CSci 8271
Security and Privacy in Computing
Day 12: Authenticated call stack

Stephen McCamant
University of Minnesota

Existing shadow stacks

£) Provides strong (dynamic) CFl for return addresses
©) Software implementations have
performance/security trade-offs
£) Can be cheap with specialized hardware
® Research designs, Intel CET
£) Today: based on a more general-purpose protection

ARM pointer authentication

©) Support for computing and checking MACs on code
and data pointers

©) Tag stored in top bits (16 or so out of 64)

©) Keys can be restricted to kernel management

) Verification failure just makes an invalid pointer

Chaining and masking

£) Previous approaches tie the SP with the return
pointer
® Good, but some replays are still possible
£ Instead, chain by including the caller’s value in the
MAC
® Cf. Merkle tree, blockchain

) To hide hash collisions, XOR with another MAC value

Security analysis

£) Memory-based attacker needs two steps to
influence control flow
©) Without masking, finding a collision is practical
® Easiest is getting elsewhere in the legal call graph
©) With masking, attacker must just be lucky in getting
a collision

Performance and applicability

£) Real benchmarks aren't possible yet

® Simulated PA overhead
) Slower than less-secure shadow stacks

® 3% overhead on SPEC and up to 13% on NGINX
©) Multi-threading is automatic, 1ongjmp not

£) Degraded but some benefit if only part of a program
is protected




