CSci 427\W
Development of Secure Software Systems
Day 6: Memory safety attacks 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Exploiting other vulnerabilities

Non-control data overwrite

©) Overwrite other security-sensitive data
©) No change to program control flow
©) Set user ID to O, set permissions to all, etc.

Heap meta-data

£) Boundary tags similar to doubly-linked list
£) Overwritten on heap overflow

©) Arbitrary write triggered on free

£) Simple version stopped by sanity checks

Heap meta-data

future|growth
the
"break"”

area

|
]| Unallocated
|
|

Medium objects
i Il _fee || W/ boundary tags
T

]| Small objects
1| bucketed by size

Use after free

£) Write to new object overwrites old, or vice-versa
£) Key issue is what heap object is reused for
©) Influence by controlling other heap operations

Integer overflows

©) Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
£) 2GB write in 100 byte buffer
® Find some other way to make it stop
©) Arbitrary single overwrite
® Use math to figure out overflowing value

Null pointer dereference

£) Add offset to make a predictable pointer
® On Windows, interesting address start low
£) Allocate data on the zero page

® Most common in user-space to kernel attacks
® Read more dangerous than a write

Format string attack

£) Attacker-controlled format: little interpreter

©) Step one: add extra integer specifiers, dump stack
® Already useful for information disclosure

Format string attack layout

caller frame

printf frame

copy of
Yorcx

copy of
Yordx argument

pointer
copy of

%rsi

coopy f)f/’%x %X %X %X %X
%rdi

Format string attack layout

caller frame

printf frame

copy of
%rex

copy of

Y%rdx \ argument

pointer

copy of
%rsi

copy .Of %X %X %X %X %X
Y%rdi

Format string attack: overwrite

£) %n specifier: store number of chars written so far to
pointer arg

£) Advance format arg pointer to other
attacker-controlled data

£) Control number of chars written with padding
£) On x86, can use unaligned stores to create pointer

Outline

Announcements intermission

Midterm exam schedule

£) Midterm 1 will be Tuesday, February 2lst

©) Midterm 2 will be Tuesday, April 1ith

©) During the normal lecture time, starting promptly at
1115am

Office hours schedule

©) Me: Tuesdays 4-5pm, in 4-225E Keller

©) Aditya: Mondays 4-5pm, Wednesdays 10-1lam, in
Lind L103 table 3

©) Ethan: Thursdays 10-1lam in 2-209 Keller

Lab instructions posted

£ Instructions for Monday’s lab on shellcode attacks
are now available from the public course web page

£) Also, tentative schedule for most of the rest of the
semester

Outline

WaX (DEP)

Basic idea

£) Traditional shellcode must go in a memory area that
is
® writable, so the shellcode can be inserted
® executable, so the shellcode can be executed
©) But benign code usually does not need this
combination

o W xor X, really —(W A X)

Non-writable code, X — —W

©) Eg, read-only text section
©) Has been standard for a while, especially on Unix

©) Lets OS efficiently share code with multiple program
instances

Non-executable data, W — —X

£) Prohibit execution of static data, stack, heap

£) Not a problem for most programs
® Incompatible with some GCC features no one uses
® Non-executable stack opt-in on Linux, but now
near-universal

Implementing W & X

) Page protection implemented by CPU
® Some architectures (e.g. SPARC) long supported W ¢ X
£) x86 historically did not

® One bit controls both read and execute
® Partial stop-gap “code segment limit”

©) Eventual obvious solution: add new bit
® NX (AMD), XD (Intel), XN (ARM)

One important exception

£) Remaining important use of self-modifying code:
just-in-time (JIT) compilers
® Eg, all modern JavaScript engines
£) Allow code to re-enable execution per-block

® mprotect, VirtualProtect
® Now a favorite target of attackers

Counterattack: code reuse

£) Attacker can't execute new code

£) So, take advantage of instructions already in binary
©) There are usually a lot of them

©) And no need to obey original structure

Classic return-to-libc (1997)

£) Overwrite stack with copies of:

® Pointer to libc’'s system function
® Pointer to "/bin/sh" string (also in libc)

£) The system function is especially convenient
£) Distinctive feature: return to entry point

Chained return-to-libc

©) Shellcode often wants a sequence of actions, eqg.
® Restore privileges
® Allow execution of memory area
® Overwrite system file, etc.
©) Can put multiple fake frames on the stack
® Basic idea present in 1997, further refinements

Outline

Return-oriented programming (ROP)

Pop culture analogy: ransom note trope

come | [at midnight]. [bring |

Basic new idea

£) Treat the stack like a new instruction set
£) "Opcodes” are pointers to existing code
£) Generalizes return-to-libc with more programmability

£) Academic introduction and source of name: Hovav
Shacham, ACM CCS 2007

ret2pop (Nergal, Miiller)

©) Take advantage of shellcode pointer already present
on stack
©) Rewrite intervening stack to treat the shellcode
pointer like a return address
® A long sequence of chained returns, one pop

ret2pop (Nergal, Miiller)

9 —— shellcode

Gadgets

©) Basic code unit in ROP

©) Any existing instruction sequence that ends in a
return

©) Found by (possibly automated) search

Another partial example

— syscall; ret

L

—mov %rcx, %rax; ret
(syscall 59 = execve)
—=pop %rcx; ret

o
8

aaaaa

|

Overlapping x86 instructions

push %$esi

[mov $0x56, sdh|[sbb $0x£f, salllinc seax|or %al, %dh]
[movzbl Oxlc(%esi),%edx|[incl 0x8(%eax) | ...
0f b6 56 le £f 40 08 c6

£) Variable length instructions can start at any byte
©) Usually only one intended stream

Where gadgets come from

£) Possibilities:
® Entirely intended instructions
® Entirely unaligned bytes
® Fall through from unaligned to intended

£) Standard x86 return is only one byte, Oxc3

Building instructions

©) String together gadgets into manageable units of
functionality
©) Examples:

® Loads and stores
® Arithmetic
® Unconditional jumps

©) Must work around limitations of available gadgets

Hardest case: conditional branch

£ Existing jCC instructions not useful
£) But carry flag CF is

£) Three steps:

1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

£) Can also use other indirect jumps, overlapping not
required
©) Automation in gadget finding and compilers

0 In practice: minimal ROP code to allow transfer to
other shellcode

