
Computer Science 4271
Fall 2022
Midterm 1 (fixed, solutions)
October 18th, 2022
Time Limit: 75 minutes, 4:00pm-5:15pm

� Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this
page.

� This exam contains 8 pages (including this cover page) and 4 questions. Once we tell you to
start, please check that no pages are missing.

� You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

� You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

� Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

� By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 5:15pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

Question Points Score

1 20

2 24

3 28

4 28

Total: 100

Computer Science 4271 Midterm 1 (fixed, solutions) - Page 2 of 8

1. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) B A sequence of instructions ending in a return

(b) H Falsely denying that an action took place

(c) G A bit used by AMD to implement W ⊕ X

(d) C Freedom from unauthorized data modification

(e) J A defense that limits attackers to code reuse

(f) E A function to change memory permissions

(g) D A function to copy a given number of bytes

(h) F Padding code for shellcode

(i) I A function to copy bytes up to a null terminator

(j) A Choosing random base addresses for memory regions

A. ASLR B. gadget C. integrity D. memcpy E. mprotect F. NOP sled G. NX
H. repudiation I. strcpy J. W ⊕ X

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

0 00 NUL 16 10 DLE 32 20 48 30 0 64 40 @ 80 50 P 96 60 ‘ 112 70 p

1 01 SOH 17 11 DC1 33 21 ! 49 31 1 65 41 A 81 51 Q 97 61 a 113 71 q

2 02 STX 18 12 DC2 34 22 " 50 32 2 66 42 B 82 52 R 98 62 b 114 72 r

3 03 ETX 19 13 DC3 35 23 # 51 33 3 67 43 C 83 53 S 99 63 c 115 73 s

4 04 EOT 20 14 DC4 36 24 $ 52 34 4 68 44 D 84 54 T 100 64 d 116 74 t

5 05 ENQ 21 15 NAK 37 25 % 53 35 5 69 45 E 85 55 U 101 65 e 117 75 u

6 06 ACK 22 16 SYN 38 26 & 54 36 6 70 46 F 86 56 V 102 66 f 118 76 v

7 07 BEL 23 17 ETB 39 27 ’ 55 37 7 71 47 G 87 57 W 103 67 g 119 77 w

8 08 BS 24 18 CAN 40 28 (56 38 8 72 48 H 88 58 X 104 68 h 120 78 x

9 09 HT 25 19 EM 41 29) 57 39 9 73 49 I 89 59 Y 105 69 i 121 79 y

10 0A LF 26 1A SUB 42 2A * 58 3A : 74 4A J 90 5A Z 106 6A j 122 7A z

11 0B VT 27 1B ESC 43 2B + 59 3B ; 75 4B K 91 5B [107 6B k 123 7B {

12 0C FF 28 1C FS 44 2C , 60 3C < 76 4C L 92 5C \ 108 6C l 124 7C |

13 0D CR 29 1D GS 45 2D - 61 3D = 77 4D M 93 5D] 109 6D m 125 7D }

14 0E SO 30 1E RS 46 2E . 62 3E > 78 4E N 94 5E ^ 110 6E n 126 7E ~

15 0F SI 31 1F US 47 2F / 63 3F ? 79 4F O 95 5F _ 111 6F o 127 7F DEL

Page 2

Computer Science 4271 Midterm 1 (fixed, solutions) - Page 3 of 8

2. (24 points) STRIDE classification.

In each of the following scenarios, we describe 6 threats, one each from the STRIDE clas-
sification of spoofing, tampering, repudiation, information disclosure, denial of service, and
escalation of privilege. Write the letters S, T, R, I, D, and E in the appropriate order in the
blanks according to which type of threat each is. In our answer, each of the letters is used
exactly once in each scenario.

Optionally, there is also one blank next to a blank space for each scenario. If you don’t like our
examples, you can write one new threat and STRIDE classification of your own in this space,
and if it’s a good example, it can compensate for one other threat in the scenario we marked
wrong.

In each scenario, people whose names start with A are attackers, and those whose names start
with V are victims.

(a) In-person voting on election day. Most of these can work whether the voting is on paper
or electronic.

R Alice votes once, comes back later, and votes again claiming it is her first time

D Alice pulls the fire alarm and the polling place is evacuated

T Alice changes Vicki’s mayoral vote from Bob to Charlie

E Alice is a regular voter, but gets the election judge’s keyring

I Alice gets a list of everyone who voted for Bob for mayor

S Alice uses a fake ID to cast a ballot under Vicki’s name

(b) Oliver’s online olive oil electronic commerce website. Adam is a customer, Alex is a
competitor, and Arnold is just a vandal.

E Arnold discovers the configuration page admin.php is not password protected

D Alex files a trademark lawsuit to get Oliver’s web hosting taken down

S Adam orders rancid olive oil to be delivered to Victor

R Adam gets a delivery, but claims it was lost and asks for a refund

I Adam gets Victor’s credit card number

T Arnold changes the product descriptions to add awful puns

Page 3

Computer Science 4271 Midterm 1 (fixed, solutions) - Page 4 of 8

3. (28 points) Multiplication and memory allocation.

Consider the following C function which attempts to allocate memory for, and then read in,
a number of integers controlled by the argument num ints. Use it to answer the questions on
the following page.

int *alloc_and_read(unsigned char num_ints) {

unsigned char size = sizeof(int) * num_ints;

if (size < num_ints) { /* overflow check */

fprintf(stderr, "Uh-oh, overflow!\n");

exit(1);

}

int *ary = malloc(size);

if (!ary) {

fprintf(stderr, "Allocation failed\n");

exit(1);

}

int i;

for (i = 0; i < num_ints; i++)

ary[i] = read_int();

return ary;

}

Assume that sizeof(int) is 4, as it is on x86-64. We’ll use the variable n to represent the
value of num ints, which is between 0 and 255 in decimal (0x00 to 0xff in hex). Because
the variable size is also only an unsigned char, its value is also limited to between 0 and
255. Specifically, the value stored in size will be (4 · n) mod 256. The “mod 256” operation is
also the same as discarding all but the two lowest hex digits, or all but the 8 lowest bits, of a
number.

You can use decimal, hexadecimal, or binary in your answers, but to keep them distinct, write
hexadecimal numbers with a 0x prefix and binary numbers with an 0b prefix. It is enough to
write just the formula or number if it is correct, but a short explanation of your answer may
help us give partial credit. You don’t need to simplify formulas.

This question is a variation on the idea of integer overflow on multiplication that can lead to
a buffer overflow, something we talked about it class and that came up in lab 2. The key point
of this question is that the code in this function that describes itself as an overflow check is
incomplete: there are some overflow conditions that are not caught be the check, so the code
is still vulnerable. Multiplication by 4 is supposed to make any positive number only larger, so
multiplying a non-negative value by 4 and getting a result that is smaller could only be the result
of an overflow. You might have previously seen addition of two numbers, or multiplication by
2, checked for overflow in this way. However for multiplication by 4 getting a smaller result is
not a complete check: a smaller result means you had overflow, but you can also have overflow
without the result being smaller. The parts of the question were intended to lead you through
this, by examining the condition on the if and the actual circumstances of overflow, and seeing
the difference between them.

There are three important quantities that come up during execution here, which the notation in
the question suggests you refer to as n, 4n, and 4n mod 256. We always have 0 ≤ n ≤ 4n, with

Page 4

Computer Science 4271 Midterm 1 (fixed, solutions) - Page 5 of 8

the inequalities being strict if n in non-zero. (n = 0 is a special case because it is unspecified
whether malloc will succeed or fail.) But 4n mod 256 can be anywhere between 0 and 4n.

We wanted you to answer parts (a) and (b) by writing down a formula comparing two values
in the most direct way, without trying to simplify the formula or solve it as an explicit set of
values. Though solving the formulas in (a) and (b) could potentially make part (c) easier, it
was easy to make mistakes in doing this.

(a) Write a mathematical formula, in terms of the variable n, which will be true for those
values of n that cause the message “Uh-oh, overflow!” to be printed.

4n mod 256 < n

You can get this formula by just substituting the definitions of size and num ints into the
if condition that guards the message printing.

Finding the explicit ranges of n that satisfy this formula requires more computation, which
you would have been better off not trying to do during the exam. But if you’re curious: the
values of n for which this relationship hold come in three disjoint ranges. 4n mod 256 = 0
whenever n is a multiple of 64, so for n = 64, n = 128, and n = 192, the result is 0 and
clearly less than n. The inequality will still hold for values slight larger than all of these:
for instance for n = 70, 4n mod 256 = (4 · 70) mod 256 = 24 and 24 < 70. As for when
the ranges end, you can use the intuition that it should be about at those values of n where
4n mod 256 = n, i.e. 4n ± k · 256 = n for some integer i. Besides the obvious cases of
n = 0 and n = 256 (which is one past the largest possible value), the other cutoffs should
be around solutions of k · 256 = 3n, so 3n = 256 and 3n = 512. Of course these don’t
come out to round numbers: 256/3 is 85+1/3 and 512/3 is 170+2/3. So you’d round the
threshold values down to get the last value for which the inequality holds. Thus the ranges
are [64, 85], [128, 170], and [192, 255].

(b) Pretend for a moment that the if statement labeled “overflow check” were not present.
Write a mathematical formula, in terms of the variable n, which will be true for those
values of n where the function will write beyond the area of memory allocated for ary.

4n mod 256 < 4n

4n mod 256, as before, is size and the number of bytes that will be allocated. 4n is the
number of bytes that will be written: each iteration of the loop reads 4 bytes, and the loop
executes n times, so it’s like multiplication without overflow.

This formula has a simpler solution than the one in part (a): it’s equivalent to n ≥ 64.
That’s because in this case the result of the overflow doesn’t make a difference: any overflow
will cause the result to be less than it should be. n = 63 is the largest value that does not
overflow, while n = 64 is the smallest value that does overflow, and all values greater than
64 also overflow. If you think of multiplying by four as equivalent to shifting left by two
in binary, the top two bits of n will be the 9th and 10th bits after the shift if there is no
size limit, but if you shift within 8 bits these values are lost and it’s as if the 9th and 10th
bits are always 0. So there will be overflow any time the top two bits of n are not both 0.

(c) Give one specific value for n that will cause the function with the overflow check to write
beyond the area of memory allocated for ary. This will need to be a value for which the
formula in part (b) is true, while the formula in part (a) is false; this also implies that
those formulas should be different.

Many possible answers. If you compared the solved versions of the formulas from (a) and
(b), the ranges of values covered by (b) but excluded by (a) will be [86, 127] and [171, 191].

Page 5

Computer Science 4271 Midterm 1 (fixed, solutions) - Page 6 of 8

However since we only asked for a single value here there are easier things to do.

The most common correct answer people picked by guess and check was 100, probably
since it’s a number that’s easy to work with in decimal but significantly bigger than 64.
4 · 100 = 400, 400 mod 256 = 400 − 256 = 200 − 56 = 150 − 6 = 144, and 144 > 100.

Another approach is to think about what’s happening in binary after a left shift by two. If
the original value n is of the form 0bAABBCCDD, then 4n mod 256 will be 0bBBCCDD00. We
know that AA can’t be 00 for there to be overflow, but the easiest way to make 0bBBCCDD00

greater than 0bAABBCCDD is to have BB bigger than AA. So you can set AA to 01 and BB to
10, for instance n =0b01100000. This is 0x60=96. But by similar reasoning any value
whose first hex digit is 0x6 (0b0110), 0x7 (0b0111), or 0xb (0b1011) will work. Or you
could have AA=BB as long as CCDD > BBCC, which accounts for 0x56–0x5f and 0xab–0xaf.

Page 6

Computer Science 4271 Midterm 1 (fixed, solutions) - Page 7 of 8

4. (28 points) Overwriting an address.

The following function from a Linux/x86-64 program has a buffer overflow vulnerability. De-
pending on the contents of the string attack, which we assume is under the control of an
attacker, the return address of the function func might be overwritten. The program is com-
piled without PIE or stack canaries.

Below are excerpts of the relevant code in C and assembly language.

void func(char *attack) {

char buf[8];

strcpy(buf, attack);

}

1: sub $0x10, %rsp

2: mov %rdi, %rsi

3: lea 0x8(%rsp), %rdi

4: call strcpy

5: add $0x10, %rsp

6: ret

The normal return address of the function is 0x4011c0. Assume that in order to start a code
reuse attack, the attacker wants to change the return address to 0x401171.

In the left column, below, are 7 possible contents for the string attack passed to the function,
written using the same rules as for string constants in C. A sequence of \x followed by two hex
digits represents a single character (byte) whose numeric value is given by the following two
hex digits. For instance \x2a represents the byte with value 0x2a, decimal 42.

In the right column are 5 different numeric values for the return address at the time when the
function returns. Write the letter of an entry in the right column in the blank on the left to
match an attempted attack with the effect it has on the return address. Each answer might be
used once, more than once, or not at all.

The tricky part of this question, both in intent and as it worked out, was null terminators.
Recall that strcpy doesn’t take the length of a string to copy as an argument: instead, its
source argument should be a null-terminated string, and it copies just as many bytes as there
are up to and including the null terminator. This flexibility is convenient for attackers creating
buffer overflows, but the behavior of stopping at a null terminator is a limitation to what data
an overflow can write. You may recall this limitation is also part of the terminator canary idea.

From the source code you can see that any string of length more than 7 is in danger of over-
flowing the buffer: 7 content characters, plus the null terminator, are the maximum that the
buffer can safely hold. However the source code doesn’t tell you what will happen beyond that,
since information about the memory layout is only present in the machine code. The subtrac-
tion instruction 1 allocates 16 bytes on the stack, but the lea instruction 3 that constructs the
buffer pointer to pass to strcpy adds 8 bytes to the starting address of that 16-byte region, so
there is no padding: overflowing the buffer by even one byte can affect the return address. You
could have also guessed that this was the layout based on the provided answers.

There is also a post on Piazza with C code for a program to reproduce the results of this question,
if you’re curious.

Page 7

Computer Science 4271 Midterm 1 (fixed, solutions) - Page 8 of 8

A. 0x4747474700401171

B. 0x0000000000400042

C. 0x0000000000400071

D. 0x00000000004011c0

E. 0x0000000000401171

(a) D AAAA

This is an example of the no-overflow case: the return address is unchanged.

(b) D AAAAAAA

This is another no-overflow case. Seven A characters plus the terminating null character
still fit in the 8-byte buffer.

(c) B AAAAAAAAB

An input with 9 content characters leads to a total overwrite of two bytes: the last byte
in the attacker-controlled input, and then a null terminator. So the least-significant byte
of the return address changes from 0xc0 to 0x42 (the ASCII code for B), and the second-
least-significant byte changes from 0x11 to �0x00. If you were looking for an answer of
0x000000000041142 for this, you were forgetting the null terminator.

(d) C AAAAAAAA\x71

This part is exactly analogous to the previous part, except that a different value overwrites
the least-significant byte.

(e) E AAAAAAAA\x71\x11\x40

This is an example of a successful overwrite: the attacker replaces the low three bytes of
the return address with byte values of their choosing, and then the null terminator byte
harmlessly overwrites a byte that was already 0.

(f) E AAAAAAAAq\x11@

This input works the same as the one in the previous part because it is really the same input:
q and @ are just the ASCII characters with numeric values 0x71 and 0x40 respectively.

(g) E AAAAAAAA\x71\x11\x40\x00GGGG

This was the trickiest of the parts, because it has a very appealing-looking incorrect an-
swer. The input is the same as the successful attack, but with a null byte and 4 capital G
characters added on to the end. That makes it look very similar to answer A, which has
the successful result E with four of the most-significant bytes changed to 0x47, which is
indeed the ASCII code for G. It might also have been tempting to use this answer if you
noticed that all the other answers were used, though we tried to disclaim the assumption
that every answer would be used. But that appealing answer is not correct, because the null
byte causes the copying to stop. So instead this input is again equivalent to the two above.

Page 8

