CSci 427\W
Development of Secure Software Systems
Day 28: Usability examples, crypto failure

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Usable security example areas

Email encryption

£) Technology became available with PGP in the early
90s

) Classic depressing study: “Why Johnny can't
encrypt: a usability evaluation of PGP 5.0” (USENIX
Security 1999)

o) Still an open “challenge problem”

©) Also some other non-Ul difficulties: adoption, govt.
policy

Phishing

£) Attacker sends email appearing to come from an
institution you trust

£) Links to web site where you type your password,
etc.

€) Spear phishing. individually targeted, can be much
more effective

Phishing defenses

©) Educate users to pay attention to X:

® Spelling — copy from real emails
® URL — homograph attacks
® SSL “lock” icon — fake lock icon, or SSL-hosted attack

©) Extended validation (green bar) certificates
©) Phishing URL deny-lists

SSL warnings: prevalence

£) Browsers will warn on SSL certificate problems
£) In the wild, most are false positives

® foo.com VS. www.foo.com

® Recently expired

® Technical problems with validation
® Self-signed certificates (HA2)

£) Classic warning-fatigue danger

Older SSL warning

SSL warnings: effectiveness

£) Early warnings fared very poorly in lab settings

£) Recent browsers have a new generation of designs:

® Harder to click through mindlessly
® Persistent storage of exceptions

£) Recent telemetry study: they work pretty well




Modern Firefox warning

Modern Firefox warning (2)

Modern Firefox warning (3)

Spam-advertised purchases

©) "Replica” Rolex watches, herbal V!egre, etc.

£) This business is clearly unscrupulous; if | pay, will |
get anything at all?
£) Empirical answer: yes, almost always

® Not a scam, a black market
® Importance of credit-card bank relationships

Advance fee fraud

£) "Why do Nigerian Scammers say they are from
Nigeria?” (Herley, WEIS 2012)
©) Short answer: false positives
® Sending spam is cheap
® But, luring victims is expensive
® Scammer wants to minimize victims who respond but
ultimately don't pay

Trusted UI

©) Tricky to ask users to make trust decisions based
on Ul appearance
® Lock icon in browser, etc.
£) Attacking code can draw lookalike indicators

® Lock favicon
® Picture-in-picture attack

Smartphone app permissions

©) Smartphone OSes have more fine-grained
per-application permissions
® Access to GPS, microphone
® Access to address book
® Make calls

£) Phone also has more tempting targets
©) Users install more apps from small providers

Permissions manifest

©) Android approach: present listed of requested
permissions at install time
£) Can be hard question to answer hypothetically
® Users may have hard time understanding implications

£) User choices seem to put low value on privacy




Time-of-use checks

£) i0S approach: for narrower set of permissions, ask
on each use

©) Proper context makes decisions clearer

£) But, have to avoid asking about common things

£) i0S app store is also more closely curated

Trusted Ul for privileged actions

©) Trusted Ul works better when asking permission
(e.g., Oakland'12)
£) Say, “take picture” button in phone app

® Requested by app
® Drawn and interpreted by OS
® OS well positioned to be sure click is real

£ Little value to attacker in drawing fake button

Outline

More causes of crypto failure

Random numbers and entropy

£) Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
£) But rely on truly random seeding to stop brute force
® Extreme case: no entropy — always same “randomness”
£) Modern best practice: seed pool with 256 bits of

entropy
® Suitable for security levels up to 22¢

Netscape RNG failure

) Early versions of Netscape SSL (1994-1995) seeded
with:
® Time of day

® Process ID
® Parent process ID

) Best case entropy only 64 bits
® (Not out of step with using 40-bit encryption)

£) But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

£) OpenSSL has pretty good scheme using
/dev/urandom
£) Also mixed in some uninitialized variable values
® “Extra variation can't hurt”
£) From modern perspective, this was the original sin
® Remember undefined behavior discussion?

©) But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

©) Debian maintainer commented out some lines to fix
a Valgrind warning
® "Potential use of uninitialized value”

£) Accidentally disabled most entropy (all but 16 bits)

©) Brief mailing list discussion didn't lead to
understanding

£) Broken library used for ~2 years before discovery

Detected RSA/DSA collisions

£) 2012: around 1% of the SSL keys on the public net
are breakable
® Some sites share complete keypairs
® RSA keys with one prime in common (detected by
large-scale GCD)
£) One likely culprit: insufficient entropy in key
generation
® Embedded devices, Linux /dev/urandom Vs.
/dev/random

£) DSA signature algorithm also very vulnerable




Side-channel attacks

©) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

©) Power analysis

® Especially useful against smartcards
) Fault injection
©) Data non-erasure

® Hard disks, “cold boot” on RAM

WEP “privacy”

) First WiFi encryption standard: Wired Equivalent
Privacy (WEP)
£) F&S: designed by a committee that contained no
cryptographers
©) Problem 1. note “privacy”: what about integrity?
® Nope: stream cipher + CRC = easy bit flipping

WEP shared key

©) Single key known by all parties on network
©) Easy to compromise

©) Hard to change

£) Also often disabled by default

©) Example: a previous employer

WEP key size and IV size

©) Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key
® Both too small
£) 128-bit upgrade kept 24-bit IV
® Vague about how to choose IVs

® Least bad: sequential, collision takes hours
® Worse: random or everyone starts at zero

WEP RCA4 related key attacks

©) Only true crypto weakness

£) RC4 “key schedule” vulnerable when:

® RC4 keys very similar (eg., same key, similar IV)
® First stream bytes used

©) Not such a problem for other RC4 users like SSL
® Key from a hash, skip first output bytes

New problem with WPA (CCS'17)

£) Session key set up in a 4-message handshake

©) Key reinstallation attack: replay #3
® Causes most implementations to reset nonce and replay
counter
® In turn allowing many other attacks
® One especially bad case: reset key to O

£) Protocol state machine behavior poorly described in
spec
® Outside the scope of previous security proofs

Trustworthiness of primitives

) Classic worry: DES S-boxes

) Obviously in trouble if cipher chosen by your
adversary

©) In a public spec, most worrying are unexplained
elements

©) Best practice: choose constants from well-known
math, like digits of 7t

Dual EC DRBG (1)

£) Pseudorandom generator in NIST standard, based on
elliptic curve

£) Looks like provable (slow enough!) but strangely no
proof

£) Specification includes long unexplained constants

£) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable




Dual EC DRBG (2)

©) Found 2007: special choice of constants allows
prediction attacks
® Big red flag for paranoid academics
©) Significant adoption in products sold to US govt.
FIPS-140 standards
® Semi-plausible rationale from RSA (EMC)
£) NSA scenario basically confirmed by Snowden leaks
® NIST and RSA immediately recommend withdrawal

Outline

Time reserved for SRTs




