CSci 427\W
Development of Secure Software Systems
Day 9: More defenses, fuzzing

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Return address protections

Canary in the coal mine

Photo credit: Fir0002 CC-BY-SA

Adjacent canary idea

L %rbp

-8(%rbp)

o9 |16 (%rbp)

“top” of |char(8]
stack
101 |-24(%rbp)

%rsp.

Terminator canary

£) Value hard to reproduce because it would tell the

copy to stop
) StackGuard: 0x00 OD OA FF
® O: String functions
® newline: fgets(), etc.
8 -1 getc()
® carriage return: similar to newline?

£) Doesn't stop: memcpy, custom loops

Random canary

£) Can't reproduce because attacker can't guess
£ For efficiency, usually one per execution
o) Ineffective if disclosed

XOR canary

©) Want to protect against non-sequential overwrites
£) XOR return address with value c at entry

) XOR again with c before return

) Standard choice for c: see random canary

Further refinements

£) More flexible to do earlier in compiler

©) Rearrange buffers after other variables
® Reduce chance of non-control overwrite

£) Skip canaries for functions with only small variables
® Who has an overflow bug in an 8-byte array?




What's usually not protected?

©) Backwards overflows

©) Function pointers

©) Adjacent structure fields

©) Adjacent static data objects

Where to keep canary value

£) Fast to access
£) Buggy code/attacker can't read or write
©) Linux/x86: %gs:0x14

Complex anti-canary attack

£) Canary not updated on fork in server
£) Attacker controls number of bytes overwritten

Complex anti-canary attack

£) Canary not updated on fork in server

£) Attacker controls number of bytes overwritten
) ANRY BNRY CNRY DNRY ENRY FNRY

o) search 232 — search 4 - 28

Shadow return stack

£) Suppose you have a safe place to store the canary
£) Why not just store the return address there?

©) Needs to be a separate stack

©) Ultimate return address protection

Outline

Announcements intermission

Note to early readers

©) This is the section of the slides most likely to change
in the final version

0 If class has already happened, make sure you have
the latest slides for announcements

Brief announcements

£) Problem set 1is available on the public web page
now
® Due Friday, 2/17

£) The first midterm exam will be next Tuesday (2/21)

in class
® Open book, open notes, no electronics
® You will have the whole class period
® Topics will be memory safety bugs and attacks, and
threat modeling
® Similar concepts, but less depth, than labs and p-set




Outline

ASLR and counterattacks

Basic idea

£) "Address Space Layout Randomization”
£) Move memory areas around randomly so attackers
can't predict addresses

£) Keep internal structure unchanged
® E.g, whole stack moves together

Code and data locations

©) Execution of code depends on memory location

© Eg, on x86-64:
® Direct jumps are relative
® Function pointers are absolute
® Data can be relative (%rip-based addressing)

Relocation (Windows)

£) Extension of technique already used in compilation

©) Keep table of absolute addresses, instructions on
how to update

£) Disadvantage: code modifications take time on load,
prevent sharing

PIC/PIE (GNU/Linux)

) “Position-Independent Code / Executable”

©) Keep code unchanged, use register to point to data
area

©) Disadvantage: code complexity, register pressure
hurt performance (especially 32-bit)

What's not covered

£) Main executable (Linux PIC)
£) Incompatible DLLs (Windows)
£) Relative locations within a module/area

Entropy limitations

©) Intuitively, entropy measures amount of randomness,
in bits
©) Random 32-bit int: 32 bits of entropy

©) ASLR page aligned, so at most 32 — 12 = 20 bits of
entropy on x86-32

£) Other constraints further reduce possibilities

Leakage limitations

©) If an attacker learns the randomized base address,
can reconstruct other locations

©) Any stack address — stack unprotected, etc.




Outline

Testing and fuzzing

Testing and security

£) "Testing shows the presence, not the absence of
bugs” - Dijkstra
£) Easy versions of some bugs can be found by
targeted tests:
® Buffer overflows: long strings
® Integer overflows: large numbers
® Format string vulnerabilities: %x

Random or fuzz testing

©) Random testing can also sometimes reveal bugs
©) Original ‘fuzz’ (Miller): program </dev/urandom
©) Even this was surprisingly effective

Mutational fuzzing

£ Instead of totally random inputs, make small random
changes to normal inputs

£) Changes are called mutations

£) Benign starting inputs are called seeds

£) Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

£) Observation: it helps to know what correct inputs
look like

©) Grammar specifies legal patterns, run backwards
with random choices to generate

£) Generated inputs can again be basis for mutation

£) Most commonly used for standard input formats
® Network protocols, JavaScript, etc.

What if you don't have a grammar?

©) Input format may be unknown, or buggy and limited

£) Writing a grammar may be too much manual work

£) Can the structure of interesting inputs be figured out
automatically?

Coverage-driven fuzzing

©) Instrument code to record what code is executed

©) An input is interesting if it executes code that was
not executed before

£) Only interesting inputs are used as basis for future
mutation

AFL

©) Best known open-source tool, pioneered
coverage-driven fuzzing

£) American Fuzzy Lop, a breed of rabbits

£) Stores coverage information in a compact hash table

£) Compiler-based or binary-level instrumentation

£) Has a number of other optimizations




