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Abstract
Interlaced Magnetic Recording (IMR) is a promising

technology which achieves higher data density and lower
write amplification than Shingled Magnetic Recording
(SMR) when used with Heat-Assisted Magnetic Record-
ing (HAMR). In IMR, top (narrower) tracks and bottom
(wider) tracks are interlaced so that each bottom track is
partially overlapped with two adjacent top tracks. Top
tracks can be updated without any write amplification,
but updating a data block in a bottom track requires read-
ing and rewriting of the affected data on the two neigh-
boring top tracks if they contain valid data. We investi-
gate efficient data management schemes for IMR in this
paper. First, we design a Three-Phase data management
algorithm that allocates disk space in three stages accord-
ing to disk usage. We further propose two techniques,
Top-Buffer and Block-Swap, which can be used in IMR
to improve the performance of the Three-Phase algo-
rithm. Top-Buffer opportunistically makes use of unallo-
cated top track space as a buffer for updates to the bottom
tracks, while Block-Swap progressively swaps hot data
in bottom tracks with cold data in top tracks. Finally, we
propose our Data Management design for IMR, or DM-
IMR, by integrating Top-Buffer and Block-Swap with
the Three-Phase scheme. Evaluations with Microsoft
Research Cambridge traces show that DM-IMR can in-
crease the throughput and reduce the write amplification
for all traces when compared with the Three-Phase base-
line scheme.

1 Introduction
The rapid growth of digital content from the cloud,

mobile computing, social media, big data, and other
emerging applications calls for low cost, but large ca-
pacity storage systems [1]. Energy-assisted technologies
such as Heat-Assisted Magnetic Recording (HAMR)
[2, 3] and Microwave-Assisted Magnetic Recording
(MAMR) [4, 5] enable further growth of the areal data
density of hard disk drives.

Recently, a promising track layout, namely Interlaced
Magnetic Recording (IMR), has been proposed [6,7] and
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Figure 1: Track layout for CMR, SMR, and IMR.

tested in HAMR systems [8, 9] where it accomplishes
higher areal density than Conventional Magnetic Record-
ing (CMR, Fig. 1a) while having much less rewrite over-
head and potentially higher data density than Shingled
Magnetic Recording (SMR, Fig. 1b) [10–12]. MAMR
drives are also expected to use IMR.

In heat-assisted IMR, as shown in Fig. 1c, track lay-
out is in an interlaced fashion with alternating bottom
tracks (lighter color) and top tracks (darker color). Com-
pared with top tracks, bottom tracks are wider and writ-
ten with higher laser power. As a result, bottom tracks
have a greater linear density and data rate than top tracks
(each about 27% higher) [8]. Compared to HAMR-
SMR, HAMR-IMR potentially increases areal density
but significantly reduces rewrite overhead [6, 8, 13].

In IMR, a narrower top track is written on top of the
boundary of two adjacent bottom (wider) tracks. In other
words, each bottom track is overlapped with two neigh-
boring top tracks. Thus, top tracks can be updated with-
out penalty, but updating a bottom track may require
rewriting the two affected top tracks (rewrite penalty or
write amplification). If the top tracks do not contain any
valid data, no rewrites are required. Therefore, the per-
formance of IMR depends on its space utilization and
data layout design. If in-place updates are used, in the
worst case, an update to data in a bottom track may re-
quire two reads and three writes.

A three-phase data allocation scheme is proposed by
Gao et al. [7, 14] which allocates disk space based on
three phases of space usage. In the first phase, if the us-
age is less than the total capacity of the bottom tracks
(0 ∼ 56% usage), all the data is assigned to the bottom
tracks sequentially. In the second phase, space will be
allocated from every other top track until half of the to-



tal top track capacity is used (56% ∼ 78% usage). In
the third phase, the remaining top tracks will be used
(78% ∼ 100% usage). There is no penalty when in-place
updating a bottom track during the first phase. During
the second utilization phase, in-place updates to bottom
tracks will require one rewrite in one of the adjacent top
tracks (or no penalty if neither of the two neighboring top
tracks has affected valid data). Similarly, bottom updates
in the third phase will require one or two top rewrites.
We refer to a bottom track that has no valid data on its
two adjacent top tracks as a free bottom track and one
that has valid data on its adjacent top tracks as a non-free
bottom track.

In [7], the data allocation in all three phases is from
outer diameter (OD) tracks to inner diameter (ID) tracks.
This pattern may harm data locality by physically sep-
arating adjacent data (e.g., the ending track of the first
phase and the beginning track of the second phase). To
improve this scheme, we propose our Three-Phase base-
line design which reverses the second phase allocation
direction (making it inner tracks to outer tracks) to pre-
serve data locality between phases (Fig. 2).

To further improve the baseline design and make
the data management adapt to both the capacity usage
and workload hot spots, we propose DM-IMR, a Data
Management design for IMR. DM-IMR enhances the
baseline by using two key techniques: top track buffer-
ing (Top-Buffer) and block swapping (Block-Swap).

Top-Buffer opportunistically takes advantage of the
top tracks that have not yet been allocated and uses them
to buffer updates to the non-free bottom tracks. Block-
Swap can progressively swap hot (frequently updated)
bottom track blocks with cold (infrequently updated) top
track blocks to reduce the update overhead.

In DM-IMR, Top-Buffer is used in the second phase
and most of the third phase with the last few unallo-
cated top tracks serving as the buffer region. Near the
end of the third phase, as the disk usage increases and
the buffer region begins giving space to user data, Block-
Swap will gradually be brought in. When usage is 100%,
only Block-Swap is operational.

We implement DM-IMR as well as the baseline
schemes in an IMR simulator. Evaluation results show
that DM-IMR is able to increase throughput by 7.78×
and can reduce write amplification by 62.8% compared
to the baseline for some write intensive workloads.
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Figure 2: Three-Phase baseline design. Numbers show the ad-
dressing and allocation order of the tracks. Note that the second
phase has reversed allocation direction for better data locality.

2 Design
We investigate data management methods to address

the write amplification issue of IMR (Sec. 1) by propos-
ing two techniques in addition to the Three-Phase base-
line: namely top track buffering (Top-Buffer) and block
swapping (Block-Swap). We enhance Three-Phase by
adding Top-Buffer and Block-Swap in our proposed Data
Management design for IMR, called DM-IMR. DM-
IMR adapts to the changes in both space utilization and
hot spots of the workloads by switching smoothly from
Three-Phase, to Top-Buffer, to a combination of Top-
Buffer and Block-Swap, and eventually to Block-Swap-
only as the usage increases.

2.1 Assumptions
We assume the space manager (e.g., file system, log-

ical volume manager, I/O controller, etc.) allocates an
interlaced set of consecutive physical top and bottom
tracks, named a Track Group or TG (Fig. 2), to the ap-
plications. How the space manager allocates the space is
beyond the scope of this paper, as we only focus on the
data allocation and management within one TG.

Although there may be different track capacities
within one TG in real production disks due to factors
such as zone bit recording and sector defects, we assume
the top tracks within one TG have identical capacity and
the bottom tracks also have a unified, but higher, capac-
ity. The IMR configurations that we use are based on
testing data by Granz et al. [8] and summarized in Table
1. Our data management principles can be easily adapted
to other production settings.

2.2 Top Track Buffering (Top-Buffer)
Fig. 3a shows the design of Top-Buffer in which the

last few unallocated top tracks are organized as the Top-
Buffer region. Top-Buffer utilizes these unallocated top
tracks as buffers for updates to non-free bottom tracks
when the TG usage is not 100%. Top-Buffer is able to ac-
cumulate multiple updates to the same bottom data block
to reduce the rewrite penalty.

When the Top-Buffer is full, we evict buffered blocks
to reclaim space using a Sequential Cleaning Policy
(SCP). SCP cleans a whole Top-Buffer track at a time
by sequentially reading the buffered blocks on the tar-
get track (victim blocks) and writing them back to their

Table 1: IMR disk configuration.

Basic Parameters

Median Track pitch 820KTPI
Median top track density 1640KBPI

Median bottom track density 2030 KBPI
RPM 5400

Derived Parameters

#tracks (N) 1045800
Average bottom track size 2MB

Average top track size 1.6MB



1 2 3 4 5 7 9 10 11

12

6 8

1316 141517
18

0

22212019

Top-BufferAllocated Unallocated

OD ID

Track Group (TG)

(a) Top-Buffer with Max Size = 3 Tracks

Top-BufferAllocated Unallocated

Track Group (TG)
1 2 3 4 5 7 9 10 11

12

6 8

1316 141517
18

0

22212019
OD ID

(b) Top-Buffer with Two Tracks Given up

Top-Buffer

76

46

78
79

80

24

27

36
Block-Swap

Map. Tbl.

IDOD

Top-BufferAllocated

Track Group (TG)

36 78
46 79

76 24

27 80
24 76

lba pba

(c) Top-Buffer + Block-Swap

Figure 3: Illustration of Top-Buffer and Block-Swap.

original locations. The track to be cleaned is selected in
a round-robin fashion. Compared to other types of data
reclamation policies like Least Frequently Used (LFU)
or Least Recently Used (LRU), SCP is able to reclaim a
continuous space so that the Top-Buffer region will never
be fragmented. Thus, further write requests redirected to
the Top-Buffer will not be fragmented either. Also, SCP
has less metadata overhead since we neither maintain a
candidate list to determine the victim blocks nor update
the metadata after a write/read hit. However, some fre-
quently updated data blocks may be cleaned early with
SCP thus slightly harming performance.

Top-Buffer introduces a certain amount of overhead
in two ways. First, we build a block-level mapping to in-
dex buffered blocks. Every read/write to non-free bottom
tracks will be converted to reads/writes to both the map-
ping table and the data. Second, since the Top-Buffer
occupies unallocated top tracks, the bottom tracks over-
lapped by these previously unallocated top tracks will
now have an increased rewrite penalty as more valid data
blocks have to be protected.

We reduce the overhead of Top-Buffer with the fol-
lowing designs. First, we limit the size of the Top-Buffer
to be at most Bmax% of the TG, even if there are more un-
allocated top tracks available. This buffer size limit can
reduce the maximum size of the mapping table and allow
it to be kept in memory (memory table budget) for fast
searching. Therefore, the mapping table I/O for the data
already buffered is eliminated. For a write to a bottom
track block that is not yet buffered, the mapping entry
needs to be made persistent before the data is redirected
to the buffer. We put the mapping table entries for each
Top-Buffer track at the end of the track (1.6KB/track).
By locating the buffered data and the corresponding map-
ping entries in the same track, the seek time for mak-
ing persistent mapping entries is reduced. Second, as we
limit the size of the Top-Buffer, only a small portion of
the bottom tracks will have an increased rewrite penalty.

In our current implementation, we set Bmax% = 2%,
which only needs a memory table budget of 0.004% of
the TG size (assuming 4KB sectors) but can still cap-
ture a good amount of trace locality. The value of Bmax%
in a real environment depends on the system’s available
memory space. Top-Buffer currently only uses unallo-
cated top tracks from the TG end, and we leave poten-
tially better buffer track selection polices as future work.

When used space increases to where there are no more
unallocated tracks outside the Top-Buffer, Top-Buffer
will clean using SCP and give up tracks for user data
(Fig. 3b). As TG usage further increases, the Top-Buffer
size keeps decreasing. An extremely small Top-Buffer
will have very limited benefits or even worse perfor-
mance than the Three-Phase baseline.

2.3 Block Swapping (Block-Swap)
To improve performance when the size of the Top-

Buffer decreases, we propose block swapping (Block-
Swap) which progressively swaps hot (frequently up-
dated) bottom track blocks with cold (infrequently up-
dated) top track blocks. With Block-Swap, fewer updates
will go to the buffer and cleaning cost is reduced.

When used simultaneously, Block-Swap occurs dur-
ing SCP eviction of the Top-Buffer. Hot bottom blocks
chosen from SCP victim blocks are swapped with cold
top blocks selected from the TG.

Compared to Top-Buffer, Block-Swap has higher I/O
overhead, so the hot bottom and cold top blocks to be
swapped should be carefully selected. Hot data blocks
are selected from the victim blocks evicted from Top-
Buffer during SCP. A victim block is considered hot and
will be selected to be swapped with a top track block if
both of the following conditions are satisfied: 1) the ac-
cess count is greater than a threshold C; and 2) it belongs
to the top T hottest blocks in the victim block list. If ei-
ther of the conditions fails, the victim block will be con-
sidered cold and be written back to its original location.
To amortize the extra overhead of swapping, which is
eight I/Os (one read and one write each for the top block,
the bottom block, and its two neighboring top tracks), we
set the access count threshold C to eight. To further min-
imize the swapping overhead, T is set to 10%. C and T
could adapt automatically to the workload, but we leave
the investigation of an adaptive algorithm as future work.

To determine hot blocks that reside in the mapping ta-
ble, we maintain an update count for each mapping ta-
ble entry and increment a count number when the corre-
sponding block is updated. While a hot bottom block is
easy to keep track of, finding a cold block to swap is not
a trivial task. We cannot maintain a full table of access
counts for all blocks in the TG since the table will be
too large. For cold blocks, we design a heuristic random
selection algorithm which distributes the tracks into sev-



eral buckets with disjoint ranges of update counts. Con-
tinuously cold blocks will be selected for swapping from
a randomly chosen track in the bucket with the lowest
range of update counts.

During the swapping, a hot bottom block and cold top
block pair will be read and then written to each other’s lo-
cation using in-place update. Two new mapping entries
will be created to record the physical locations of the two
blocks. It is unrealistic to construct an all-to-all block
level mapping for the TG. We make a design decision
that the total size of the Block-Swap mapping table com-
bined with the Top-Buffer mapping table will be bounded
by a memory table budget size to be cached in the mem-
ory (see Sec. 2.2). When the unallocated space is greater
than Bmax% of the TG, Top-Buffer takes all of the map-
ping table budget and Block-Swap is not used. Block-
Swap will start when TG usage goes beyond 1−Bmax%,
which is when Top-Buffer starts to give up tracks to user
data and consumes less mapping table size from the total
budget. Fig. 3c shows an example where a bottom track
has four blocks and a top track has three, and Top-Buffer
and Block-Swap share the memory budget of the map-
ping table size. To keep the mapping simple, we only
select blocks that have not been swapped, i.e., a block
that has already been swapped once will not be chosen to
swap with another block. If a previously swapped pair of
blocks both become hot, they will first be unswapped and
then the hot bottom one will be swapped with a different
cold top block.

The Block-Swap mapping entry is updated and syn-
chronized to the disk after the swapping of the two data
blocks is completed. In our design, the persistent loca-
tions for the Block-Swap mapping entries are distributed
into the TG at the end of top tracks. If the Top-Buffer size
limit is set to be 2% of the TG, at most one top block is
needed for every 30 tracks (15 top and 15 bottom). Once
the block that stores the mapping entries is full, the top
data blocks in those 15 top tracks will not be selected as
cold blocks for swapping.

A trade-off in our current design is that writes that trig-
ger SCP have higher I/O latency, especially when the TG
is near full and the expensive Block-Swap occurs during
SCP. How to bound this tail latency is left as future work.

2.4 Data Management Design in IMR
In DM-IMR, the tracks are addressed and allocated in

the order specified by the Three-Phase baseline (Sec. 1).
For a usage U where 0 ≤ U ≤ 56%, writes are directly
issued to the disk as there is not yet valid data on the top
tracks. When 56% <U ≤ 1−Bmax%, the last Bmax% of
the TG is used as the Top-Buffer to accommodate up-
dates to the non-free bottom tracks. If 1−Bmax < U <
100%, all remaining unallocated tracks are used as the
Top-Buffer, and Block-Swap starts swapping hot bottom
data with cold top data. In this range of usage, the unallo-

cated top track capacity shrinks as the data usage grows,
and the Top-Buffer has to give the buffer space back to
the user data through cleaning. Meanwhile, more pairs
of blocks can be swapped because Top-Buffer takes up
less of the memory mapping table budget and Block-
Swap can consume more mapping table entries. Eventu-
ally, when U = 100%, Top-Buffer is off and only Block-
Swapping is used. Data will be directly written using in-
place update. Here, as there is no space for Top-Buffer,
Block-Swap will maintain a virtual Top-Buffer that only
collects update statistics to aid swapping decisions.

3 Evaluation
3.1 Implementation

Since no real IMR products are available, we built an
IMR simulator where top and bottom tracks have differ-
ent areal densities and data rates as described in [8] (see
Table 1). The I/O latencies are calculated with equations
extracted from DiskSim [15].

We implement DM-IMR and two baseline approaches:
Three-Phase and Buffer-Only. The Buffer-Only scheme
uses Top-Buffer without Block-Swap when 56% <U <
100%. Buffer-Only also has a buffer size limit of Bmax%
(Bmax% = 2% in our evaluation). Block size is set to
512 bytes to align with the Microsoft Research (MSR)
Cambridge traces [16] used for evaluation.

3.2 Results
We measure two metrics, average throughput and

write amplification (WA), when comparing DM-IMR
with the baseline schemes in different TG usages. Here
WA is the amount of data actually written to the disk di-
vided by the amount written by the user.

All the MSR traces are tested comparing Three-Phase,
Buffer-Only, and DM-IMR (Fig. 4). Fig. 4b plots the av-
erage speedup and the normalized average WA of DM-
IMR and Buffer-Only relative to the Three-Phase base-
line (as 1 in the plots) for all traces with different TG
usages ranging from 60% to 100%. Usages under 56%
are not used as the performance is identical. Fig. 4a
shows detailed throughput and WA plots for each trace
at 99.9% TG usage to illustrate the unnormalized perfor-
mance differences between Buffer-Only, DM-IMR, and
Three-Phase for various workloads.

In Fig. 4a, we can see all traces have increased
throughputs from Three-Phase to Buffer-Only and fur-
ther to DM-IMR. The best speedup of DM-IMR from
Three-Phase is 7.78× (prxy 0), and the WA reduction
can be 62.8% (wdev 1) for some write intensive traces.
There are different throughput speedups for two reasons:
1) different traces have different write/read ratios, and
read intensive workloads (e.g., hm 1, write ratio 4.7%,
speedup 1.35×) will not have as much speedup as write
intensive ones (e.g., prxy 0, write ratio 96.9%); and 2)
the writes have different levels of locality, and traces with
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Figure 4: Test Results for Throughput and Write Amplification.

low write locality (e.g., src1 2, hit ratio 5.1%, speedup
2.24×) will benefit less from DM-IMR than those with
good locality (e.g., prxy 0, hit ratio 40.4%). We can
observe in the bottom graph of Fig. 4a that DM-IMR re-
duces the WA in all traces. Some traces have higher WAs
in Buffer-Only yet have greater throughputs than Three-
Phase (e.g., proj 0). In this case, although Buffer-Only
rewrites more data than Three-Phase, it does so in fewer,
larger, consecutive writes. The benefit of fewer random
writes negates the downside of more data being written
and even brings performance gain.

In Fig. 4b, we can see that DM-IMR has performance
benefit across a wide range of TG usages. DM-IMR
and Buffer-Only have identical performance when unal-
located top tracks are greater than Bmax% = 2% of the
TG since they both solely use Top-Buffer. Their per-
formances start to diverge when the usage goes beyond
98%. The WA of Buffer-Only starts to grow due to a de-
creasing Top-Buffer capacity, and thus the performance
begins to drop. In contrast, DM-IMR starts using Block-
Swap and can still keep up the performance gain while
maintaining low WA when TG is nearly full. Thanks
to Block-Swap, at 100% usage DM-IMR can still im-
prove the performance (10.1% higher throughput, 3.5%
less WA than the Three-Phase baseline), while Buffer-
Only is not able to operate.

The performance gain of DM-IMR over Three-Phase
is not significant at low usage (e.g., 60%). When the
usage is low, there are many unallocated top tracks and
the rewrite penalty of updating a bottom track is small or
even zero for free bottom tracks. In this case, there is not
much margin for improvement. Additionally, Top-Buffer
causes extra I/Os (e.g., mapping table flushes and data
migration) and an increased rewrite penalty for bottom
tracks that are covered by the Top-Buffer region.

4 Related Work
There have been several existing works on data han-

dling algorithms for SMR [17–30]. However, for the
emerging IMR, we only find works by Gao et al. [7, 14],

where two data management schemes are proposed: a
two-phase and a three-phase implementation. In their
two-phase implementation, bottom tracks are first allo-
cated and then the top tracks. In their three-phase imple-
mentation, while bottom tracks are allocated during the
first phase in the same way as the two-phase implemen-
tation, only alternating top tracks are allocated in the sec-
ond phase. There is a final third phase allocating space
from the remaining top tracks. In both their two-phase
and three-phase implementation, tracks are allocated in
the same radial direction. Our work first proposes a
Three-Phase baseline that differs from their three-phase
implementation by reversing the second phase allocation
direction to preserve data locality. Further, whereas their
three-phase implementation maps data blocks statically,
our DM-IMR can adapt to the access pattern of dynamic
workloads by buffering updates to the unallocated top
tracks (Top-Buffer) and swapping hot bottom track data
with the cold top track data (Block-Swap).

5 Conclusion
IMR is a recently proposed technology that can have a

higher areal data density with much less rewrite penalty
compared with SMR when used with HAMR. In this
paper, we investigate how IMR can be used with even
less write amplification and better throughput. We
first propose a Three-Phase baseline and then present
our scheme, DM-IMR, which enhances the Three-Phase
baseline with two key techniques: Top-Buffer and Block-
Swap. Evaluations with Microsoft Research Cambridge
traces show that DM-IMR can increase the throughput
and reduce the write amplification for all traces when
compared with the Three-Phase baseline approach.
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