
CSci 4271W
Development of Secure Software Systems
Day 28: Usability examples, crypto failure

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Usable security example areas

More causes of crypto failure

Time reserved for SRTs

Email encryption

Technology became available with PGP in the early
90s

Classic depressing study: “Why Johnny can’t
encrypt: a usability evaluation of PGP 5.0” (USENIX
Security 1999)

Still an open “challenge problem”

Also some other non-UI difficulties: adoption, govt.
policy

Phishing

Attacker sends email appearing to come from an
institution you trust

Links to web site where you type your password,
etc.

Spear phishing: individually targeted, can be much
more effective

Phishing defenses

Educate users to pay attention to X:
Spelling ! copy from real emails
URL ! homograph attacks
SSL “lock” icon ! fake lock icon, or SSL-hosted attack

Extended validation (green bar) certificates

Phishing URL deny-lists

SSL warnings: prevalence

Browsers will warn on SSL certificate problems

In the wild, most are false positives
foo.com vs. www.foo.com
Recently expired
Technical problems with validation
Self-signed certificates (HA2)

Classic warning-fatigue danger

Older SSL warning SSL warnings: effectiveness

Early warnings fared very poorly in lab settings

Recent browsers have a new generation of designs:
Harder to click through mindlessly
Persistent storage of exceptions

Recent telemetry study: they work pretty well



Modern Firefox warning Modern Firefox warning (2)

Modern Firefox warning (3) Spam-advertised purchases

“Replica” Rolex watches, herbal V!@gr@, etc.

This business is clearly unscrupulous; if I pay, will I
get anything at all?
Empirical answer: yes, almost always

Not a scam, a black market
Importance of credit-card bank relationships

Advance fee fraud

“Why do Nigerian Scammers say they are from
Nigeria?” (Herley, WEIS 2012)
Short answer: false positives

Sending spam is cheap
But, luring victims is expensive
Scammer wants to minimize victims who respond but
ultimately don’t pay

Trusted UI

Tricky to ask users to make trust decisions based
on UI appearance

Lock icon in browser, etc.

Attacking code can draw lookalike indicators
Lock favicon
Picture-in-picture attack

Smartphone app permissions

Smartphone OSes have more fine-grained
per-application permissions

Access to GPS, microphone
Access to address book
Make calls

Phone also has more tempting targets

Users install more apps from small providers

Permissions manifest

Android approach: present listed of requested
permissions at install time
Can be hard question to answer hypothetically

Users may have hard time understanding implications

User choices seem to put low value on privacy



Time-of-use checks

iOS approach: for narrower set of permissions, ask
on each use

Proper context makes decisions clearer

But, have to avoid asking about common things

iOS app store is also more closely curated

Trusted UI for privileged actions

Trusted UI works better when asking permission
(e.g., Oakland’12)
Say, “take picture” button in phone app

Requested by app
Drawn and interpreted by OS
OS well positioned to be sure click is real

Little value to attacker in drawing fake button

Outline

Usable security example areas

More causes of crypto failure

Time reserved for SRTs

Random numbers and entropy

Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
But rely on truly random seeding to stop brute force

Extreme case: no entropy ! always same “randomness”

Modern best practice: seed pool with 256 bits of
entropy

Suitable for security levels up to 2
256

Netscape RNG failure

Early versions of Netscape SSL (1994-1995) seeded
with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit encryption)

But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme using
/dev/urandom
Also mixed in some uninitialized variable values

“Extra variation can’t hurt”

From modern perspective, this was the original sin
Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out some lines to fix
a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all but 16 bits)

Brief mailing list discussion didn’t lead to
understanding

Broken library used for �2 years before discovery

Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the public net
are breakable

Some sites share complete keypairs
RSA keys with one prime in common (detected by
large-scale GCD)

One likely culprit: insufficient entropy in key
generation

Embedded devices, Linux /dev/urandom vs.
/dev/random

DSA signature algorithm also very vulnerable



Side-channel attacks
Timing analysis:

Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired Equivalent
Privacy (WEP)

F&S: designed by a committee that contained no
cryptographers
Problem 1: note “privacy”: what about integrity?

Nope: stream cipher + CRC = easy bit flipping

WEP shared key

Single key known by all parties on network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes hours
Worse: random or everyone starts at zero

WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key, similar IV)
First stream bytes used

Not such a problem for other RC4 users like SSL
Key from a hash, skip first output bytes

New problem with WPA (CCS’17)

Session key set up in a 4-message handshake

Key reinstallation attack: replay #3
Causes most implementations to reset nonce and replay
counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly described in
spec

Outside the scope of previous security proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by your
adversary

In a public spec, most worrying are unexplained
elements

Best practice: choose constants from well-known
math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST standard, based on
elliptic curve

Looks like provable (slow enough!) but strangely no
proof

Specification includes long unexplained constants

Academic researchers find:
Some EC parts look good
But outputs are statistically distinguishable



Dual EC DRBG (2)

Found 2007: special choice of constants allows
prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to US govt.
FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by Snowden leaks
NIST and RSA immediately recommend withdrawal

Outline

Usable security example areas

More causes of crypto failure

Time reserved for SRTs


