
CSci 8271
Security and Privacy in Computing
Day 12: Authenticated call stack

Stephen McCamant

University of Minnesota

Existing shadow stacks

Provides strong (dynamic) CFI for return addresses

Software implementations have
performance/security trade-offs
Can be cheap with specialized hardware

Research designs, Intel CET

Today: based on a more general-purpose protection

ARM pointer authentication

Support for computing and checking MACs on code
and data pointers

Tag stored in top bits (16 or so out of 64)

Keys can be restricted to kernel management

Verification failure just makes an invalid pointer

Chaining and masking

Previous approaches tie the SP with the return
pointer

Good, but some replays are still possible

Instead, chain by including the caller’s value in the
MAC

C.f. Merkle tree, blockchain

To hide hash collisions, XOR with another MAC value

Security analysis

Memory-based attacker needs two steps to
influence control flow
Without masking, finding a collision is practical

Easiest is getting elsewhere in the legal call graph

With masking, attacker must just be lucky in getting
a collision

Performance and applicability

Real benchmarks aren’t possible yet
Simulated PA overhead

Slower than less-secure shadow stacks
3% overhead on SPEC and up to 13% on NGINX

Multi-threading is automatic, longjmp not

Degraded but some benefit if only part of a program
is protected


