
CSci 4271W
Development of Secure Software Systems

Day 8: More Threat Modeling, More Defenses
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

More perspectives on threat modeling

Threat modeling: printer manager

Announcements intermission

Return address protections

Software-oriented modeling

This is what we’ve concentrated on until now
And it will still be the biggest focus

Think about attacks based on where they show up in
the software

Benefit: easy to connect to software-level
mitigations and fixes

Asset-oriented modeling

Think about threats based on what assets are
targeted / must be protected
Useful from two perspectives:

Predict attacker behavior based on goals
Prioritize defense based on potential losses

Can put other modeling in context, but doesn’t
directly give you threats

Kinds of assets

Three overlapping categories:
Things attackers want for themselves
Things you want to protect
Stepping stones to the above

Attacker-oriented modeling

Think about threats based on the attacker carrying
them out

Predict attacker behavior based on characteristics
Prioritize defense based on likelihood of attack

Limitation: it can be hard to understand attacker
motivations and strategies

Be careful about negative claims

Kinds of attackers (Intel TARA)

Competitor

Data miner

Radical activist

Cyber vandal

Sensationalist

Civil activist

Terrorist

Anarchist

Irrational individual

Gov’t cyber warrior

Corrupt gov’t official

Legal adversary

Kinds of attackers (cont’d)

Internal spy

Government spy

Thief

Vendor

Reckless employee

Information partner

Disgruntled employee



Outline

More perspectives on threat modeling

Threat modeling: printer manager

Announcements intermission

Return address protections

Setting: shared lab with printer

Imagine a scenario similar to CSE Labs
Computer labs used by many people, with administrators

Target for modeling: software system used to
manage printing

Similar to real system, but use your imagination for
unknown details

Example functionality

Queue of jobs waiting to print
Can cancel own jobs, admins can cancel any

Automatically converting documents to format
needed by printer

Quota of how much you can print

Assets and attackers

What assets is the system protecting?
What negative consequences do we want to avoid?

Who are the relevant attackers?
What goals motivate those attackers?

Take 5 minutes to brainstorm with your neighbors

Assets and attackers

Administrators:
Want to let students do printing needed for classes
While minimizing spending on paper, toner, and admins
responding to problems

Attackers:
Non-students might try to print
Students might try to print too much
Students might interfere with each other

Data flow diagram

Show structure of users, software/hardware
components, data flows, and trust boundaries

For this exercise, can mix software, OS, and network
perspectives

Include details relevant to security design decisions

Take 15 minutes to draw with your neighbors

Data flow diagram: key DFD #1: access control

The absence of data flow will need an
implementation



DFD #2: optional processing

Text-to-PDF can’t add much risk here

DFD #3: a trust boundary

Different risks from where authentication lies

STRIDE threat brainstorming

Think about possible threats using the STRIDE
classification

Are all six types applicable in this example?

Take 10 minutes to brainstorm with your neighbors

STRIDE examples

S: make your jobs look like a different student’s

T: insert mistakes in another student’s homework

R: claim you don’t know why your quota is used up

I: read another student’s homework

D: break printing before an assignment deadline

E: student performs administrator actions

Outline

More perspectives on threat modeling

Threat modeling: printer manager

Announcements intermission

Return address protections

Brief announcements
Problem set 1 is available on the public web page
now

Due a week from Friday, 2/17

The first midterm exam will be a week from next
Tuesday (2/21) in class

Open book, open notes
You will have the whole class period
Topics will be memory safety bugs and attacks, and
threat modeling
Similar concepts, but less depth, than labs and p-set

Outline

More perspectives on threat modeling

Threat modeling: printer manager

Announcements intermission

Return address protections

Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA



Adjacent canary idea Terminator canary

Value hard to reproduce because it would tell the
copy to stop
StackGuard: 0x00 0D 0A FF

0: String functions
newline: fgets(), etc.
-1: getc()
carriage return: similar to newline?

Doesn’t stop: memcpy, custom loops

Random canary

Can’t reproduce because attacker can’t guess

For efficiency, usually one per execution

Ineffective if disclosed

XOR canary

Want to protect against non-sequential overwrites

XOR return address with value c at entry

XOR again with c before return

Standard choice for c: see random canary

Further refinements

More flexible to do earlier in compiler

Rearrange buffers after other variables
Reduce chance of non-control overwrite

Skip canaries for functions with only small variables
Who has an overflow bug in an 8-byte array?

What’s usually not protected?

Backwards overflows

Function pointers

Adjacent structure fields

Adjacent static data objects

Where to keep canary value

Fast to access

Buggy code/attacker can’t read or write

Linux/x86: %gs:0x14

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten



Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

ANRY BNRY CNRY DNRY ENRY FNRY

search 232 ! search 4 � 28

Shadow return stack

Suppose you have a safe place to store the canary

Why not just store the return address there?

Needs to be a separate stack

Ultimate return address protection


