
CSci 8271
Security and Privacy in Computing

Day 11: Kernel debloating and hardening
Stephen McCamant

University of Minnesota

Bloat and security risk

Security bugs are often found in code that wasn’t
actually needed

Heartbleed, log4shell are well-known examples

The Linux kernel has over 30MLOC, your app
doesn’t need it all

Static vs. dynamic reachability

Static: what code appears reachable in the call graph

Dynamic: what code executes under some test
cases

What to do with the large gap between them?

This paper: apply otherwise-expensive hardening
techniques

Shadow stack and CFI

Shadow stack: save return addresses in a safe place
separate from variables

Shadow stack location is randomized to make hard to
otherwise access

(Forward-edge) CFI: enforce legal target set for
indirect jumps

Legal targets in a 2-level page-table-like structure

Code versions and context switching

One version unprotected, one version hardened

One set of dynamically reachable functions for each
application and system call

Padding to ensure layout consistency

Switching implemented by changing nested page
tables via a hypervisor

Security and performance results

Median 0.2%, max 4.87% of code is reachable per
syscall

5/10 vulnerabilities and 4/5 payloads are blocked

Syscall overhead goes from 0.43us to 3.25us

Worst overhead is for nginx serving small files, 37%

Redis (repeating syscalls) and SPEC CPU (fewer
syscalls) are faster


