CSci 427\W
Development of Secure Software Systems
Day 13: OS Attacks and Protection

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Shell code injection and related threats

Two kinds of privilege escalation

©) Local exploit: give higher privilege to a reqular user
® Eg, caused by bug in setuid program or OS kernel
©) Remote exploit: give access to an external user

who doesn't even have an account
® Eg, caused by bug in network-facing server or client

Shell code injection

£) The command shell is convenient to use, especially
in scripts
® In C: system, popen
£) But it is bad to expose the shell's power to an
attacker
£) Key pitfall: assembling shell commands as strings

£) Note: different from binary “shellcode”

Shell code injection example

©) Benign: system("cp $argl $arg2"), argl =
"filel.txt"

©) Attack: argl = "a b; echo Gotcha"

©) Command: "cp a b; echo Gotcha file2.txt"

©) Not a complete solution: prohibit *;’

The structure problem

£) What went wrong here?

£) Basic mistake: assuming string concatenation will
respect language grammar
® E g, that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

©) Avoid letting untrusted data get near a shell

©) For instance, call external programs with lower-level
interfaces
m Eg, fork and exec instead of system

©) May constitute a security/flexibility trade-off

Less reliable: text processing

£) Allow-list: known-good characters are allowed,
others prohibited

® Eg, username consists only of letters
® Safest, but potential functionality cost

£) Deny-list: known-bad characters are prohibited,
others allowed
® Easy to miss some bad scenarios
£) "Sanitization”: transform bad characters into good
® Same problem as deny-list, plus extra complexity

Terminology note

) Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

£) These terms have been criticized for a problematic
“white=good"”, “black=bad" association

©) The push to avoid the terms got significant additional
attention in summer 2020, but is still somewhat
political and in flux

Different shells and multiple interpretation

£) Complex Unix systems include shells at multiple
levels, making these issues more complex

® Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

£) Other shell-like programs also have caveats with
levels of interpretation
» Tcl before version 9 interpreted leading zeros as octal

Related local dangers

) File names might contain any character except / or
the null character

£) The PATH environment variable is user-controllable,
S0 cp may not be the program you expect

©) Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

£ In Unix, splitting a command line into words is the
shell's job
® String — argv array
®grep a b cVs. grep ’a b’ ¢
£) Choice of separator characters (default space, tab,
newline) is configurable
©) Exploit system("/bin/uname")
£) In modern shells, improved by not taking from
environment

Outline

Announcements intermission

Assignments news

£) Problem set 1 grades and comments are posted

® Be sure to read comments both in the box and on the
document

£) Reading assignment about Unix/Linux OS security
posted
® Canvas quiz due date delayed to 3/14 due to spring break

Outline

Race conditions and related threats

Bad/missing error handling

£) Under what circumstances could each system call
fail?

£) Careful about rolling back after an error in the middle
of a complex operation

£ Fail to drop privileges = run untrusted code anyway

£) Update file when disk full = truncate

Race conditions

©) Two actions in parallel; result depends on which
happens first

©) Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

©) Many other examples

Classic races: files in /tmp

£) Temp filenames must already be unique
£) But “unguessable” is a stronger requirement

£) Unsafe design (mktemp (3)): function to return
unused name

£) Must use 0_EXCL for real atomicity

TOCTTOU gaps

©) Time-of-check (to) time-of-use races
1. Check it's OK to write to file
2. Write to file

©) Attacker changes the file between steps 1and 2
£) Just get lucky, or use tricks to slow you down

Read It Twice (WOOT'12)

£) Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

£) Malicious USB device replaces app between steps
£) TV “rooted"/"jailbroken”

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1;
struct stat s;
stat (path, &s)
if (!S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, O_-RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !'S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, 0_-RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, O_RDONLY);
return fd;

Changing file references

£) With symbolic links
£) With hard links
£) With changing parent directories

Directory traversal with . .

©) Program argument specifies file, found in directory
files

©) What about files/../../../../etc/passud?

Outline

Secure OS interaction

Avoid special privileges

£) Require users to have appropriate permissions
® Rather than putting trust in programs

©) Dangerous pattern 1. setuid/setgid program
£) Dangerous pattern 2: privileged daemon
©) But, sometimes unavoidable (e.g., email)

Prefer file descriptors

£) Maintain references to files by keeping them open
and using file descriptors, rather than by name

£) References same contents despite file system
changes

©) Use openat, etc, variants to use FD instead of
directory paths

Prefer absolute paths

©) Use full paths (starting with /) for programs and files
©) $PATH under local user control

©) Initial working directory under local user control
® But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

£) Each directory component in a path must be write
protected

£) Read-only file in read-only directory can be changed
if a parent directory is modified

Don't separate check from use

©) Avoid pattern of eg, access then open
©) Instead, just handle failure of open
® You have to do this anyway

©) Multiple references allow races
® And access also has a history of bugs

Be careful with temporary files

©) Create files exclusively with tight permissions and
never reopen them
® See detailed recommendations in Wheeler (q.v.)
£) Not quite good enough: reopen and check matching
device and inode
® Fails with sufficiently patient attack

Give up privileges

£) Using appropriate combinations of set*id functions
® Alas, details differ between Unix variants

©) Best: give up permanently
£) Second best: give up temporarily

) Detailed recommendations: Setuid Demystified
(USENIX'02)

Allow-list environment variables

£) Can change the behavior of called program in
unexpected ways
£) Decide which ones are necessary
® As few as possible

£) Save these, remove any others

For more details...

©) The first external reading is chapters from a
web-hosted book by David A. Wheeler

©) Reading questions will be due one week after they
are posted on Canvas

Outline

OS: protection and isolation

OS security topics

£) Resource protection

£) Process isolation

©) User authentication (will cover later)
£) Access control (already covered)

Protection and isolation

£) Resource protection: prevent processes from
accessing hardware

£) Process isolation: prevent processes from interfering
with each other

£) Design: by default processes can do neither
£) Must request access from operating system

Reference monitor

£) Complete mediation: all accesses are checked

©) Tamperproof: the monitor is itself protected from
modification

©) Small enough to be thoroughly verified

Hardware basis: memory protection

©) Historic: segments

£) Modern: paging and page protection
= Memory divided into pages (e.qg. 4k)
® Every process has own virtual to physical page table
® Pages also have R/W/X permissions

Linux example

OxFFFFFFFFFFFFFFFF
Kernel
use only
0x8

rows{down

Mainlstack
o

0x40000000

METeap

Static code + data

0x400000

Usually unused

Hardware basis: supervisor bit

£) Supervisor (kernel) mode: all instructions available

£) User mode: no hardware or VM control instructions

£) Only way to switch to kernel mode is specified entry
point

£) Also generalizes to multiple “rings”

