Copy constructor
Ch11.3-11.4 & Appendix F

The Programmers Life

WIORK

HOME

PLAY

SLEEH

(<

i s -
E ; I!'-




object vs memory address

An object is simply a box in memory and if
you pass this into a function it makes a copy

A memory address is where a box is located
and if you pass this into a function, you can
change the variable everywhere

Memory address Object (box)
arrays int, double, char, ...
using & classes



const call-by-reference

What is the difference between these two?

I int sum(int x, int y);
int sum(const int &x, const int &y);



const call-by-reference

What is the difference between these two?

int sum(int x, int y);
int sum(const int &x, const int &y);

First one copies the values into x and v,
thus these values exist in multiple places

The second creates a link but does
not let you modify the original
(see: callByValue.cpp)



const call-by-reference

Classes can be rather big, so in this case
I using const and '&' can save memory

So a better way to write:
bool equals(Point first, Point second)

... would be: (function definition the same)
bool equals(const Point & first, const Point & second)

In fact, without & creates a copy, which is a
new object and thus runs a constructor



Copy constructor

Remember this code from last time?

I class simple
{

public: What is output?

simple(); // constuctor

~simple(); // destructor void foo(simple y)
int* x; // dynamic mem {
}: cout << << endl;
}
void foo(simple y); simple::simple() // constuctor
{
int main() cout <<
{ }
simple var; // default constructor
foo(var); simple: :~simple() // destructor
{
return 0; // destructor cout << :

} }



Copy constructor

There is actually a built-in copier (much like
I there is a built-in default constructor)

This built-in copier makes the boxes hold
identical values... but is this good enough?

Issues with copying? (Hint: recent material)

(SEEZ COPYISSUQS.CPP)



Copy constructor

Destructors are nice because they can
I automatically clean up memory

However, you have to be careful that you
do not cause things to delete twice

This primarily happens when a copy is

made poorly (a good copy is a “deep copy”)
i.e. all pointers should not be shared between
copies, you recursively remake the pointers



Copy constructor

To avoid double deleting (crashes program)
or multiple pointers looking at the same spot...

We have to redefine the copy constructor if
we use dynamic memory

The copy constructor is another special
constructor (same name as class):
Dynamic(); copy

~Dynamic();
Dynamic (const Dynamic &d) / constructor

r




Why?

Copy constructor

In a copy constructor the “const” is optional,
but the call-by-reference is necessary (the '&')



Copy constructor

In a copy constructor the “const” is optional,
but the call-by-reference is necessary (the '&')

Why?

If you did not use a &, you would make a copy
which would call a copy constructor...

which would make a copy...

which would call a copy constructor...

which crashes your computer!

(See: copyConstructor.cpp)



Copy constructor

You will use a copy when:

1. You use an '=' sign when declaring a class

2. You call-by-value a class as an input to a
function (i.e. do not use &)

3. You return an inputted class to function

(Third the compiler sometimes skips)

(See: placesCopyConstructorRuns.cpp)



Copy constructor

The most common class we have used is
I the “string” class

Lines like this were running copy constuctor:
string sent =

string firstWord = sent.substr(0, 4);
It actually converts lines like this: : |/
string firstWord = string(sent.substr(0,4));
constructor

(copy)



	Slide 1
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

