CSci 427\W
Development of Secure Software Systems
Day 8: More Threat Modeling, More Defenses

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

More perspectives on threat modeling

Software-oriented modeling

©) This is what we've concentrated on until now
® And it will still be the biggest focus
©) Think about attacks based on where they show up in
the software
©) Benefit: easy to connect to software-level
mitigations and fixes

Asset-oriented modeling

©) Think about threats based on what assets are
targeted / must be protected
£) Useful from two perspectives:

® Predict attacker behavior based on goals
® Prioritize defense based on potential losses

£) Can put other modeling in context, but doesn't
directly give you threats

Kinds of assets

©) Three overlapping categories:
® Things attackers want for themselves
® Things you want to protect
® Stepping stones to the above

Attacker-oriented modeling

£) Think about threats based on the attacker carrying

them out
® Predict attacker behavior based on characteristics
® Prioritize defense based on likelihood of attack

©) Limitation: it can be hard to understand attacker

motivations and strategies
® Be careful about negative claims

Kinds of attackers (Intel TARA)

) Competitor) Terrorist

) Data miner) Anarchist

£) Radical activist £) Irrational individual
£) Cyber vandal £) Gov't cyber warrior
) Sensationalist) Corrupt gov't official

) Civil activist) Legal adversary

Kinds of attackers (contd)
£) Internal spy
£) Government spy
) Thief
) Disgruntled employee
£) Vendor

£) Reckless employee

) Information partner

Outline

Threat modeling: printer manager

Setting: shared lab with printer

£) Imagine a scenario similar to CSE Labs
® Computer labs used by many people, with administrators
£) Target for modeling: software system used to
manage printing
® Similar to real system, but use your imagination for
unknown details

Example functionality

©) Queue of jobs waiting to print
® Can cancel own jobs, admins can cancel any

©) Automatically converting documents to format
needed by printer

©) Quota of how much you can print

Assets and attackers

£) What assets is the system protecting?

® What negative consequences do we want to avoid?
£) Who are the relevant attackers?

® What goals motivate those attackers?

£) Take 5 minutes to brainstorm with your neighbors

Assets and attackers

©) Administrators:
® Want to let students do printing needed for classes
® While minimizing spending on paper, toner, and admins
responding to problems
©) Attackers:
® Non-students might try to print
® Students might try to print too much
® Students might interfere with each other

Data flow diagram

£) Show structure of users, software/hardware
components, data flows, and trust boundaries

©) For this exercise, can mix software, OS, and network
perspectives

£ Include details relevant to security design decisions
£) Take 15 minutes to draw with your neighbors

Data flow diagram: key

Software
component,
process

Data i| User/external
store 3 entity

Data flow

3 Trust boundary

DFD #1. access control

User ~——>| Quota Quota
manager database

£) The absence of data flow will need an
implementation

DFD #2: optional processing

User

Text to
PDF

) Text-to-PDF can't add much risk here

DFD #3: a trust boundary

UMN ID 5
user : Quota CUSSEe-IrT
mgmt. E manager mgmt.

CSE-IT servers

'
s

) Different risks from where authentication lies

STRIDE threat brainstorming

©) Think about possible threats using the STRIDE
classification

©) Are all six types applicable in this example?
) Take 10 minutes to brainstorm with your neighbors

STRIDE examples

: make your jobs look like a different student’s

. insert mistakes in another student’s homework

. claim you don't know why your quota is used up
. read another student’s homework

. break printing before an assignment deadline

. student performs administrator actions

m O _ 0 4 Wn

Outline

Announcements intermission

Brief announcements

£) Problem set 1is available on the public web page
now

® Due a week from Friday, 2/17

£) The first midterm exam will be a week from next
Tuesday (2/21) in class
® Open book, open notes
® You will have the whole class period
® Topics will be memory safety bugs and attacks, and
threat modeling
® Similar concepts, but less depth, than labs and p-set

Outline

Return address protections

Canary in the coal mine

W

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

L9 124 (srbp)
r's

® 116(%rbp)
€518 (%rbp)
d

L arbp

L |-8(%rbp)
o

'ong |16 (%rbp)

o
“top" of (char(8]
stack

%srsp____, | 101 |-24(%rbp)

Terminator canary

£) Value hard to reproduce because it would tell the
copy to stop
£) StackGuard: 0x00 OD OA FF

® O: String functions

® newline: fgets(), etc.

B -1 getc()

® carriage return: similar to newline?

©) Doesn't stop: memcpy, custom loops

Random canary

©) Can't reproduce because attacker can't guess
) For efficiency, usually one per execution
o) Ineffective if disclosed

XOR canary

£) Want to protect against non-sequential overwrites
£) XOR return address with value c at entry

£) XOR again with ¢ before return

£) Standard choice for ¢: see random canary

Further refinements

) More flexible to do earlier in compiler
©) Rearrange buffers after other variables
® Reduce chance of non-control overwrite

©) Skip canaries for functions with only small variables
® Who has an overflow bug in an 8-byte array?

What's usually not protected?

£) Backwards overflows

£) Function pointers

£) Adjacent structure fields

©) Adjacent static data objects

Where to keep canary value

©) Fast to access

£) Buggy code/attacker can't read or write
©) Linux/x86: %gs:0x14

Complex anti-canary attack

£) Canary not updated on fork in server
£) Attacker controls number of bytes overwritten

Complex anti-canary attack

£) Canary not updated on fork in server

£) Attacker controls number of bytes overwritten
©) ANRY BNRY CNRY DNRY ENRY FNRY

) search 232 — search 4 - 28

Shadow return stack

£) Suppose you have a safe place to store the canary
£) Why not just store the return address there?

£) Needs to be a separate stack

£) Ultimate return address protection

