
Computer Science 4271
Fall 2022
Midterm exam 1 (corrected)
October 18th, 2022
Time Limit: 75 minutes, 4:00pm-5:15pm

� Before starting the exam, you can fill out your name and other information of this page, but
don’t open the exam until you are directed to start. Don’t put any of your answers on this
page.

� This exam contains 6 pages (including this cover page) and 4 questions. Once we tell you to
start, please check that no pages are missing.

� You may use any textbooks, notes, or printouts you wish during the exam, but you may not
use any electronic devices: no calculators, smart phones, laptops, etc.

� You may ask clarifying questions of the instructor or TAs, but no communication with other
students is allowed during the exam.

� Please read all questions carefully before answering them. Remember that we can only grade
what you write on the exam, so it’s in your interest to show your work and explain your
thinking.

� By signing below you certify that you agree to follow the rules of the exam, and that the
answers on this exam are your own work only.

The exam will end promptly at 5:15pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Number of rows ahead of you: Number of seats to your left:

Sign and date:

Question Points Score

1 20

2 24

3 28

4 28

Total: 100

Computer Science 4271 Midterm exam 1 (corrected) - Page 2 of 6

1. (20 points) Matching definitions and concepts. Fill in each blank with the letter of the corre-
sponding answer. Each answer is used exactly once.

(a) A sequence of instructions ending in a return

(b) Falsely denying that an action took place

(c) A bit used by AMD to implement W ⊕ X

(d) Freedom from unauthorized data modification

(e) A defense that limits attackers to code reuse

(f) A function to change memory permissions

(g) A function to copy a given number of bytes

(h) Padding code for shellcode

(i) A function to copy bytes up to a null terminator

(j) Choosing random base addresses for memory regions

A. ASLR B. gadget C. integrity D. memcpy E. mprotect F. NOP sled G. NX
H. repudiation I. strcpy J. W ⊕ X

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

0 00 NUL 16 10 DLE 32 20 48 30 0 64 40 @ 80 50 P 96 60 ‘ 112 70 p

1 01 SOH 17 11 DC1 33 21 ! 49 31 1 65 41 A 81 51 Q 97 61 a 113 71 q

2 02 STX 18 12 DC2 34 22 " 50 32 2 66 42 B 82 52 R 98 62 b 114 72 r

3 03 ETX 19 13 DC3 35 23 # 51 33 3 67 43 C 83 53 S 99 63 c 115 73 s

4 04 EOT 20 14 DC4 36 24 $ 52 34 4 68 44 D 84 54 T 100 64 d 116 74 t

5 05 ENQ 21 15 NAK 37 25 % 53 35 5 69 45 E 85 55 U 101 65 e 117 75 u

6 06 ACK 22 16 SYN 38 26 & 54 36 6 70 46 F 86 56 V 102 66 f 118 76 v

7 07 BEL 23 17 ETB 39 27 ’ 55 37 7 71 47 G 87 57 W 103 67 g 119 77 w

8 08 BS 24 18 CAN 40 28 (56 38 8 72 48 H 88 58 X 104 68 h 120 78 x

9 09 HT 25 19 EM 41 29) 57 39 9 73 49 I 89 59 Y 105 69 i 121 79 y

10 0A LF 26 1A SUB 42 2A * 58 3A : 74 4A J 90 5A Z 106 6A j 122 7A z

11 0B VT 27 1B ESC 43 2B + 59 3B ; 75 4B K 91 5B [107 6B k 123 7B {

12 0C FF 28 1C FS 44 2C , 60 3C < 76 4C L 92 5C \ 108 6C l 124 7C |

13 0D CR 29 1D GS 45 2D - 61 3D = 77 4D M 93 5D] 109 6D m 125 7D }

14 0E SO 30 1E RS 46 2E . 62 3E > 78 4E N 94 5E ^ 110 6E n 126 7E ~

15 0F SI 31 1F US 47 2F / 63 3F ? 79 4F O 95 5F _ 111 6F o 127 7F DEL

Page 2

Computer Science 4271 Midterm exam 1 (corrected) - Page 3 of 6

2. (24 points) STRIDE classification.

In each of the following scenarios, we describe 6 threats, one each from the STRIDE clas-
sification of spoofing, tampering, repudiation, information disclosure, denial of service, and
escalation of privilege. Write the letters S, T, R, I, D, and E in the appropriate order in the
blanks according to which type of threat each is. In our answer, each of the letters is used
exactly once in each scenario.

Optionally, there is also one blank next to a blank space for each scenario. If you don’t like our
examples, you can write one new threat and STRIDE classification of your own in this space,
and if it’s a good example, it can compensate for one other threat in the scenario we marked
wrong.

In each scenario, people whose names start with A are attackers, and those whose names start
with V are victims.

(a) In-person voting on election day. Most of these can work whether the voting is on paper
or electronic.

Alice votes once, comes back later, and votes again claiming it is her first time

Alice pulls the fire alarm and the polling place is evacuated

Alice changes Vicki’s mayoral vote from Bob to Charlie

Alice is a regular voter, but gets the election judge’s keyring

Alice gets a list of everyone who voted for Bob for mayor

Alice uses a fake ID to cast a ballot under Vicki’s name

(b) Oliver’s online olive oil electronic commerce website. Adam is a customer, Alex is a
competitor, and Arnold is just a vandal.

Arnold discovers the configuration page admin.php is not password protected

Alex files a trademark lawsuit to get Oliver’s web hosting taken down

Adam orders rancid olive oil to be delivered to Victor

Adam gets a delivery, but claims it was lost and asks for a refund

Adam gets Victor’s credit card number

Arnold changes the product descriptions to add awful puns

Page 3

Computer Science 4271 Midterm exam 1 (corrected) - Page 4 of 6

3. (28 points) Multiplication and memory allocation.

Consider the following C function which attempts to allocate memory for, and then read in,
a number of integers controlled by the argument num ints. Use it to answer the questions on
the following page.

int *alloc_and_read(unsigned char num_ints) {

unsigned char size = sizeof(int) * num_ints;

if (size < num_ints) { /* overflow check */

fprintf(stderr, "Uh-oh, overflow!\n");

exit(1);

}

int *ary = malloc(size);

if (!ary) {

fprintf(stderr, "Allocation failed\n");

exit(1);

}

int i;

for (i = 0; i < num_ints; i++)

ary[i] = read_int();

return ary;

}

Assume that sizeof(int) is 4, as it is on x86-64. We’ll use the variable n to represent the
value of num ints, which is between 0 and 255 in decimal (0x00 to 0xff in hex). Because
the variable size is also only an unsigned char, its value is also limited to between 0 and
255. Specifically, the value stored in size will be (4 · n) mod 256. The “mod 256” operation is
also the same as discarding all but the two lowest hex digits, or all but the 8 lowest bits, of a
number.

You can use decimal, hexadecimal, or binary in your answers, but to keep them distinct, write
hexadecimal numbers with a 0x prefix and binary numbers with an 0b prefix. It is enough to
write just the formula or number if it is correct, but a short explanation of your answer may
help us give partial credit. You don’t need to simplify formulas.

Page 4

Computer Science 4271 Midterm exam 1 (corrected) - Page 5 of 6

(a) Write a mathematical formula, in terms of the variable n, which will be true for those
values of n that cause the message “Uh-oh, overflow!” to be printed.

(b) Pretend for a moment that the if statement labeled “overflow check” were not present.
Write a mathematical formula, in terms of the variable n, which will be true for those
values of n where the function will write beyond the area of memory allocated for ary.

(c) Give one specific value for n that will cause the function with the overflow check to write
beyond the area of memory allocated for ary. This will need to be a value for which the
formula in part (b) is true, while the formula in part (a) is false; this also implies that
those formulas should be different.

Page 5

Computer Science 4271 Midterm exam 1 (corrected) - Page 6 of 6

4. (28 points) Overwriting an address.

The following function from a Linux/x86-64 program has a buffer overflow vulnerability. De-
pending on the contents of the string attack, which we assume is under the control of an
attacker, the return address of the function func might be overwritten. The program is com-
piled without PIE or stack canaries.

Below are excerpts of the relevant code in C and assembly language.

void func(char *attack) {

char buf[8];

strcpy(buf, attack);

}

1: sub $0x10, %rsp

2: mov %rdi, %rsi

3: lea 0x8(%rsp), %rdi

4: call strcpy

5: add $0x10, %rsp

6: ret

The normal return address of the function is 0x4011c0. Assume that in order to start a code
reuse attack, the attacker wants to change the return address to 0x401171.

In the left column, below, are 7 possible contents for the string attack passed to the function,
written using the same rules as for string constants in C. A sequence of \x followed by two hex
digits represents a single character (byte) whose numeric value is given by the following two
hex digits. For instance \x2a represents the byte with value 0x2a, decimal 42.

In the right column are 5 different numeric values for the return address at the time when the
function returns. Write the letter of an entry in the right column in the blank on the left to
match an attempted attack with the effect it has on the return address. Each answer might be
used once, more than once, or not at all.

(a) AAAA

(b) AAAAAAA

(c) AAAAAAAAB

(d) AAAAAAAA\x71

(e) AAAAAAAA\x71\x11\x40

(f) AAAAAAAAq\x11@

(g) AAAAAAAA\x71\x11\x40\x00GGGG

A. 0x4747474700401171

B. 0x0000000000400042

C. 0x0000000000400071

D. 0x00000000004011c0

E. 0x0000000000401171

Page 6

