimal topologies by brute-force searching. First, as Fig. 2 shows,
we pick one topology sample P, (i.e., Fig. 2(b)) from the 10000 topology samples and select all the
demand matrices whose optimal topology configuration is exactly Py. Let D denote the set of the
selected demand matrices. By summing up the demand matrices in D, we obtain the demand matrix
shown in Fig. 2(a). Each grid in Fig. 2(a) corresponds to the traffic demand between a pair of ToR
switches. The right-most color bar in Fig. 2(a) maps a range of colors (from blue to red) to a range
of demand values. For example, a dark red color of the grid indicates that most demand matrices in
D have a high traffic demand for the ToR pair. We can see that there exists a statistic pattern in the
sum of D, i.e., certain grids in Fig. 2(a) have a color that is mapped to a much larger demand value

2The example follows the DCN architecture proposed in [51]. We assign each switch an index, which will be used to
represent the corresponding matrix later. We will use this permutation throughout this paper.
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than those of other grids. More specifically, the emerged pattern exactly matches the structure of
the optimal topology Py. Finally, we note that there is no topology configuration that can optimally
support all the demand matrices. Instead, each topology configuration optimally supports a certain
part of the entire set of demand matrices. This illustrates the observation 1.

Performance gap of heuristic algorithm. For comparison, we randomly pick one demand
sample ° from the set D in Fig. 2(a) as d € D shown in Fig. 2(c). Then we run the well-known Edmonds
weight-matching algorithm [17] utilized in existing topology-adaptation research work [13, 18, 51]
to get the topology configuration P; shown in Fig. 2(d). We can see that the heuristic solution P; is
quite different from the optimal topology Py, which results in a 30% longer time to complete the
traffic transmission.

The main disadvantage of the heuristic algorithm is that it tries to find the optimal topology

configuration for each demand matrix without any knowledge of the global interactions between
OCS configurations and the remaining fixed wired network part. As recent work [34] shows, for a
large-scale problem, some special assumptions about the input traffic patterns (e.g., skew and sparse)
will contribute to more efficient algorithms in solving this problem. However, such assumptions
can not be generalized to other data centers which may have quite different traffic patterns due to
their distinct up-layer data services [42, 47].
Motivation of deep learning. To address the above issue, the observation 1 motivates us to solve
the problem using a deep learning solution as follows. First, in the offline phase, we can learn
the specific traffic patterns from the history trace in the target data center. Next, we can learn
the mapping relationship (i.e., the global network interactions) between the traffic patterns and
the optimal topology configurations. Finally, during the online phase, we can quickly classify the
demand matrix to a traffic pattern, and then use the learned mapping to obtain the corresponding
optimal topology at a fast speed. In the above example, the network is very small and we can
search for the optimal topology configuration by simply brute-forcing. However, when the network
further scales up, finding the optimal one from an exponentially large set of candidate topology
configurations is highly non-trivial [34]. Hence even in the offline phase with a reasonable time limit
(e.g., one day or one week), we can only obtain the approximate optimal topology configurations
in practice. Now we present the second observation to address this issue in deep learning:

OBSERVATION 2. The high-performance topologies that support a certain traffic demand are sharing
a set of critical links (i.e., a key topology structure).

Key topology structure. To illustrate the observation 2, following the same setup in Fig. 2, we
first randomly select a demand matrix sample d’ € D shown in Fig. 3(a). Then we generate the
Fig. 3(b) by summing up all the topologies that have a performance gap within 5% that of the optimal
solution (i.e., the high-performance topologies) for d’. Intuitively, the grids that have a darker color
mean that they are selected by most of the high-performance topologies. Hence the darker grids
in Fig. 3(b) correspond to the critical links in the high-performance topologies and form the key
topology structure. For comparison, we also generate the Fig. 3(c) by summing up all the topologies
that have a performance gap within 5% that of the worst-case solution (i.e., the low-performance
topologies) for d’. Similarly, we can see that the low-performance topologies also have some critical
links, which do not overlap with any critical links found in the high-performance topologies. For
comparison, we show the heuristic solution of weight-matching algorithm in Fig. 3(d). We can see
that without any prior knowledge about the key topology structure, the heuristic solution selects
some links that fall into the critical links of the worst-case topologies. It further results in a 33%
performance gap from the optimal solution.

3We also evaluate all the demand samples and find similar performance results as the example demonstrated above.
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The observation 2 provides us with a key insight that even though we can not obtain the optimal
topology configurations for a large-scale network in the offline phase, there exists important statistic
information about the critical links in the suboptimal solutions which will help us effectively infer
the high-performance topology configurations close to the optimal solution.

To summarize, the above two observations demonstrate the possibility of learning the critical
traffic patterns and key topology structures with respect to the given performance objective from
data. This provides us an effective strategy to capture the most essential factors for the topology
optimization. As we will show in §6, xWeaver can learn the patterns in both the traffic and topology
effectively and thus achieve the topology optimization with higher performance than existing
solutions. In the following, we will present the detailed design of xWeaver following the above
motivations.

3 XWEAVER FRAMEWORK
In this section, we will first introduce the design goals and constraints in the xWeaver framework,
and then present the overview of its system modules.

3.1 Design goals and constraints

System input and objective. xWeaver has two system inputs. The first is an input of a virtual
topology G(V, E), where the node set V denotes all the network switches. The link set E includes
the fixed wired links E,, and all the configurable links E.. We denote an instance of the virtual
topology as a subgraph G(V, E) that consists of the original node set V, the wired link set E,, and a
subset of configurable links E. C E, that satisfy all the link constraints (will be discussed below).
The second input of xWeaver is a demand matrix D that describes the traffic demands between
any pair of racks. In this paper, we do not focus on estimating the traffic demands and the demand
matrix can be obtained following similar techniques in previous work [18, 23, 51]. The target of
xWeaver system is to find the optimal (or near-optimal) instance of the virtual topology to support
the input traffic demands.

Network connectivity. Although providing the highly-flexible topology is beneficial, existing
topology reconfiguration technologies will introduce unavoidable delay due to the transmission
interruption in the link reconfiguration phase. xWeaver exploits the fixed wired links to construct a
connected graph (e.g., Fat-tree[6]) for all the ToR switches. In this way, the entire network remains
connected for any topology configurations of OCS switches or wireless radios. When the topology
is reconfigured, current on-going flows on the affected links will be temporarily redirected to the
fixed-connected network part. The solution also increases the flexibility of topology configurations
and provides the worst performance guarantee when all link reconfigurations fail.

Link conflict constraints. A link-conflict constraint Con f(S, n) denotes that there are at most n
links in the set S that can be built simultaneously. This general definition enables a unified and
easy way to model the physical constraints of different topology reconfiguration technologies. For
example, when considering the configurable links using wireless, two links (e.g., s; and s;) that are
physically close to each other can create the wireless interference, which prevents the concurrent
transmissions on the two links. It can be described by Conf({s1,s2},1).

OCS switch and wireless radio.With the above framework, we now show that it is easy to
support existing optical/wireless configuration technologies. For a full-duplex 2n-port OCS switch,
the configuration of its inside links form an n X n binary matrix P where each element P; ; = {0, 1}
means whether port i is connected to port j. The physical constraint of OCS requires that each
sender port connects to only one receiver port. Hence each row/column in the configuration matrix
P can only have exactly one 1. This constraint can be easily represented using 2n link-conflict
constraints {Conf(S;, 1)}, where S; denotes the set of potential links connected to the port i.
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Fig. 4. xWeaver framework overview

For the reconfigurable wireless links, there are two types of link-conflict constraints. The first
is the aforementioned wireless interference constraint. The second is the port conflict constraint,
where only n links are allowed to be built for each n-port wireless radio. It can be directly described
by the link-conflict constraint Conf(S;, n) where S; is the set of potential links connected to the jth
wireless radio. Since the link constraints in both technologies can be described by the framework,
for simplicity, we will focus on the analysis for the OCS-based architecture in the following.

3.2 System modules

The overview of our xWeaver system is shown in Fig. 4. Generally, the mapping module of the
xWeaver system provides the key function to infer the best topology from traffic demands, while the
scoring module and labeling module are designed to support the efficient training of the mapping
module. In the following, we will present the details of these basic modules respectively.

Scoring module. This module is used to provide a fast performance evaluation for any given
pair of traffic demand matrix and topology (i.e., the traffic-topology pair). The module input is a
traffic-topology pair and the output is a real-valued performance score. In xWeaver, we allow the
network operators to define the score as any performance metric that they aim to optimize, e.g.,
the flow completion time, network throughput or the up-layer application performance metrics.
Labeling module. This module is designed to label historical traffic traces with corresponding
topologies that have high performance scores. It provides the traffic-topology samples for later
model training. Existing traffic traces generally do not have the information on the network
topologies. The labeling is made possible and automatic with the facilitation of the scoring module,
which is trained to extract the features of both traffic and topology. Specifically, the label for each
traffic demand matrix can be obtained by searching the potential topology space with the scoring
module.

Mapping module. This module is the core of xWeaver to learn the high-dimensional global
mapping between traffic and topology. It consists of two processes: a) building a specialized neural
network which maps a traffic demand matrix to a topology configuration; b) training the neural
network parameters from the data samples provided by the labeling module. Then the trained neural
network can be used to perform efficient topology inference online. We also provide a design option
to enhance the output of neural network by combining a flexible probability graph model. It can
help explicitly embed a variety of prior human knowledge about the target network architecture.
Workflow. Following the prior studies, the xWeaver system utilizes a centralized network controller
to implement the flexible topology configuration [24, 33]. Specifically, in the offline phase, given
historical traffic traces, xWeaver controller trains the mapping module with samples generated from
the labeling module and scoring module. Next, in the online phase, xWeaver controller exploits the
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mapping module to periodically update the configurations of OCS switches (or wireless radios)
based on the traffic statistics reported from ToR switches [7].

4 TRAFFIC-DRIVEN TRAINING SAMPLE GENERATION

In this section, we will introduce the detailed design of the scoring module and labeling module
in xWeaver respectively. By combining the two modules, the historical traffic traces can be auto-
matically labeled with the corresponding high-score topologies without any human efforts. This
automatic labeling process allows for generating enough labeled data for high performance training.
These modules work only in the offline phase, so it can tolerate a relatively-long time to generate
enough traffic-topology samples. After offline training from these samples, the mapping module
can easily make online topology decisions in real time.

4.1 Topology performance scoring

Problem analysis. The objective of the scoring module is to quantitatively evaluate the perfor-
mance of a global topology configuration. We denote a performance scoring function as Score(f, p)
to give a real-valued score on the transmission performance of the traffic demand f using the global
topology configuration p. The score can be defined as any performance metric that the network
operator desires to optimize (e.g. the completion time of the hadoop job) according to their own
interests. A straightforward method to implement the performance scoring function is to use a
conventional network simulator (e.g., the ns-2 [4]) to mimic the real system settings. Intuitively, by
running a given traffic demand f in the network simulator with a topology configuration p, we
can obtain the target performance metric directly.

However, the above method is not feasible for our deep learning solution. Existing network
simulators are relatively slow as they require simulating the detailed network protocols and packet-
level transmission events. For example, a simple run to evaluate the topology score for a demand
of 100 10MB-flows in a 8-port fat-tree takes about 4 minutes in our ns-2 simulation. The successful
training of a neural network at such scale requires more than 10000 score evaluations, which will
result in a sample generation time as long as one month. Hence in practice, we turn to find an
approximate scoring function running faster but within a tolerable accuracy loss.

Scoring module design. The basic motivation to introduce the speed-up scoring is that we can
directly map a traffic-topology pair (f, p) to the score s through the offline training using a neural
network (denoted as the scoring-NN). We use a number of traffic-topology-score (TTS) samples
{(f,p,s)} to train such a neural network. In our design, the TTS samples can be directly acquired
from measurement traces generated from a real network. Due to the lack of measurement data, we
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ALGORITHM 1: Topology Generation Algorithm

Input: Demand matrix X;, Previous topology Y;_1
Output: High-score topology Y; for demand X;
Yeur <« Yi—1; // Searching from last topology
for Search_Depth = 1 to MAX_DEPTH do
// Local search with random rolls
Y* « Yeur, Progress < False
for Search_Width = 1 to MAX WIDTH do

Randomly select a neighbor Y, of Y*

if score(Y,) > score(Y¢y,) then

Yeur < Yo, Progress < True
‘ Update the beam array B with Yy,
end

end
Set the current highest-score topology to Yy,
// Jumping out of the local optimal points
if Progress is False then
Set Y¢yr as the highest-score topology in B with € probability, otherwise set Y¢;,» randomly

from B
end

end
return Y; < Yo

use the flow-level simulator to generate such data samples in our simulations. We take the traffic
demand matrix f and the topology matrix (i.e. the adjacency matrix of the network topology) p
as inputs, and take the performance score s as the label. After the training, using the scoring-NN
to evaluate the score of a traffic-topology pair takes only 4ms under the same setting of the NS-2
simulation, which is several orders of magnitude faster than directly running the network simulator.

As a straightforward way of implementing the scoring-NN, the input traffic and topology can
be mapped to the output score with multiple fully-connected hidden neural layers (called the
fully-connected NN). However, with extensive simulations, we find that it is challenging to train a
multi-layer fully-connected NN for our problem. The mapping between a traffic-topology pair and
the arbitrarily-defined score is highly complex, which involves the implicit interactions introduced
by the underlying transmission protocols and specific network structures. This will result in a
large-scale fully-connected NN with a large number of parameters, which is challenging to train
within a reasonable time and a limited number of data samples.

The above issue motivates us to design a specialized neural network that has less complexity and
high training efficiency. The key insight is that a pattern that emerges in the input traffic will hardly
emerge in the input topology. Hence as Fig. 5 shows, we propose to use two separate multi-layer
convolutional neural networks [31] as the basic components to perform the feature extraction
independently. This separate pre-process contributes to a high learning efficiency because each
input only focuses on its own feature extraction. Moreover, the separate structure will generate
a neural network with significantly smaller number of parameters (i.e., the number of neural
connections) for efficient training. Then at the end of the scoring-NN, we combine their derived
feature results and map them to the final score with a small number of fully-connected neural
layers. We denote the above neural network as a separate convolutional neural network (SCNN). We
will evaluate the learning performance of SCNN in §6 and demonstrate that it can achieve a higher
scoring accuracy and a faster convergence speed than the conventional fully-connected NN.
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4.2 High-score topology sample generation

Since the scoring module enables the fast evaluation of the topology score, in this section, we will
introduce how the labeling module generates the labeled data by mapping the traffic traces to
high-score topologies.

As the number of candidate topologies may be exponentially large even for a small-scale DCN [18],
it is infeasible to find the optimal global topology configuration for each traffic demand. As intro-
duced in §2, rather than finding the optimal topology samples, our labeling module is designed to
generate the high-score topologies. This is because the key topology structure of the optimal solu-
tion can be learned from the statistics information in the high-score topologies (see the observation
21n §2). Intuitively, the higher the scores of the topologies we can obtain, the more accurate the
key structure that our solution is able to learn.

In the labeling module, we design a heuristic search algorithm (Algorithm 1) to generate the
high-score topology samples with a controllable time overhead. Let Ns(p) denote the set of neighbor
topologies of a given topology p, where each topology p € Ns(p) has at most § different edges from
the topology p. Here we also refer the parameter § as the search depth. Consider a traffic trace { f;}
collected from the target data center. For each traffic sample f; at time t, we want to generate the
topology sample p; that satisfies: p, = arg max,en;(p,_,) Score(f:, p). By limiting the search depth,
we are able to search for a local-optimal solution within a reasonable period of time. However,
with extensive simulations, the above direct search does not generate the satisfactory topology
configurations. Taking a closer look at the problem, we find that this is due to the fact that a lot of
different neighbouring topologies are sharing similar scores. Thus it is inefficient to stop the search
when finding only one local-optimal solution. In xWeaver, we use both the beam search and the
random start schemes to help jump out of the local-optimal points. Thus it keeps exploring a better
local-optimal solution until a pre-defined maximum number of iterations are reached.

We note that a direct application of the conventional beam search is infeasible for our problem.
This is because the conventional beam search requires computing the scores of all the neighbour-
ing topologies in each iteration. Since both the solution space and the number of neighbouring
topologies may be very large, such a computation overhead involved in each iteration would be
very high. In xWeaver, in each iteration, we only randomly select a small number of neighbouring
topologies via an edge-exchange operation * [13, 38] to evaluate their scores, which is denoted
as the search width. By limiting both the search depth and width, the overall time overhead can
be further controlled. The detailed analysis of the sensitivity of the network performance to the
topologies identified by the labeling module is discussed in §8.

5 TRAFFIC-TOPOLOGY MAPPING LEARNING

The techniques in previous sections allow us to generate the complete data samples for later model
training. In this section, we will present the design of a neural network (FPNN) to perform the
traffic-topology mapping in xWeaver. Next, we introduce how to embed flexible prior human
knowledge into FPNN for further performance improvement.

5.1 Neural network for mapping learning

Challenge in FPNN design. The objective of the FPNN is to learn the mapping function between
the input traffic demands and output topology configurations. A straightforward solution is to build
a fully-connected NN, where the input and output neural layers are the traffic demands and the

4First, we uniformly select two existing configurable links of Y+ @ — b and ¢ — d. Then we connect them via replacing
links a — b and ¢ — d with linksa — cand b — d.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 2, Article 26. Publication date: June 2018.



Neural Network Meets DCN: Traffic-driven Topology Adaptation with Deep Learning 26:11

=
e N\ >

o

5

5 5 ° 5
Q = B c
g @ zZ G P o o 2
E mp 3 ¢ mp| 3 (=) g
S . M) : o . Eo
1S : - ¢ S : &=
o g2 ° o i S
el |53 1 @] ¢
= o 5
= 2 o S
o

. J/ '9

— Neural weight forward <::| Reverse weight correction

(training & inference) (training)

Fig. 6. Structure design of the FPNN neural network

topology configurations respectively, and the median layers can be constructed with multiple fully-
connected neural layers. However, the traffic-topology mapping function involves some complex
high-dimensional global interactions, such as the arbitrarily-defined optimization objective, the
underlying routing protocols and the explicit link-conflict constraints associated with specific
reconfiguration technologies (e.g., the OCS switch/wireless radio in §3.1). Since a fully-connected
NN blindly maps the input to the output without any prior knowledge about the problem input
and output, the high complexity of the mapping function would require training a large-scale
fully-connected NN. It is challenging in practice due to the large number of connection parameters
in a fully-connected NN [45].

Input feature extraction with T-SCNN. To address the above issue, rather than using the raw
traffic input to construct the mapping, we propose to exploit the critical features in the traffic
input for dimensionality reduction. Specifically, we carefully select a part of the well-trained SCNN
(denoted as the T-SCNN structure in Fig. 5) introduced in §4.1 to extract the critical features from
the input traffic. Then we copy both the structure and trained parameters of T-SCNN to construct
the input of the neural layers of FPNN (Fig. 6). The benefits of this design are three-folds: (1) The
training of T-SCNN is driven by the self-defined optimization objective, which encodes the essential
traffic features required to optimize the target performance metric; (2) The T-SCNN is trained
together with the feature extraction of the topology configuration, which encodes the essential
traffic features required to interact with the topology configurations; (3) The T-SCNN has been
well trained in the scoring module and thus does not need the time to perform re-training from the
scratch.

After the feature extraction, we use a small number of fully-connected neural layers in FPNN
to map the traffic features to the output topology configuration. As shown in the observation 1
(introduced in §2), the mapping function between the traffic patterns and the topology configuration
is potentially straightforward and simple. As we will see later in §6, the number of fully-connected
neural layers required by FPNN is much smaller than that of a conventional fully-connected NN,
which ensures the high learning efficiency of FPNN.

5.2 Prior human knowledge embedding

In previous sections, we introduce a completely-automatic deep learning solution without any
human modeling efforts. However, such a pure neural network solution can not exploit any specific
human knowledge about the network architecture into the optimization process. In this section, we
intend to answer the following natural question: “Can we do better if we provide some explicit prior
knowledge about the link relationship and link constraints in the target DCN?" For the case where
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the network operators have some specific knowledge about the network architecture, we design a
new module named CRF (Conditional Random Field) to allow the embedding of such knowledge to
enhance the performance of FPNN.

CRF module. As Fig. 6 shows, we append a CRF module at the output layer of FPNN. The CRF
model is an advanced probability graph model (PGM) that is used for modeling the link and node
relationships in social networks [49]. As a natural extension, CRF can also be used to model the
data center networks. In our problem, the CRF input is the original output of the FPNN, while the
CRF output is a new topology that is corrected by the prior human knowledge.

Let G be an undirected model over the set of random variables X and Y. The X is a set of
observation random variables x;;, which denotes whether the link between switch i and switch j
exists in the output topology of FPNN. The Y is a set of labeling random variables y;;, whether
the link between switch i and switch j exists in the output topology of CRF. Let C denote a set of
cliques in G. The CRF defines the conditional probability distribution of the labeled topology y (an
instance of Y) given the observed FPNN output x (an instance of X):

Py = 5 [ ] oyl
ceC

where y|. are the elements in y associated with clique ¢, and Z(X) = Xy [1cec #(x,ylc) is the
normalization factor. ¢(-) is a potential function taking a log-linear form [48], i.e., ¢(x,y|c) =
[Teec exp(Xk Ak.c fr.c(%,yl|c)) where f . are the feature functions and A . are their corresponding
weights.

To use a CRF module in FPNN, we first need to define a set of feature functions that describe
our prior knowledge about the link relationship in the topology configuration y. Next, given a set
of labeled training data D = {x’,y'}, we use the maximum likelihood (MLE) method to train the
CRF parameters A = {1 .}, i.e., one weight parameter for each feature. To generate the training
data D, we use each input traffic demand f to compute the FPNN output as the x and take the
topology sample (obtained by the sample generation module in §4.2) corresponding to f as the y.
After training the weight parameters, the CRF module uses MLE to do the online inference of the
new corrected topology for each FPNN topology output. The objective of MLE is to maximize the
likelihood of the inferred topology configuration that satisfies all the feature functions, i.e., finding
the topology configuration y to maximize the conditional probability P(y|x) given the observed
FPNN output x.

In the following, we will present some examples on how to define the feature functions that capture
different types of prior human knowledge.

Embedding the link-dependency relationship. Considering the general routing property ° that
each flow requires a routing path between the source node and destination node in the topology.
Based on the path definition, we have the following observation:

OBSERVATION 3. Ifa link exists in the topology configuration, then the probability that its neigh-
bouring links exist in the topology configuration becomes high.

For the above observation, each pair of the neighbouring configurable links (e.g., y;,j, and y;,j,)
defines a clique c. Then the feature function fj . is defined as a binary indicator function:

1if Yij, =1 and Yipj = 1

Jre(xyle) = { (1)

0 otherwise.

SFor simplicity, we only gives a general property independent of specific routing protocols. More complex link dependency
in specific routing protocols can also be modeled in a similar way.
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The above feature function embeds the basic prior knowledge about routing path and also the
specific information on link neighbouring in the target DCN.

Embedding the link-conflict constraints. In the following, we present how to define the feature
function to embed the explicit link-conflict constraints. A link-conflict constraint Conf(S, n) means
at most n links are allowed to be built simultaneously in the link set S. It can be used to describe
the link constraints for both the OCS switches and wireless radios (see details in §3). Based on the
definition, it can be translated as:

OBSERVATION 4. If a link exists in the topology configuration, then the probability that its conflict
links exist in the topology configuration becomes zero.

For the above observation, each link-conflict constraint Conf (S, n) defines a clique ¢’ which
contains all the links in S. Then the feature function fi . is defined as

leyijec' yij <=n
co otherwise.

1
frelx.yle) = {_ )
Note that when the feature function takes value —co, its corresponding factor in the potential
function ¢ will be zero, which forces the probability of the link-conflict cases in the inferred
topology of CRF module to be zero.

6 SIMULATION

Simulation setup. Our simulations are conducted through a customized flow-level simulator.
Since it is infeasible to obtain the optimal solutions when the network scale becomes large, to
compare the performance of different solutions with the optimal topology configuration, we first
focus on a DCN topology of a 4-port fat-tree [6] with 10Gbps wired links. For the reconfigurable
part, we follow the same OCS-based architecture setting in [13, 51] and use a single 16-port 10Gbps
OCS switch to connect all the ToR switches so that each ToR switch can connect to one of the other
ToR switches directly through the OCS switch with a 10Gbps optical link. Then we scale up the
simulation setup to a 16-port fat-tree to verify the performance gains under a larger scale topology.
Finally, to evaluate the scalability of our framework, we compare the running time of different
solutions under various topology scales (§8).

In xWeaver, we implement the two neural networks (SCNN in §4 and FPNN in §5) with the
deep-learning library caffe [26]. The CRF module designed in FPNN is implemented using the
probability graph model library grante [1]. In simulations, our optimization objective is defined as
minimizing the completion time of the demands (CTD) (i.e., the time it takes to complete all
the flow transmissions in the demand matrix [23]). Hence the score of a topology is defined as the
CTD under the topology configuration. We will discuss other objectives and score definitions in §8.

We compare the topology performance of our xWeaver solution with three other solutions. The
first is the Weight-matching solution, which generates the topology configuration with the well-
known Edmonds algorithm [17] used in existing topology-adaptation research work [13, 18, 51].
The second is the Sample solution, where the topology configurations are generated by a heuristic
search in our labeling module (§4.2). The third is the Optimal solution, which has the lowest CTD
for all the demands °. It is implemented as a brute-force search over all the candidate topology
configurations. Our xWeaver solution uses the FPNN to infer the topology configurations and the
CRF module is enabled by default. For the traffic input, we first use a random traffic pattern with
20000 demand matrices to provide a comprehensive performance evaluation for each xWeaver
module under various potential traffic cases. Next, we analyze the performance under typical

®We can obtain the optimal solution in most of the test scenarios, which implies that our framework could achieve a good
performance in general.
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Fig. 7. Test loss and accuracy of different solutions.

traffic patterns in production DCNs, including the application traffic pattern [9], hot-spot traffic
pattern [24] and hybrid traffic pattern [28].

Performance of scoring module. To analyze the performance of the scoring module, we evaluate
four neural network solutions. In SCNN of xWeaver (§4.1), we have the first part implemented
with two separate convolutional neural structures (i.e., the T-SCNN and P-SCNN in Fig. 5), each
consisting of two convolutional neural layers. We then have the second part of SCNN constructed
with three fully-connected neural layers. In the second solution, we directly replace the convolution
neural layers in SCNN with the same number of fully-connected neural layers (SENN). Then we
implement the baseline solution as a fully-connected NN (FNN). Finally, we implement the graph
neural networks (GNN) following the similar setting in [30] as another baseline. We generate 250000
random traffic matrices {f;} and topologies {p;}. For each pair (f;, p;), we take the the mean flow
completion time of the demand as the performance score and obtain the score s; by running the flow-
level simulator. Thus we obtain 250000 fully-observed traffic-topology-score samples {(f;, pi, si)}-
The training set is set as the first 90% TTS samples while the test set is set as the last 10% TTS
samples. For each input pair (f;, p;), we denote s; as the output score of a neural network. Intuitively,
the smaller the difference between the neural network output s and the score s; in the TTS sample,
the higher the scoring accuracy achievable by the neural network. Denoting the relative error as
%isil, we compute the scoring accuracy for each solution as follows. First, we get the output score
s; and compute the relative error of all the test samples. We then find the number of samples whose
relative errors are within 5%, and calculate the scoring accuracy by dividing this number by the
total number of test samples. We train all neural networks to compare for enough epochs over the
same training set.

The accuracy and loss associated with scoring are shown in Fig. 7. We see the results of all
neural networks converge over time. GNN converges first at around epoch 100 with the scoring
accuracy of 92.1%. SCNN converges soon and achieves the highest scoring accuracy of 98.7% around
the epoch 430. By adding in more training time to all networks, FNN and SFNN finally converge
around the epoches 1000 and 910 with the scoring accuracy of 96.7% and 97.8%, respectively. This
indicates that SCNN can achieve higher scoring accuracy than the other three solutions if enough
training epochs are given. When the training time is limited, SFNN and GNN can quickly achieve
a good scoring accuracy, but SCNN can achieve higher accuracy just with a little more time. It
confirms that the excellent feature extraction ability of convolutional neural layers shown in other
fields [29, 31] also applies to our problem.
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Fig. 8. Performance comparison of different topology configuration solutions under different network scales.

In this experiment, we set the sizes of all neural networks to be similar thus their training

durations are comparable. Depending on the neural network complexity, each network costs
different amount of time to go through all training samples in an epoch. The training time required
by each network is listed besides its legend in Fig. 7. To achieve similar scoring accuracy, the total
training time of FNN can be more than 9 hours, which is three times that of SCNN. To balance the
efficiency and accuracy, the architecture of neural networks in scoring module should be designed
to meet different requirements and constraints, such as the computation resources, the performance
metric, and the scale of the DCN.
Performance of topology configuration. In Fig. 8, the CTD of four solutions are evaluated
under different network scales. For the 4-port fat-tree, the CTD results in Fig. 8(a) are all normalized
by the Optimal solution. We can see that although the performance of Sample varies quite a lot
for different demands, our xWeaver solution trained from Sample outperforms Sample in the CTD
metric, and has its performance very close to that of the Optimal solution. Sample has a large
fraction of high-quality topologies together with a small fraction of low-quality topologies. xWeaver
shows the ability of learning the important demand patterns and key topology structures from the
high-quality topology samples, and then using them to infer the high-quality topologies for new
traffic demands. On the other hand, Weight-matching has the worst performance among all the
solutions and experiences a large variation of topology qualities. Its completion time is about 50%
higher than that of xWeaver 7. We also evaluate the performance of xWeaver on achieving other
four objectives, i.e. the mean, median, 90th percentile and 99th percentile flow completion time.
xWeaver also performs very close to the Optimal solution. Similar to the above case, the completion
time of Weight-matching Solution is about 19%, 21%, 20% and 29% higher than that of xWeaver
with respect to the four objective values in order, which shows that xWeaver can be applied to the
optimization of different objectives.

In Fig. 8(b), the CDFs of the CTD under 4-port and 16-port fat-tree are presented, respectively.
Since the size of the candidate topology set expands exponentially with the increase of network
scales, it is non-trivial to obtain the Optimal solution under the 16-port fat-tree. We can see that
the performance gap between xWeaver and Weight-matching becomes more than 40% larger when
the network scales up. This is because the interactions between the fixed part and the configurable
part of the topology will become even more complex for a larger-scale data center network.
Performance of key topology learning. In Fig. 9, we present the detailed learning performance
of xWeaver on the topology structures. As Fig. 9(a) shows, we evaluate the fraction of high-
performance topologies found by different solutions. The case of OPT + X% corresponds to the

"We also evaluate the topology configuration performance of our solution for the wireless-based architecture using FSO.
Since FSO has a comparable link bandwidth (10Gbps) as OCS with little interference footprints [19, 24], we found it generated
similar performance results as the above OCS case.
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topology configurations with CTD less or equal to (1 + X%) times of the optimal. The fraction
of high-performance topologies found by all the solutions increases as expected. We can see that
the fraction of optimal topologies found by xWeaver is above 80%, while that of Weight-matching
takes less than 10%. This is because xWeaver can classify most of the n ew traffic demands (i.e.,
80% in current settings) to correct traffic patterns which are then mapped to the optimal solution.
However, Weight-matching lacks the prior knowledge about the specific traffic patterns, which
results in a small number of high-performance topologies.

Similarly, in Fig. 9(b), the link fraction at case of OPT + X% is defined as the fraction of links

built by different solutions which are exactly the same as those in the high-performance topologies
with a CTD within (1 + X %) times that of the optimal. Thus the link fraction indicates the ratio of
the links found to be high-performance critical links. We can see that xWeaver wins the highest
link fraction at all the cases, which is on average 40% higher than that of the Weight-matching, and
20% higher than that of the Sample. This is because xWeaver has the ability of learning the critical
links from the high-quality data samples generated by Sample and then using them to form the key
topology structure close to the optimal.
Learning performance for different traffic patterns. (1) application traffic patterns. We first
evaluate the learning performance over different application traffic patterns in DCNs. Following
the previous work [9], we use four application traffic patterns from production DCNs (Fig. 10(a)),
i.e., the workloads of data mining [22], web searching [8], Hadoop [42] and caching [42]. The CTD
values shown in Fig. 10(b) are normalized by the maximum CTD value of this set of experiments. We
can see that the CTD performance of xWeaver and Sample is better than that of Weight-matching in
all the traffic cases. An interesting finding is that the performance gap of CTD between xWeaver and
Sample is relatively larger in the traffic case of web searching than that in all the other cases. This is
because the flow distribution of web searching is relatively uniform while other traffic cases have
certain skew traffic patterns. Thus the trace of web searching contains richer traffic patterns than
that of the others, which makes it more difficult to learn when provided with the same number of
data samples. Finally, we can find that the Weight-matching has the smallest performance variance
in the traffic case of cache, whose flow size is two orders of magnitude smaller than the others.
It indicates that the Weight-matching works more stably for the light-load traffic cases. Rather
than limiting the performance gains to local links in Weight-matching, xWeaver learns the global
network interactions from data traces and thus gains much higher flow performance for all the
network loads.

(2) hot-spot traffic patterns. In Fig. 10(c), we evaluate the transmission performance of differ-
ent topology configuration solutions over different hot-spot traffic patterns. Following previous
work [16, 24], we use a pair of (X, Y) to denote the case of a hotspot traffic pattern where the
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Fig. 11. Performance evaluation in an OCS-based testbed.

average demand size is increased by X times with additional Y percentage of hot-spot flows. For
each case of the traffic pattern, we generate 20000 data samples for training the FPNN in xWeaver,
and another 1000 data samples as the test set for performance comparison. As Fig. 10(c) shows,
xWeaver achieves the optimality gap below 5% for all the cases while Weight-matching generates
an optimality gap above 30% for all the cases. It demonstrates the effectiveness of xWeaver in
successfully learning different types of hot-spot traffic patterns in DCNs. Moreover, for different
traffic patterns, the performance gains of xWeaver over the Sample vary a lot. Generally, xWeaver
achieves an optimality gap less or comparable to that of the Sample. Despite the difficulty in learning
different traffic patterns with specific data samples, xWeaver can always exploit the critical traffic
patterns from the data samples generated by Sample to achieve more efficient topology inference
than the simple heuristic search in Sample.

(3) hybrid traffic trace. We derive the demand matrices from hybrid traffic traces of a university
data center in [28] and analyze the transmission performance of xWeaver on handling the real traffic
traces. In the traces, we find that the number of large flows (i.e., the flows with size larger than
1MB [8]) takes about 1.3% that of all the flows, while the total traffic size of large flows takes about
84.7%. It indicates that the demand matrices derived in the traffic trace show specific skew patterns.
As Fig. 10(d) shows, we evaluate the CTD of different solutions for a sequence of demand matrices
derived from a 15-minute traffic trace. All the CTD results are normalized by the optimal solution.
We can see that the number of demand matrices that are completed within 1.25 times that of the
optimal takes above 80% in xWeaver, while that number takes less than 10% in Weight-matching.
Moreover, xWeaver slightly outperforms Sample and achieves a CTD within 1% that of the optimal.
It highlights the ability of xWeaver in learning the critical traffic patterns from real traffic traces.

7 IMPLEMENTATION

Testbed setup. In this section, as Fig. 11(a) shows, we implement an OCS-based testbed to validate
the performance gains of our xWeaver solution. The testbed is built with two 48-port 10Gbps
electrical switches and five 16-port 10Gbps OCS switches. To achieve the maximum topology
flexibility with the limited number of OCS switches, in our testbed all the five OCS switches are
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connected to construct a full-mesh topology as a single 80-port OCS switch. Furthermore, we
virtualize 10 ToR switches on top of the two electrical switches by enabling their Open-vSwitch
mode and isolating them into 10 VLANSs. For each VLAN, there are four ports of the electrical
switches connected to the OCS switch. Each virtualized ToR switch has one port connected to a
physical server. Each server is equipped with 4-core Intel Xeon E5-1410 2.8GHz CPU, 24GB memory
and one 10GbE NIC for the data transmission. We use another stand-alone server to serve as the
network controller. All of the above electrical switches and OCS switches are connected to the
controller through another electrical switch. The traffic are randomly generated for each pair of
servers using iperf [3]. To match the 10Gbps link bandwidth, the traffic size is set within 15GB
for each pair of ToR switches. We add different fractions of hot-spot flows into the demands to
simulate different traffic patterns. The ECMP is implemented as the default routing scheme.
Experiment results. As Fig. 11(b) shows, for different traffic patterns with different fractions
of hot-spot flows, the CTD of xWeaver is on average 17% lower than that of Weight-matching.
The detailed flow performance is presented in Fig. 11(c). We can see that the number of flows
that have a flow completion time (FCT) smaller than 70s takes about 80% in xWeaver while it
takes less than 50% in Weight-matching. Different from the previous simulations that use a fat-tree
as the fixed-connected part, the testbed uses a network architecture where the fixed connected
part is a ring constructed by the optical links [13]. It validates the effectiveness of xWeaver in
adapting the learning ability for different DCN architectures to achieve high-performance topology
configurations in a real testbed.

In Fig. 11(d), we evaluate the throughput changes when reconfiguring the topology using the
OCS switch. The throughput is recorded through iperf by switching the paths between two
communicating servers. We find that the throughput drops during the topology reconfiguration
and it takes about 300 ms for the throughput to restore. We note that this delay consists of both
the actual optical circuit switching delay and also the delay due to some hardware-based internal
signal processing, which matches the measurement result in previous work [18]. We will discuss
later that the running time of xWeaver can be potentially limited within 100ms for a median-size
data center, which matches such reconfiguration delays for easy online topology configuration.

8 DISCUSSION

Optimization for different specialized objectives. We have studied the performance optimiza-
tion for minimizing the CTD. However, the network operators may prefer flexible and sophisticated
optimization objectives in DCNs. The support of optimization over self-defined objectives may
potentially enable new applications of topology reconfiguration in DCNs. In the following, we
evaluate the performance of xWeaver for optimization on another two comprehensive objectives.

The first comprehensive objective is a fine-grained flow optimization objective, i.e., minimizing
the FCT for small flows while maximizing the throughput for large flows [27]. This can be achieved
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in xWeaver by simply replacing the CTD score with a new score, which is defined as a weighted
sum between the FCT of small flows and the throughput of large flows. Without loss of generality,
we set an equal weight for the two metrics.

The detailed performance are evaluated in Fig. 12(a) and Fig. 12(b). The maximum FCT and
throughput are all normalized by that of the optimal solution. We can see that xWeaver performs the
best on the performance in terms of both the FCT and throughput. This can be further illustrated
by the detailed link utilization in Fig. 12(c). We can see that the number of links that have a link
utilization larger than 60% takes about 70% in xWeaver while the number takes less than 30% in
Weight-matching. It indicates that xWeaver can fully utilize the reconfigurable link resources to
optimize the transmissions for both the small flows and large flows.

The second one is an application-level performance metric on the job completion time of the
benchmark Hadoop Terasort application. The job completion time is defined as the total time
consumed to complete one Terasort job. We build a Hadoop (version 2.7.3) testbed on a partial
Fat-tree topology with 10 Open-vSwitch-based virtual switches. Each half of the tree topology
is built on a physical server with a dual-core 3.30GHz CPU and 16GB DDR3 memory. The links
among edge switches are all reconfigurable, where each edge switch can connect to one of the
others through a reconfigurable link. All the virtual switches are connected to a Floodlight
controller [2], which provides the RestAPI interface to deploy the flow tables. We repeat running
testbed measurements of generated traffic traces and job completion time for three different job
sizes (i.e., the data file size for sorting): 100, 200 and 500 MBytes. Then we train the xWeaver and
compare its performance against the Weight-matching on the testbed for new Terasort jobs. We
also measure the optimal topology solution using the brute-forcing method as a benchmark.

Fig. 12(d) shows the gap against the optimal topology solution for both the xWeaver and Weight-
matching. We can see that the optimality gap of xWeaver is at most half that of Weight-matching.
Moreover, the optimality gap difference between xWeaver and Weight-matching increases when the
job size becomes larger. This is because the job completion time mainly consists of the computation
time and transmission time. When the job size becomes larger, the transmission time increases much
faster than the computation time, which leads to a larger optimization space for the traffic-learning
algorithm. It demonstrates the flexibility of xWeaver on optimizing application-level performance
metrics by learning from real application traffic traces.

Learning adaptation for new traffic patterns. In Table 1, we compare the number of iterations
used to train the FPNN under two different cases: 1) Independent training, where we re-train the
FPNN for each traffic pattern; 2) Adaptive training, where we only initialize the FPNN by completely
training it for the first pattern and then keep updating the parameters of FPNN after receiving the
new data from the latter traffic patterns. As Table 1 shows, we find that the number of iterations
required to update the FPNN for new traffic patterns takes only one tenth that of re-training
independently. Moreover, the CTD performance of adaptive training is kept within a 10% gap from
that of independent training. It demonstrates xWeaver’s ability of adaptation for automatically
updating its model parameters and quickly learning new traffic patterns from real-time traffic
data. In practice, the flow size distributions and the locality of traffic are highly correlated with
applications (e.g., web search, data mining, key-value stores) and their deployment formats[37].
From this perspective, the frequency to retrain FPNN can be adjusted according to the update cycle
of applications, such as weeks. On the other hand, the FPNN can be updated once the network
operator finds that the traffic pattern changes or a new application is launched since xWeaver can
quickly learn new traffic patterns.

Sensitivity of CTD to the topology labeling. In Fig. 13a, the CTD of the samples generated by
the labeling module are evaluated under different network scales following the setup in §6. We vary
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Fig. 13. Sensitivity and robustness analysis.

the parameters of the labeling module to check the sensitivity of CTD to the parameter selection and
the topologies labeled. As shown in Algorithm 1, the parameters include the width of Beam array,
the search width and the search depth, denoted as (B, W, D). All the CTD results are normalized
by the optimal solution. The fractions of optimal topologies found by the labeling module are also
shown as the optimal ratio in Fig. 13a. We can see that the optimal ratio ranges from about 80%
to 94%, while the CTD is kept within 5% that of the Optimal solution. The performance of CTD
is more stable than that of the optimal ratio under different parameter settings. It indicates that
stable and near-optimal solutions can be obtained even if the topologies identified by our labeling
module are sub-optimal. As expected, the performance further improves when the search width
and search depth increase under different network scales.

Robustness to link failures. In Fig. 13b, we evaluate the robustness of the mapping module to
different numbers and types of link failures following the similar setup in §6. We evaluate the
performance of our learned configurations with the number of link failures selected from 1 to 3
in the fixed-connected part and 1 to 2 in the configurable-part of the topology. The performance
metric is the mean flow completion time and the results are normalized by the value obtained by
Optimal solution in the scenario of no link failure. When link failures happen in the fixed-connected
part, in each set of the experiments, we randomly select a pre-determined number of links to set as
failed ones for each demand sample. We also recompute the Optimal solution under each failure
scenario. When link failures happen in the configurable part, we traverse all failure possibilities for
each scenario and show the average performance degradation.

We can see that xWeaver can outperform Weight-matching in both fixed-link failure and configurable-
link failure scenarios when the number of link failures is no more than 2 (more than 6% of all links
in our setting), which shows the basic fault tolerance ability of our framework. When the number
of link failures goes up, the performance of xWeaver declines more. This is because the xWeaver
solution tries to balance the use of configurable and fixed part of links, while the Weight-matching
solution only tries to maximize the flow volume transmitting over configurable links and is less
impacted when a link failure happens in the fixed-connected part of topology. However, it is not a
common case where up to 10% of all links fail at the same time in a large-scale DCN. According to
a failure measure study [20], over half of failure events are isolated and only 10% of them contain
more than four failures. Moreover, the network redundancy (e.g., back up links) can further reduce
the impact of link failures [20].

xWeaver can also benefit from a fault-tolerant method. Since our mapping module does not take
the fixed-connected part of topology as input, the mapping module (i.e. FPNN) is not aware of the
link failures. However, from the results of our training process, there may be several near-optimal
candidate topologies with negligible difference in their performance scores but with different levels
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Table 1. Comparison of iterations required for different training processes.

Traffic pattern (3,50)|(3,25)| (3,0) |(1,50)]|(1,25)| (1,0)

Independent training (iter.) | 23369 | 35783 | 20739 | 21502 | 20032 | 19341

Adaptive training (iter.) | 23369 | 2431 | 2678 | 1440 | 2343 | 2536

Table 2. Comparison of online running time over different network scales.
Number of racks 10 | 100 | 200 | 500

Running time of FPNN (CPU) (ms) 0.02 | 0.29 | 1.56 | 10.4
Running time of FPNN (GPU) (ms) 0.09 | 0.18 | 0.48 | 2.37
Running time of Weight-matching (ms) | 0.02 | 0.15 | 0.94 | 24

of robustness to link failures. Therefore, we could choose the topologies that have high scores and
are also robust to failures. However, the evalutation of topology robustness is very computationally
intensive, which needs a special design to speed up the process. We leave this to our future work.
Scalability of xWeaver in DCN. Training and running a large-scale neural network is a popular
topic in recent deep learning research [15]. In Table 2, we present the online running time of
different solutions to obtain the topology configurations over different network scales. The running
time is measured on a computer with i7-core 4GHz CPU and 16G DDR4 memory. Since recent
deep learning well supports the speed-up using GPU, we also compare the running time of FPNN
when enabling a GPU of NVIDIA Geforce GTX 970 for online neural network computation. We can
see that FPNN with only CPU enabled has a running time comparable to that of Weight-matching.
When enabling the GPU, FPNN achieves a running time about 3-4 times faster for the network
larger than 100 racks. For a smaller-scale network, the case of GPU is slower than that of CPU, as
the copy cost from DRAM to GPU’s graphic memory is larger than the computation cost when
the scale is small. When the rack number increases, the scale of FPNN also increases with a large
number of parameters, e.g., about 100 million parameters for the case of 500 racks. We find that our
16G memory can not support the network scale with more than 500 racks.

As for the offline training time of FPNN, we monitor the training processes under different
traffic patterns and optimization objectives described in §6 and §8. Intuitively, the diverse traffic
patterns will involve different distributions and the difference in objectives reflects the different
demand-topology interactions, which will result in different training difficulty and time. However,
we find that, in each of the above mentioned scenarios, the training process will take approximately
4-5 hours with the topology of 4-port fat-tree. With the 16-port fat-tree, the training process will
take more than 1 day.

The scalability of memory and training speed can be effectively addressed by taking advantage of
the rich distributed computation resources in data centers. Specifically, a large-scale neural network
model can be partitioned across a cluster of commodity servers to perform parallel training, where
their parameters are shared and updated through a parameter server [15]. This allows for highly
efficient training of the neural network with a large scale (2 billion parameters on 120 servers [15])
and a fast speed (10 million samples in 1 hour [21]). When training the CRF module, we can trade off
between the efficiency and accuracy, since we do not need to obtain the exact optimal parameters.
First, we could benefit from the well developed solver library [1, 5, 39] to conduct the training
and inference of CRF. If the scale of the problem is too large to solve accurately, approximation
algorithms (e.g. relaxation and rounding) can also be used as alternatives for more efficient training.
Flow-level simulator. In xWeaver, we use a flow-level simulator to generate data samples and
evaluate the performance of different reconfiguration schemes, which is a trade-off between fidelity
and efficiency. For each traffic demand and topology, the simulator first partitions each flow into
several subflows with their routing paths found by ECMP scheme. In the simulator, the time is
discretized with RTT. In each time step, the simulator computes the transmission rate for each
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flow with the conventional TCP AIMD strategy. Then the simulator decreases the volume of each
subflow with its current rate. The flow-level simulation will inevitably lose accuracy since it can
not accurately simulate the packet level mechanism (e.g., ECN). The direct impact is that we cannot
easily deploy DCTCP [8], the de facto protocol in today’s DCN, in our simulator. However, using
this flow-level simulator, we can generate data samples much faster than the packet-level simulator.
For example, it takes only 1 hour to generate 20000 samples with the topology of 4-port fat-tree.
The choice of CNN. In xWeaver, we use CNN to extract features from traffic demands and
topology configurations. The proper permutation scheme of CNN (shown in Fig. 1) and the often
regular topology of data center networks allow us to efficiently map the local network topologies
to the matrix representations. For example, the ToR switches on the same pod are indexed next
to each other, thus the local topology structures and traffic can be easily captured by CNN. From
another perspective, the underlying structure of topologies is a graph, which has a special property
permutation invariance. Recently the graph neural network [43] has been proposed to capture the
permutation invariance and achieve good performance in tasks involved irregular graphs, such
as link prediction [54] or node classification [30] in social networks. We compared CNN to graph
neural network in §6. The result shows that GNN has a great potential to deal with the graph-based
problems. However, existing approaches based on graph neural network cannot efficiently deal
with the dynamic network topology we consider and is more complicated to run for the regular
data center topology. It requires a special design to extend the graph neural network for efficiently
solving the problem of this paper. We leave this to our future work.

9 RELATED WORK

In recent years, a number of different topology-reconfigurable DCN architectures have been
proposed with flexible networking technologies (e.g., the OCS switches and wireless radios) to
address the dynamic traffic demands [13, 14, 16, 18, 19, 23, 24, 33, 35, 36, 41, 51, 53, 55, 56]. For
example, c-Through [51] uses an architecture where flexible OCS links can be built among all the
ToR switches, while Helios [18] proposes to build the OCS links among different pod switches.
However, their topology flexibility is restricted by a limited number of single-hop optical links.
OSA [13] proposes an architecture that supports higher topology flexibility via multi-hop optical
links. Besides, xFabric [32] further pushes the topology reconfiguration ability into the racks.
Recently, flat-tree [53] achieves the global topology flexibility with “converter swtiches” and could
change the network to one of the three predefined architectures when necessary. With the extra
functionality of ToR buffer, RotorNet [36] proposes a scalable circuit-based architecture that achieves
flexibility by cycling through a series of optical matchings. They provide similar benefits on high
topology flexibility, high transmission bandwidth and low cost in wiring and power consumption.

With the increasingly high topology flexibility, existing work generally adopt the fast heuristic
solutions, which may result in performance potentially far away from the optimal. Recent work [12,
34] fully explores different algorithms to trade off the speed of configuration computation and the
quality of OCS configuration. However, the proposed algorithms are designed under a simplified
architecture with one OCS switch and one electrical switch, which is difficult to be generalized for
conventional DCNS.

Previous work (Condor [44]) is the first to use the constraint-based synthesis to generate candidate
topologies for efficient offline network planning. Since the topology searching may take tens of
seconds, it is not suitable for our problem of online topology configuration. In this work, xWeaver
intends to support the global topology optimization for existing hybrid architectures in a unified
way. Rather than relying on specific assumptions and human-designed models, in xWeaver, we
address the modeling difficulty and the running-time issue by learning specific traffic patterns
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offline from historical traces in the target data center. Benefited from the offline training, xWeaver
achieves both the high-quality topology solutions and satisfactory online running speed.

10  CONCLUSION

In this paper, we present xWeaver, a traffic-driven deep learning solution that can enable the high-
performance global topology configurations in DCNs with little human modeling efforts. Benefited
from its automatic configuration features, xWeaver can support a variety of DCN architectures.
Moreover, it further supports the flexible optimization on self-defined objectives that the network
operators prefer. While maintaining the above desired properties, our experiments on an OCS-
based testbed and extensive simulations demonstrate that xWeaver can achieve much shorter
flow completion time and higher throughput than those of conventional topology configuration
solutions.
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