
Neural Inference of API Functions from

Input–Output Examples

Rohan Bavishi, Caroline Lemieux, Neel Kant, Roy Fox, 

Koushik Sen, Ion Stoica



Introduction

● Discovering what APIs to use can be time difficult and time-consuming

● Speed of creation of new APIs outpaces the completeness, clarity, and even 

correctness of the documentation

● Program synthesis is the process of automatically generating a program 

conforming to a higher-level specification

● Goal is the automating the process of finding the correct API given a set of 

input-output values



Challenges 

● For a language with n functions, taking an average of m argument values, 

the number of sequential programs of length k grows as (nm)k

● Existing approaches work on small subsets of problems or Domain Specific 

Languages

● Identify the actual function and its arguments, which may have interactions

● Exhaustive search is feasible for determining arguments but not functions

● Use a hybrid approach with exhaustive search for arguments and a neural 

inference mechanism to predict the functions



Methodology

Map a given I/O example to a pandas function which performs the transformation 

specified by the example

Steps:

1. Preprocessing I/O examples into a graph

2. Feeding these examples into a trainable neural network which learns a high-

dimensional representation for each node of the graph, 

3. Pooling to output of the neural network and applying softmax to select a 

pandas function. 

4. Use exhaustive search to find the correct arguments



Graph Abstraction

The operation used in an I/O 

example is often captured by 

the relationships amongst the 

elements, rather than the 

concrete data itself



Nodes

● Every data cell in the input and output 

DataFrame is represented as a single 

node

● Multiple levels of column names or row 

indices appear as additional nodes

● Node is labeled with a type tuple (data 

type, is input)

● Edges to represent the relationships 

between nodes in input and output

● Equality edges are between any nodes 

with the same value

● Adjacency edges represent the basic 

structural characteristics of the 

DataFrames

● Indexing edges are between a column 

name (resp. row index) and all the data 

nodes that belong to that column 

Edges



Gated Graph Neural Networks

Graph Neural Networks map graphs to outputs via two steps:

1. Propagation step that computes node representations for each node

2. Compute output model that maps from node representations and 

corresponding labels to an output

Gated Graph Neural Networks: GNN with recurrent unit that stores node state 

and uses backpropagation through time in order to compute gradient



Network

● Edge e is a 3-tuple (vs, vt, te) where vs and vt are the source and target 

nodes and te is the type of the edge. 

● Every node v has a corresponding state vector

● Information is propagated using message passing across k rounds

● For each node, the incoming messages are aggregated 

● The new node state vector for the next round is computed using recurrent 

unit

● Element-wise sum-pool the node state vectors into a graph state vector h.

● Use a multi-layer perceptron with one hidden layer, and apply softmax to 

produce a probability distribution over the target classes



Accuracy Results 

Accuracy is computed using (1) synthesized validation set and (2) I/O examples 

taken from real-world sources



Thoughts

Pros:

● Encoding I/O pairs as a graph

● Flexible compared to existing approaches

Doubts:

● Limited to single function programs

● Scalability and performance in real world data

● Does not consider parameter selection


