
CSci 4271W
Development of Secure Software Systems

Day 9: More defenses, fuzzing
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Return address protections

Announcements intermission

ASLR and counterattacks

Testing and fuzzing

Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

Terminator canary

Value hard to reproduce because it would tell the
copy to stop
StackGuard: 0x00 0D 0A FF

0: String functions
newline: fgets(), etc.
-1: getc()
carriage return: similar to newline?

Doesn’t stop: memcpy, custom loops

Random canary

Can’t reproduce because attacker can’t guess

For efficiency, usually one per execution

Ineffective if disclosed

XOR canary

Want to protect against non-sequential overwrites

XOR return address with value c at entry

XOR again with c before return

Standard choice for c: see random canary

Further refinements

More flexible to do earlier in compiler

Rearrange buffers after other variables
Reduce chance of non-control overwrite

Skip canaries for functions with only small variables
Who has an overflow bug in an 8-byte array?



What’s usually not protected?

Backwards overflows

Function pointers

Adjacent structure fields

Adjacent static data objects

Where to keep canary value

Fast to access

Buggy code/attacker can’t read or write

Linux/x86: %gs:0x14

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

Complex anti-canary attack

Canary not updated on fork in server

Attacker controls number of bytes overwritten

ANRY BNRY CNRY DNRY ENRY FNRY

search 232 ! search 4 � 28

Shadow return stack

Suppose you have a safe place to store the canary

Why not just store the return address there?

Needs to be a separate stack

Ultimate return address protection

Outline

Return address protections

Announcements intermission

ASLR and counterattacks

Testing and fuzzing

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Brief announcements
Problem set 1 is available on the public web page
now

Due Friday, 2/17

The first midterm exam will be next Tuesday (2/21)
in class

Open book, open notes, no electronics
You will have the whole class period
Topics will be memory safety bugs and attacks, and
threat modeling
Similar concepts, but less depth, than labs and p-set



Outline

Return address protections

Announcements intermission

ASLR and counterattacks

Testing and fuzzing

Basic idea

“Address Space Layout Randomization”

Move memory areas around randomly so attackers
can’t predict addresses
Keep internal structure unchanged

E.g., whole stack moves together

Code and data locations

Execution of code depends on memory location

E.g., on x86-64:
Direct jumps are relative
Function pointers are absolute
Data can be relative (%rip-based addressing)

Relocation (Windows)

Extension of technique already used in compilation

Keep table of absolute addresses, instructions on
how to update

Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

“Position-Independent Code / Executable”

Keep code unchanged, use register to point to data
area

Disadvantage: code complexity, register pressure
hurt performance (especially 32-bit)

What’s not covered

Main executable (Linux PIC)

Incompatible DLLs (Windows)

Relative locations within a module/area

Entropy limitations

Intuitively, entropy measures amount of randomness,
in bits

Random 32-bit int: 32 bits of entropy

ASLR page aligned, so at most 32- 12 = 20 bits of
entropy on x86-32

Other constraints further reduce possibilities

Leakage limitations

If an attacker learns the randomized base address,
can reconstruct other locations

Any stack address ! stack unprotected, etc.



Outline

Return address protections

Announcements intermission

ASLR and counterattacks

Testing and fuzzing

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Random or fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Mutational fuzzing

Instead of totally random inputs, make small random
changes to normal inputs

Changes are called mutations

Benign starting inputs are called seeds

Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

Observation: it helps to know what correct inputs
look like

Grammar specifies legal patterns, run backwards
with random choices to generate

Generated inputs can again be basis for mutation

Most commonly used for standard input formats
Network protocols, JavaScript, etc.

What if you don’t have a grammar?

Input format may be unknown, or buggy and limited

Writing a grammar may be too much manual work

Can the structure of interesting inputs be figured out
automatically?

Coverage-driven fuzzing

Instrument code to record what code is executed

An input is interesting if it executes code that was
not executed before

Only interesting inputs are used as basis for future
mutation

AFL

Best known open-source tool, pioneered
coverage-driven fuzzing

American Fuzzy Lop, a breed of rabbits

Stores coverage information in a compact hash table

Compiler-based or binary-level instrumentation

Has a number of other optimizations


