
CSci 8271
Security and Privacy in Computing

Day 16: Token-level fuzzing
Stephen McCamant

University of Minnesota

Input fuzzing in user space

Testing code like libraries or parsers by randomly
generating inputs

Commonly, start with real seed inputs, then
randomly modify (mutate) them

Coverage (AFL) or other feedback guides the search
in interesting directions

Trade-offs of byte mutation and grammars

Mutations are often just byte-level changes
Replace, flip bit, insert, delete, splice

Alternative: have the fuzzing tool know the input
grammar

Can be used for pure generation, or grammar-aware
mutation

Common disadvantages of grammar-based fuzzing:
Building the grammar is extra work, and it can be wrong
The grammar may miss interesting (e.g., illegal) inputs

Token-level fuzzing approach, JavaScript

Middle ground: fuzz input as a sequence of tokens
Legal tokens are curated similar to a grammar
Token sequence mutated like a byte sequence

Security application: JavaScript JITs
Security sensitive because JS comes from untrusted
sites
Relatively complex language and DOM

Comparison and bug-finding results

Applied to JS engines of top-4 browsers
Generally favorable comparison with vanilla AFL,
grammar-based tools
CodeAlchemist with a large seed set gets better block
coverage

Also including a 60-day solo run, 27 unique new
bugs found

Over $10,000 in bug bounties

Future generalization and improvement

New applications would need token definitions, still
easier than a full grammar

Could combine with smarter seed selection

Apply AFL scalability changes for many edges and
queue entries

Ensemble approach with other JS fuzzers

