
CSci 4271W
Development of Secure Software Systems

Day 21: Networking and security
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Good technical writing (cont’d)

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

Cryptographic protocols

Precise explanations

Don’t say “we” do something when it’s the computer
that does it

And avoid passive constructions

Don’t anthropomorphize (computers don’t “know”)

Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes two tests

Provide structure

Use plenty of sections and sub-sections

It’s OK to have some redundancy in previewing
structure
Limit each paragraph to one concept, and not too
long

Start with a clear topic sentence

Split long, complex sentences into separate ones

Know your audience: Project 0.5

For projects in this course, assume your audience is
another student who already understands general
course concepts

Up to the current point in the course
I.e., don’t need to define “buffer overflow” from scratch

But you need to explain specifics of a vulnerable
program

Make clear what part of the program you’re referring to
Explain all the specific details of a vulnerability

Inclusive language

Avoid words and grammar that implies relevant
people are male

My opinion: avoid using he/him pronouns for
unknown people
Some possible alternatives

“he/she”
Alternating genders
Rewrite to plural and use “they” (may be less clear)
Singular “they” (least traditional, but spreading)

Outline

Good technical writing (cont’d)

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

Cryptographic protocols

General description

Public-key encryption (generalizes block cipher)
Separate encryption key EK (public) and decryption key
DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and verification key VK
(public)



RSA setup

Choose n = pq, product of two large primes, as
modulus

n is public, but p and q are secret

Compute encryption and decryption exponents e
and d such that

Med =M (mod n)

RSA encryption

Public key is (n; e)

Encryption of M is C =Me (mod n)

Private key is (n; d)

Decryption of C is Cd =Med =M (mod n)

RSA signature

Signing key is (n; d)

Signature of M is S =Md (mod n)

Verification key is (n; e)

Check signature by Se =Mde =M (mod n)

Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

We’re not sure factoring is hard (likely not even
NP-complete), but it’s been unsolved for a long time

If factoring is easy (e.g., in P), RSA is insecure

Converse might not be true: RSA might have other
problems

Homomorphism

Multiply RSA ciphertexts ) multiply plaintexts

This homomorphism is useful for some interesting
applications
Even more powerful: fully homomorphic encryption
(e.g., both + and �)

First demonstrated in 2009; still challenging

Problems with vanilla RSA

Homomorphism leads to chosen-ciphertext attacks

If message and e are both small compared to n, can
compute M1=e over the integers

Many more complex attacks too

Hybrid encryption

Public-key operations are slow

In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time

- Breaks at either level are fatal

Padding, try #1

Need to expand message (e.g., AES key) size to
match modulus

PKCS#1 v. 1.5 scheme: prepend 00 01 FF FF .. FF

Surprising discovery (Bleichenbacher’98): allows
adaptive chosen ciphertext attacks on SSL

Variants recurred later (c.f. “ROBOT” 2018)



Modern “padding”

Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

Common examples: OAEP for encryption, PSS for
signing

Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

“Key encapsulation mechanism” (KEM)

For common case of public-key crypto used for
symmetric-key setup

Also applies to DH

Choose RSA message r at random mod n,
symmetric key is H(r)

- Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

One thing quantum computers would be good for is
breaking crypto
Square root speedup of general search

Countermeasure: double symmetric security level

Factoring and discrete log become poly-time
DH, RSA, DSA, elliptic curves totally broken
Totally new primitives needed (lattices, etc.)

Not a problem yet, but getting ready

Box and locks revisited

Alice and Bob’s box scheme fails if an intermediary
can set up two sets of boxes

Middleperson (man-in-the-middle) attack

Real world analogue: challenges of protocol design
and public key distribution

Outline

Good technical writing (cont’d)

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

Cryptographic protocols

Deadline reminders

OWASP reading questions: tonight

Project 0.5 regular deadline: Wednesday night

Project one-time extension: to Friday night

Outline

Good technical writing (cont’d)

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

Cryptographic protocols

The Internet

A bunch of computer networks voluntarily
interconnected

Capitalized because there’s really only one

No centralized network-level management
But technical collaboration, DNS, etc.



Layered model (OSI)

7. Application (HTTP)

6. Presentation (MIME?)

5. Session (SSL?)

4. Transport (TCP)

3. Network (IP)

2. Data-link (PPP)

1. Physical (10BASE-T)

Layered model: TCP/IP

Packet wrapping IP(v4) addressing

Interfaces (hosts or routers) identified by 32-bit
addresses

Written as four decimal bytes, e.g. 192.168.10.2

First k bits identify network, 32- k host within
network

Can’t (anymore) tell k from the bits

We’ll run out any year now

IP and ICMP

Internet Protocol (IP) forwards individual packets

Packets have source and destination addresses,
other options

Automatic fragmentation (usually avoided)

ICMP (I Control Message P) adds errors, ping
packets, etc.

UDP

User Datagram Protocol: thin wrapper around IP

Adds source and destination port numbers (each
16-bit)

Still connectionless, unreliable

OK for some small messages

TCP

Transmission Control Protocol: provides reliable
bidirectional stream abstraction

Packets have sequence numbers, acknowledged in
order

Missed packets resent later

Flow and congestion control

Flow control: match speed to slowest link
“Window” limits number of packets sent but not ACKed

Congestion control: avoid traffic jams
Lost packets signal congestion
Additive increase, multiplicative decrease of rate



Routing

Where do I send this packet next?
Table from address ranges to next hops

Core Internet routers need big tables

Maintained by complex, insecure, cooperative
protocols

Internet-level algorithm: BGP (Border Gateway Protocol)

Below IP: ARP

Address Resolution Protocol maps IP addresses to
lower-level address

E.g., 48-bit Ethernet MAC address

Based on local-network broadcast packets

Complex Ethernets also need their own routing (but
called switches)

DNS

Domain Name System: map more memorable and
stable string names to IP addresses
Hierarchically administered namespace

Like Unix paths, but backwards

.edu server delegates to .umn.edu server, etc.

DNS caching and reverse DNS

To be practical, DNS requires caching
Of positive and negative results

But, cache lifetime limited for freshness

Also, reverse IP to name mapping
Based on special top-level domain, IP address written
backwards

Classic application: remote login

Killer app of early Internet: access supercomputers
at another university
Telnet: works cross-OS

Send character stream, run regular login program

rlogin: BSD Unix
Can authenticate based on trusting computer connection
comes from
(Also rsh, rcp)

Outline

Good technical writing (cont’d)

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

Cryptographic protocols

Packet sniffing

Watch other people’s traffic as it goes by on network

Easiest on:
Old-style broadcast (thin, “hub”) Ethernet
Wireless

Or if you own the router

Forging packet sources

Source IP address not involved in routing, often not
checked

Change it to something else!

Might already be enough to fool a naive UDP
protocol



TCP spoofing

Forging source address only lets you talk, not listen

Old attack: wait until connection established, then
DoS one participant and send packets in their place
Frustrated by making TCP initial sequence numbers
unpredictable

Fancier attacks modern attacks are “off-path”

ARP spoofing

Impersonate other hosts on local network level

Typical ARP implementations stateless, don’t mind
changes

Now you get victim’s traffic, can read, modify, resend

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

rlogin uses reverse DNS to see if originating host is
on whitelist

How can you attack this mechanism with an honest
source IP address?

Remember, ownership of reverse-DNS is by IP
address

Outline

Good technical writing (cont’d)

Public key encryption and signatures

Announcements intermission

Brief introduction to networking

Some classic network attacks

Cryptographic protocols

A couple more security goals

Non-repudiation: principal cannot later deny having
made a commitment

I.e., consider proving fact to a third party

Forward secrecy: recovering later information does
not reveal past information

Motivates using Diffie-Hellman to generate fresh keys for
each session

Abstract protocols

Outline of what information is communicated in
messages

Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

Describes honest operation
But must be secure against adversarial participants

Seemingly simple, but many subtle problems

Protocol notation

A! B : NB; fT0; B;NBgKB
A! B: message sent from Alice intended for Bob

B (after :): Bob’s name

f� � �gK: encryption with key K



Example: simple authentication

A! B : A; fA;NgKA
E.g., Alice is key fob, Bob is garage door

Alice proves she possesses the pre-shared key KA

Without revealing it directly

Using encryption for authenticity and binding, not
secrecy

Nonce

A! B : A; fA;NgKA
N is a nonce: a value chosen to make a message
unique

Best practice: pseudorandom

In constrained systems, might be a counter or
device-unique serial number

Replay attacks

A nonce is needed to prevent a verbatim replay of a
previous message
Garage door difficulty: remembering previous nonces

Particularly: lunchtime/roommate/valet scenario

Or, door chooses the nonce: challenge-response
authentication

Middleperson attacks

Older name: man-in-the-middle attack, MITM

Adversary impersonates Alice to Bob and
vice-versa, relays messages

Powerful position for both eavesdropping and
modification

No easy fix if Alice and Bob aren’t already related

Chess grandmaster problem

Variant or dual of middleperson

Adversary forwards messages to simulate
capabilities with his own identity

How to win at correspondence chess

Anderson’s MiG-in-the-middle

Anti-pattern: “oracle”

Any way a legitimate protocol service can give a
capability to an adversary

Can exist whenever a party decrypts, signs, etc.

“Padding oracle” was an instance of this at the
implementation level


