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These notes expand the material on polynomial interpolation in Heath, filling in gaps
with further explanation and proofs of some statements.

1 Polynomial Interpolation

The interpolation problem that we are interested in is the following: Given a continuous
function f(x) defined on the interval [a, b] and n distinct nodes (x-coordinates) satisfying

a ≤ x1 < x2 < · · · < xn ≤ b,

find an interpolation polynomial p(x) such that

f(xj) = p(xj), j = 1, . . . , n.

This is sometimes called Lagrange interpolation to distinguish it from Hermite interpolation,
see below. For the basics, see Chapter 7 in Heath.

As in Heath, we let Pn be the (function) space of polynomials of degree at most n. We
let C([a, b]) denote the set of continuous functions on the interval [a, b]. Similarly, we let
Cn([a, b]) be the n times continuously differentiable functions on [a, b].

1.1 Existence and uniqueness

The main existence result says that the interpolation polynomial above always exists and
that there is only one polynomial of degree (at most) n−1 that interpolates n given, distinct,
nodes. To be precise, we write this as a theorem.

Theorem 1 For any set of n distinct nodes x1 < · · · < xn and associated function values
f(xj), there exists a unique polynomial p(x) in Pn−1 for which

f(xj) = p(xj), j = 1, . . . , n. (1)

Proof: There is a proof in the beginning of Section 7.3.1 in Heath (not available in the old
edition). Another proof is as follows. Introduce the Lagrange polynomials (aka fundamental
or characteristic polynomials) for the nodes,

�j(x) :=
n∏

i=1
i�=j

x− xi

xj − xi
, j = 1, . . . , n. (2)
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We claim that the interpolation polynomial is given by

p(x) =
n∑

i=1

f(xi)�i(x). (3)

First, since there are n− 1 factors in the product defining the Lagrange polynomials in (2),
each of them belong to Pn−1. A sum of polynomials in Pn−1 is still in Pn−1, so p(x) ∈ Pn−1.
Second, it is easy to see that the Lagrange polynomials have the property

�i(xj) = δi−j :=

{
0, i �= j,

1, i = j.

Therefore, the polynomial satsifies (1):

p(xj) =
n∑

i=1

f(xi)�i(xj) =
n∑

i=1

f(xi)δi−j = f(xj).

Finally, to show the uniqueness, suppose there is another polynomial p̄(x) ∈ Pn−1 that
also satisfies (1). Then q(x) := p(x) − p̄(x) belongs to Pn−1 and q(xj) = p(xj) − p̄(xj) =
f(xj)−f(xj) = 0 for all j. But a polynomial in Pn−1 with n distinct zeros must be identically
zero, hence p(x) ≡ p̄(x). ✷

1.2 Interpolation error

A theoretically useful expression for the pointwise interpolation error is contained in the
following theorem.

Theorem 2 Suppose f ∈ Cn([a, b]). Let p(x) be the unique polynomial in Pn−1 interpolating
f(x) at the nodes {xj} with a = x1 < x2 < · · · < xn = b. Then, for each x ∈ [a, b] there is
a ξ ∈ [a, b] (depending on x), such that

f(x) − p(x) =
f (n)(ξ)

n!
(x− x1)(x− x2) · · · (x− xn). (4)

Moreover, if h = maxj xj+1 − xj,

||f − p||∞ := sup
a≤x≤b

|f(x) − p(x)| ≤ hn

4n
||f (n)||∞. (5)

Proof: We start by showing (4). It is trivially true when x = xj for some j (“0 = 0”). We
therefore fix an x such that x �= xj for all j, and set

g(t) := f(t) − p(t) − ω(t)
f(x) − p(x)

ω(x)

where ω(t) = (t− x1) · · · (t− xn). We note that g(t = x) = 0 and g(t = xj) = 0 for all j, so
g(t) has at least n + 1 zeros. By Rolle’s theorem, applied to successive zero crossings, g′(t)
therefore has at least n zeros. Since g ∈ Cn (because f ∈ Cn) we can use this argument
inductively n times and conclude that g(n)(t) has at least one zero in [a, b], which we denote
ξ. Hence,

0 = g(n)(ξ) = f (n)(ξ) − p(n)(ξ) − ω(n)(ξ)
f(x) − p(x)

ω(x)
.
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But p(n)(x) ≡ 0 since p ∈ Pn−1 and ω(n)(x) ≡ n! since it has leading coefficient one and
belongs to Pn. We obtain

f (n)(ξ) − n!
f(x) − p(x)

ω(x)
= 0,

from which (4) follows. Finally, suppose xj ≤ x < xj+1 for some j with 1 ≤ j ≤ n−1. Then

|ω(x)| = |x− x1| · · · |x− xj | · · · |x− xn|
≤ jh (j − 1)h · · · 2h (x− xj)(xj+1 − x) 2h · · · (n− j)h
= (x− xj)(xj+1 − x)hn−2j!(n− j)!

≤ (xj+1 − xj)2

4
hn−2j!(n− j)! ≤ hn

4
(n− 1)!

This estimate, together with (4), gives (5). ✷

Some remarks:

• The estimates (4) and (5) do not necessarily mean that the error ||f − p||∞ decreases
to zero when we interpolate with more and more points (increase n). Eventhough h
may go to zero the derivatives of f , i.e. ||f (n)||∞, can grow rapidly and prevent con-
vergence. Equidistant interpolation of Runge’s function is a striking example showing
that this can indeed happen. (See Fig. 7.7 in Heath.) In fact, high order polynomial
interpolation on equally spaced nodes is notoriously bad, in particular close to the end
points of the interval.

• When the interpolated function f is analytic around the interval, with poles sufficiently
far away, the error does decrease to zero with n for equidistant interpolation. This
is because ||fn||∞ cannot grow too fast with n for analytic functions. Let us make a
simple derivation. Suppose the interval is [−a, a] with a + ε < R for some ε > 0 and
R is the distance from the origin to the closest pole (the radius of convergence). A
defining property of analytic functions is that

sup
|z|≤a

|f (n)(z)| ≤ Cεn!r−n, r = R− a− ε,

where Cε is a constant that depends on ε but not on n. Since h = 2a/(n − 1) for
equidistant interpolation on n nodes, Theorem 2 and Stirling’s formula (i.e. (n−1)! ≤
nne−(n−1)) yield

sup
a≤x≤b

|f(x) − p(x)| ≤ Cε

(
2a

n− 1

)n 1
4n

n!r−n ≤ Cεe

4

(
n

n− 1

)n (
2a
re

)n

.

Noting that 1 + x ≤ exp(x) we have for n > 1

sup
a≤x≤b

|f(x) − p(x)| ≤ Cεe

4

[
exp

(
1

n− 1

)]n (
2a
re

)n

≤ Cεe
3

4

(
2a
re

)n

.

The error hence tends to zero with n provided 2a < re, which is equivalent to

R >

(
1 +

2
e

)
a + ε ≈ 1.74 a + ε.

This is not a sharp bound, and equidistant polynomial interpolation converges also for
smaller R. The important point, however, is that we always get convergence when R is

3



sufficiently large. For Runge’s example, a = 1 but R is too small: since ±0.2i are the
poles, R = 0.2. On the other hand, functions which are analytic everywhere, entire
functions such as exp(z), have R = ∞ and they are particulary well approximated by
polynomials, c.f. exercise 1, lab 2.

• Discouraged by Runge’s example, one may wonder if it is at all possible to find poly-
nomials such that ||f − pn||∞ → 0 when f is not analytic. The answer is, however,
positive. It is given by the Weierstrass approximation theorem:

Theorem 3 For any function f ∈ C([a, b]) there is a sequence of polynomials p0, p1, . . . ,
such that

lim
n→∞ ||f − pn||∞ = 0.

Hence, even when f is merely continuous it can always be approximated arbitrarily
well by a polynomial. One can also show that for each continuous function f ∈ C([a, b])
and degree n, there is a unique polynomial of best approximation p∗n ∈ Pn such that

||f − p∗n||∞ = min
p∈Pn

||f − p||∞.

and that p∗n interpolates the function at the n+ 1 best nodes a ≤ x∗
1 < · · · < x∗

n+1 ≤ b,

p∗(x∗
j ) = f(x∗

j ), j = 1, . . . , n + 1.

The best polynomial is thus interpolating, but unfortunately the location of the best
nodes depends on f which makes them inconvenient to use.

2 Hermite interpolation

In Hermite interpolation also the derivatives of the function are interpolated. The inter-
polation problem can be stated as follows. Given a function f ∈ CM ([a, b]) and n distinct
nodes,

a ≤ x1 < x2 < · · · < xn ≤ b,

find an interpolation polynomial p(x) such that

f (k)(xj) = p(k)(xj), j = 1, . . . , n, k = 0, . . . ,mj ,

where mj ≤ M . The simplest form is so called osculatory interpolation where mj = 1 for
all j,

f(xj) = p(xj), f ′(xj) = p′(xj), j = 1, . . . , n.

The previous results for Lagrange interpolation generalize to Hermite interpolation. We
have

Theorem 4 (Existence and uniqueness) If the nodes are distinct, then there exists a
unique polynomial p(x) in PN−1, with N =

∑n
j=1(mj + 1), that solves the Hermite interpo-

lation problem above.

and

Theorem 5 (Interpolation error) Let p(x) be the Hermite interpolation polynomial. Un-
der the assumptions above, and if f ∈ CN ([a, b]) with N =

∑n
j=1(mj +1), there is a ξ ∈ [a, b]

(depending on x), such that

f(x) − p(x) =
f (N)(ξ)

N !
(x− x1)(m1+1)(x− x2)(m2+1) · · · (x− xn)(mn+1).
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3 Alternatives to High Order Equidistant Interpolation

As mentioned above, high order polynomial interpolation on equally spaced nodes is noto-
riously bad, in particular close to the end points of the interval. Two ways of improving the
interpolation are to use low order piecewise polynomial interpolation, or to use nodes that
are not equidistant.

3.1 Piecewise polynomial interpolation

Here we divide the interval I = [a, b] into a set of m subintervals separated by the m + 1
knots {xj},

Ij = [xj , xj+1], a = x1 < x2 < · · · < xm+1 = b.

We then use polynomial interpolation of order k in each of the subintervals, usually with
k � m. Let qj(x) ∈ Pk be the polynomial in interval Ij and let the interpolation nodes in
Ij be equidistant. We then have

f(xi,j) = qj(xi,j), xi,j = xj + (i− 1)δ, δ =
xj+1 − xj

k
, i = 1, . . . k + 1.

Finally, we define p̃k,m(x) ∈ C([a, b]) to be the piecewise polynomial function defined by

p̃k,m(x) = qj(x), x ∈ Ij .

The total number of nodes on which we interpolate is now n = km + 1. In fact, calling
y(j−1)k+i = xi,j we have have that

f(y�) = p̃k,m(y�), a = y1 < y2 < · · · < yn = b.

Let us now assume that the subintervals are all of the same size, xj+1 − xj = (b − a)/m.
Then the nodes {y�} are equidistant and y� = (�− 1)δ with δ = (b− a)/(n − 1). It is then
easy to see that the uniform interpolation error goes to zero with n if k is fixed. Suppose
that f ∈ Ck+1([a, b]). Then formula (5) in Theorem 2 gives

||f − p̃k,m||∞ = max
1≤j≤m

||f − qj ||∞ ≤ δk+1||f (k+1)||∞
4(k + 1)

≤ (b− a)k+1||f (k+1)||∞
4(k + 1)(n− 1)k+1

≤ Ckn
−(k+1),

(6)
for some constant Ck independent of n. We say that the order of accuracy (in function
evaluations n) is k + 1.

Example: Piecewise linear interpolation. This is when the interpolation points are simply
connected by straight lines. Then k = 1 and the error is O(n−2). Similarly, for quadratic
interpolation the error is O(n−3).

Note that, in this case when we interpolate on equidistant nodes there is no problem with
convergence. This should be contrasted to the case when we used high order equidistant
interpolation, where the Runge phenomenon could prevent convergence. With piecewise
interpolation the error always decays uniformly to zero when we take more points, even for
low order interpolation, i.e. small k. This is important since interpolation on equidistant
nodes is of substantial practical interest. Function data is typically obtained in this way,
e.g. from measurements or from computations that use regular grids.
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3.1.1 Piecewise Hermite interpolation

The piecewise interpolant p̃k,m introduced above is continuous at the subinterval boundaries
(at the knots xj), but even for large k its derivatives are typically discontinuous. It is thus
not smooth which may sometimes be a problem. One solution to this is to use piecewise
Hermite interpolation, where we let qj(x) in the description above satisfy

f (�)(xj) = q
(�)
j (xj), f (�)(xj+1) = q

(�)
j (xj+1), j = 1, . . . ,m, � = 0, . . . , k.

Hence, in each subinterval we pick the polynomial that agrees with the function f and
its first m derivatives at the subinterval boundaries. Then by Theorem 4 we must take
qj ∈ PN−1 with N = 2k + 2. We still let p̃k,m denote the piecewise polynomial (eventhough
k now signifies something else). By the conditions above it is clear that p̃k,m ∈ Ck([a, b])
and it is hence more smooth than for Lagrange interpolation. In this case we also get error
estimates for the derivatives of p̃k,m,

||f (�) − p̃
(�)
k,m||∞ ≤ C�km

−(N−�)||f (N)||∞, � = 0, . . . , k. (7)

provided f ∈ CN ([a, b]). (Here C�k is a constant that depends on �, k but not on m.) The
order of accuracy for p̃k,m is thus N and for each derivative the order decreases by one.

3.1.2 Cubic splines

Another possibility to obtain smoother interpolants, is to use splines which are piecewise
polynomials with continuity requirements imposed on their derivatives at the knots. The
most common example is the cubic spline. Here we let qj ∈ P3 satisfy

f(xj) = qj(xj), f(xj+1) = qj(xj+1), j = 1, . . . ,m,

and
q′j(xj) = q′j−1(xj), q′′j (xj) = q′′j−1(xj), j = 2, . . . ,m,

and some boundary conditions at x1 = a and xm+1 = b, for instance q′′1 (a) = q′′m(b) = 0. We
let sm(x) denote the full spline function,

sm(x) = qj(x), x ∈ Ij .

Note that we do not need to know the derivatives of f at the knots in this case. The extra
conditions compared to Lagrange interpolation, are instead used to make both the first and
and second derivative continuous everywhere, so that sm ∈ C2([a, b]). In order to determine
qj we must solve a tridiagonal linear system of equations at a cost of O(m) operations. Also
for splines we get an error estimate of the form (7),

||f (�) − s(�)
m ||∞ ≤ C�m

−(4−�)||f (4)||∞, � = 0, . . . , 3.

provided f ∈ C4([a, b]).
We conclude with summing up the results in a theorem.

Theorem 6 For piecewise polynomial interpolation on n equidistant points, we have the
following error estimates.

||f − p̃||∞ ≤ Ckn
−(k+1), p̃ ∈ C0, k-th order Lagrange interpolation, f ∈ Ck+1,

||f (�) − p̃(�)||∞ ≤ C�kn
−(2k+2−�), p̃ ∈ Ck, k derivatives Hermite interpolation, f ∈ C2k+2,

||f (�) − s(�)||∞ ≤ C�n
−(4−�), s ∈ C2, cubic splines, f ∈ C4.

6



Final remark:

• The error estimates all require some smoohtness of f . For less regular functions the
order of accuracy decreases. Suppose e.g. that f ∈ Cs with s < k + 1 for Lagrange
interpolation. Then (4) must be replaced by

f(x) − p(x) =
f (s)(ξ) − p(s)(ξ)

n!
(x− y1)(x− y2) · · · (x− ys),

where {yj}s
j=1 is any subset of {xj}k+1

j=1 . By the same arguments that led up to (6),
one obtains an order of accuracy of s, i.e. ||f − p̃k,m||∞ = O(n−s). It therefore makes
little sense to use high order interpolation (k + 1 > s) for non-smooth f . This is a
typical result also for other interpolation methods.

3.2 Better placed nodes

Another method of improving the bad convergence properties of high order equidistant
interpolation is to use nodes that are not uniformly distributed in the interval. Given the
error formula (4) a natural way to select the nodes is to find the points {xj} ⊂ [a, b] which
minimize

sup
a≤x≤b

|x− x1| · · · |x− xn|.

When the interval [a, b] = [−1, 1] this strategy gives the Chebyshev nodes,

xc
j = − cos(θ0 + (j − 1)∆θ), θ0 =

π

2n
, ∆θ =

π

n
, j = 1, . . . , n.

The polynomials
Tn(x) = 2n−1(x− xc

1) · · · (x− xc
n)

are called the Chebyshev polynomials and they have the so-called min-max property

max
−1≤x≤1

|21−nTn(x)| = min
ω∈P1

n

max
−1≤x≤1

|ω(x)| = 21−n,

where P
1
n are the polynomials of degree up to n with leading coefficient one. With these

nodes one can for instance show the following error estimate. If f ∈ Cs([−1, 1]), then

||f − pn||∞ ≤ C n−s log(1 + n)||f (s)||∞.

Hence, if f is just continuously differentiable, f ∈ C1, then Chebyshev interpolation always
converges with n. The order of accuracy is only constrained by the regularity s of f .
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