Neural Inference of APl Functions from
Input—Output Examples

Rohan Bavishi, Caroline Lemieux, Neel Kant, Roy Fox,
Koushik Sen, lon Stoica

Introduction

e Discovering what APIs to use can be time difficult and time-consuming

e Speed of creation of new APIs outpaces the completeness, clarity, and even
correctness of the documentation

e Program synthesis is the process of automatically generating a program
conforming to a higher-level specification

e Goal is the automating the process of finding the correct API given a set of
input-output values

Challenges

e For alanguage with n functions, taking an average of m argument values,
the number of sequential programs of length k grows as (nm)X

e Existing approaches work on small subsets of problems or Domain Specific
Languages

e I|dentify the actual function and its arguments, which may have interactions

e Exhaustive search is feasible for determining arguments but not functions

e Use a hybrid approach with exhaustive search for arguments and a neural
inference mechanism to predict the functions

Methodology

Map a given |I/O example to a pandas function which performs the transformation
specified by the example

Steps:

1. Preprocessing I/0O examples into a graph

2. Feeding these examples into a trainable neural network which learns a high-
dimensional representation for each node of the graph,

3. Pooling to output of the neural network and applying softmax to select a
pandas function.

4. Use exhaustive search to find the correct arguments

Graph Abstraction

The operation used in an I/O
example is often captured by
the relationships amongst the

o -__-_:-7'_ _-_-""“-m
elements, rather than the weight =
concrete data itself weight kg | 1 oo Gl (a o) (m
[EEt _,5.’-:—__-_——-_—=_q-£=n—-b—-—-.___ Edgn Type
kg | Ibs bs | 2 1 ~ -
,f’f -:uf /p&:f — n::\\u:u: T
cat | 1 2 o kg 2 [A T T "'“:““
— iy
dog 2 | 4 _ 9 s | 4 =) L -'!F'i”ff‘__ o
input GUtpUt I S ——— ||:;x Ii:T

(a) DataFrame /O Example. White cells are data: pale (b) Graph Representation. Gray nodes come from the
gray are row indices, and dark grey are column names. input DataFrame, white nodes from the output.

Nodes

Every data cell in the input and output
DataFrame is represented as a single
node

Multiple levels of column names or row
indices appear as additional nodes
Node is labeled with a type tuple (data
type, is input)

Edges

Edges to represent the relationships
between nodes in input and output
Equality edges are between any nodes
with the same value

Adjacency edges represent the basic
structural characteristics of the
DataFrames

Indexing edges are between a column
name (resp. row index) and all the data
nodes that belong to that column

Gated Graph Neural Networks

Graph Neural Networks map graphs to outputs via two steps:

1. Propagation step that computes node representations for each node
2. Compute output model that maps from node representations and
corresponding labels to an output

Gated Graph Neural Networks: GNN with recurrent unit that stores node state
and uses backpropagation through time in order to compute gradient

Network

Edge e is a 3-tuple (v, v, t.) where v, and v, are the source and target
nodes and t, is the type of the edge.

Every node v has a corresponding state vector

Information is propagated using message passing across k rounds

For each node, the incoming messages are aggregated

The new node state vector for the next round is computed using recurrent
unit

Element-wise sum-pool the node state vectors into a graph state vector h.
Use a multi-layer perceptron with one hidden layer, and apply softmax to
produce a probability distribution over the target classes

Accuracy Results

Accuracy is computed using (1) synthesized validation set and (2) I/O examples
taken from real-world sources

Table 1: Accuracy in predicting the ground-truth or a

Table 2: Effect of graph abstraction fea-
correct function for /O examples.

tures on Top-1 validation accuracy.

Ground-Truth Success Rate Conirol Acc.
Top-I Top-5 Top-1 Top-5 No Node Features 57%
Validation 65% 94% 829% 97% No Edge Features 63%
Test 59% 83% 69% 83% No Structural Edges 61%

Clean Test 66% 97% 83% 97% No Equality Edges ~ 46%

Thoughts

Pros:

e Encoding I/O pairs as a graph
e Flexible compared to existing approaches

Doubts:

e Limited to single function programs
e Scalability and performance in real world data
e Does not consider parameter selection

